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Abstract: Systems poised at a dynamical critical regime, between order and disorder, have been
shown capable of exhibiting complex dynamics that balance robustness to external perturbations
and rich repertoires of responses to inputs. This property has been exploited in artificial network
classifiers, and preliminary results have also been attained in the context of robots controlled by
Boolean networks. In this work, we investigate the role of dynamical criticality in robots undergoing
online adaptation, i.e., robots that adapt some of their internal parameters to improve a performance
metric over time during their activity. We study the behavior of robots controlled by random Boolean
networks, which are either adapted in their coupling with robot sensors and actuators or in their
structure or both. We observe that robots controlled by critical random Boolean networks have
higher average and maximum performance than that of robots controlled by ordered and disordered
nets. Notably, in general, adaptation by change of couplings produces robots with slightly higher
performance than those adapted by changing their structure. Moreover, we observe that when
adapted in their structure, ordered networks tend to move to the critical dynamical regime. These
results provide further support to the conjecture that critical regimes favor adaptation and indicate
the advantage of calibrating robot control systems at dynamical critical states.

Keywords: Boolean networks; dynamical criticality; robots; adaptation

1. Introduction

Dynamical criticality has been identified as a feature of complex natural as well as arti-
ficial systems in plenty of settings [1–3], from cells [4–7] to artificial neural networks [8–10].
The main advantages that have been identified in systems working at critical regimes are
the capability of achieving an optimal balance between (i) robustness against mutation
and phenotypic innovation and (ii) their repertoire of behaviors and the reliability of their
actions [3,11]. This capability is a desirable feature also in artificial adaptive systems that
have to carry out a task in an unknown environment.

In this work, we focus on the role that criticality plays in robots undergoing an
adaptation process. The robots adapt their controller—namely, a Boolean network—so as
to improve their performance at a given task over time. This experimental setting makes it
possible to investigate to what extent and in what conditions controllers based on critical
Boolean networks have an advantage over networks in other dynamical regimes. Moreover,
the specific adaptive mechanism used may shed light on the relation between criticality
and phenotypic plasticity—a property characterizing organisms that, from one genotype,
can express different phenotypes in response to different environments without involving
genetic modifications [12,13].

Since their inception as an abstract model of gene regulatory networks [14], Boolean
networks (BNs) have been the subject of a wealth of works investigating their computational
and dynamical properties. Notably, BNs have demonstrated their ability to effectively
capture significant biological phenomena, such as cell differentiation [15–21]. Evidence of
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an edge provided by critical Boolean networks has been demonstrated in classification,
filtering and control tasks, just to mention some examples. BNs artificially evolved to
solve combinatorial tasks of varying complexity have been shown to be driven toward
criticality [22]. Benedettini et al. [23] studied learning BNs in different problems and
contexts and found that criticality is important but not always necessarily needed, as the
choice of the objective function and the idiosyncrasies of the problems play a major role
in the attainment of a high performance. A recent work shows that critical random BNs
used in signal processing make it possible to achieve more flexible and accurate results [24].
This latter work is of main interest to our application, as it uses BNs in reservoir computing
systems, which are computational devices composed of a core (the reservoir) and an input
and an output component. The reservoir is usually a non-linear dynamical system, such
as a random recurrent neural network, while the readout layer is a simple linear network.
The input signal perturbs the dynamics of the reservoir, which is translated into an output
by the readout component. This latter is subject to training in order to perform classification
or regression tasks. The peculiarity of these computational systems is that they exploit the
inherent random dynamics of the reservoir, which then has to be sufficiently rich but robust
so as to react to the external inputs in a reliable yet informative way to provide meaningful
signals to the readout layer.

In this work, we build upon a previous preliminary investigation [25], where random
BNs (hereinafter referred to as RBNs), picked in ordered, critical and disordered regimes,
are used to control robots subject to an adaptive process so as to be able to explore an
arena without colliding against walls and obstacles. The coupling between robot proximity
sensors and a BN controller undergoes a simple adaptive procedure that retains only those
combinations that improve the performance of the robot. Nothing else is changed during
the adaptation, so the structure of the BNs does not change over time. The outcome of this
study is that RBNs picked from the critical ensemble provide a significant advantage in the
performance over ordered and chaotic (i.e., disordered) ones. This result is in accordance
with previous results in reservoir computing [24], where the internal dynamics of critical
RBNs was shown to be advantageous. Several questions are still to be addressed: Are there
tasks in which the advantage of critical BNs as controllers is particularly marked? How does
the adaptive mechanism that operates on the coupling between sensors (resp. actuators)
of the robot and inputs (resp. outputs) of the BN compare to a usual mutational adaptive
mechanism? Is there a tendency to criticality when BNs are subject to structural mutation?

In this contribution, we address these questions and try to identify general conditions
that make critical BNs preferable as controllers in artificial agents and robots.

2. Materials and Methods

In this section, we detail the model used as robot control program, i.e., Boolean
networks, along with the adaptive mechanisms and specific tasks introduced with the aim
of addressing the questions posed at the end of the previous section.

2.1. Robots Configuration

This section describes the hardware and software structure of the robots.
Robot Hardware Configuration—We chose to use the foot-bot robot model [26], since

it represents a simple but well-equipped robot. For our purposes, its relevant features
are differential steering through two-wheel drive motor control; the presence of up to
24 proximity sensors that allow the detection of nearby objects; and up to 24 light sensors
placed around the body of the robot that allow it to capture the intensity of light signals.

Robot Control Software—As in the Boolean network robotics (BN-robotics) approach [27–30],
each robot uses a Boolean network as a software control program. In this way, the behavior
expressed by it is a function of the internal dynamics of the network, which in turn is highly
influenced by how it is connected to sensors and actuators.

In the following, we will refer to input nodes as the subset of nodes in the Boolean
network used to perturb the state of the network with signals coming from the robot’s
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sensors. After an encoding phase, the state of these nodes will be overwritten with the
values obtained from the sensors.

Instead, the output nodes will be those nodes of the Boolean network whose values will
be used to control the actuators of the robot; each node will control a particular actuator.

So, at each simulation step, a robot (i) takes the values read from its sensors; (ii) encodes
them into Boolean values using thresholds that depend on the nature of the sensor (see
Appendix A for a detailed list of the parameters used in the experiments); (iii) uses these
values to perturb, by overwriting, the input nodes of the Boolean network; (iv) performs a
synchronous update of the BN; and (v) uses the values of the output nodes thus determined
to control the actuators.

2.2. Experimental Settings

In this section, we present the tasks employed to address the previously mentioned
research questions along with the details of the experimental settings.

The BNs used as control software in these experiments have n = 1000 nodes, k = 3
inputs per node and Boolean functions randomly generated by means of the bias parame-
ter p. In particular, p will take values in {0.1, 0.21, 0.5, 0.79, 0.9} in order to investigate the
difference in performance caused by control software operating, respectively, in ordered,
chaotic and critical dynamic regions. Indeed, according to [31], ensembles of RBNs having
k = 3 are statistically ordered when bias is equal to 0.1 or 0.9, statistically chaotic when
p = 0.5 and statistically critical when bias is equal to 0.21 or 0.79. Only the BN nodes
controlling the wheels have the function randomly chosen always with bias 0.5; this is
to avoid naively conditioning the behavior of the robot, which would tend to be always
moving (resp. resting) for high biases (resp. low biases). The tasks will be run 50 times each,
each time with a different seed assigned to the pseudo-random number generator, in order
to obtain statistically comparable results. A random seed affects the initial positioning of
robots, the generation of Boolean networks and their initial states, and also the actions
performed by the adaptation techniques. In each run, a population of 10 robots will try
to adapt with only the computational capabilities at its disposal and without resorting to
information sharing as in evolutionary computation.

The tasks to be accomplished are expressed through objective functions that the robots
use during their adaptation phase. Each simulation is divided into 500 epochs with the
duration of d = 80 s (which corresponds to 800 simulation steps, since robots execute 10
steps per second). All the parameters used for the experiments are shown in Appendix A.
At the end of each epoch, a robot determines the quality of its configuration on the basis of
the score returned by the objective function. The score is accumulated for each simulation
step and reset at the beginning of each new epoch. Each robot tries to maximize the score
obtained in the various epochs by applying the predetermined form of adaptation. To do
this, at the end of each epoch, the current configuration is maintained only if it is not worse
than the previous one; therefore, sideways moves in the search space of Boolean networks
are allowed.

Task I—The first task is a simple navigation with collision avoidance, and it consists of
moving as straight as possible, minimizing the number of curves, and at the same time
avoiding obstacles that may be encountered. The arena configuration employed for this
task is represented in Figure 1. To obtain robots performing this task, we introduced the
following objective function, which is typically used in evolutionary robotics [32]:

100
E

E

∑
n=1

(1− θ(n)) · (1−
√
| l(n)− r(n) |) · l(n) + r(n)

2
(1)
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Figure 1. Top view of the arena used for Task I. The gray objects are the obstacles, and the blue objects
are the robots. The arena consists of a square perimeter with a square obstacle in the center.

To allow robots to perceive obstacles, the 24 proximity sensors made available by the
foot-bot robot model were logically aggregated into groups of size 3, keeping the maximum
value for each group. Then, a threshold equal to 0.1 was used for each of the resulting 8
max values to determine the corresponding Boolean values, which will be equal to 1 if they
are greater than the threshold and 0 vice versa.

Task II—The second task differs from the first task in the presence of two virtual regions
that subdivide the arena, as depicted in Figure 2. Each robot will be assigned to a region
in which to navigate and avoid obstacles, avoiding entering the wrong one. The score
is calculated as in Equation (1) by introducing a penalty factor ε which takes the value 1
when the robot is in the correct region and −1 otherwise. The resulting objective function
is the following:

100
E

E

∑
n=1

ε(n) · (1− θ(n)) · (1−
√
| l(n)− r(n) |) · l(n) + r(n)

2
(2)

The correct region is the one where the robot is initially placed during the deployment
phase. In addition to the 8 proximity sensors previously introduced for Task I, a virtual
sensor designed to perturb the dynamics of the Boolean network with the feedback on the
region where a robot is currently located has been added.

Figure 2. Top view of the arena used for Task II. As in the first arena, the gray objects are the obstacles,
the blue objects are the robots and the arena consists of a rectangular perimeter with a square obstacle
in the center. Unlike the first arena, this one has, in addition, two virtual areas, red and blue.
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Task III—It is a foraging task where robots must pick up a virtual object in the blue zone
and bring it to the green zone while avoiding obstacles; see Figure 3. To do this, the robot is
provided with a virtual hook controlled by a binary signal: pick up or deposit.

Figure 3. Top view of the arena for Task III. The third arena features an octagonal perimeter with
obstacles in the center; the blue and green areas indicate two virtual areas needed to accomplish a
foraging task. Moreover, it also presents a light source located on the outer boundary of the green
area. Purple and green lines indicate whether or not the robots are perceiving light and were used for
debugging purposes.

In addition, to help the robots orient themselves, a light source was placed over the
green area to provide a gradient to follow. All this information is propagated over the
Boolean networks through additional input nodes. The information of the region where a
robot is located is encoded by the following Boolean signals: 00 for the neutral zone, 01 for
the green zone and 10 for the blue zone.

Light signals, such as proximity signals, are propagated through 8 Boolean signals.
In total, the robot network is perturbed with 8+ 8+ 2 = 18 Boolean input values (proximity,
brightness, region), and 2 + 1 = 3 Boolean output values are used to control the actuators
(motors, hook). The same objective function as in the previous tasks is used to push robots
to move and explore the arena with the difference of further penalizing colliding robots
(θ(n) multiplied by 2).

A reward r is introduced that is added to the fitness score whenever the robot performs
one of these actions:

r =


+50, if pick up while the robot is in the blue region
+50, if deposit while the robot is in the green region
−100, if deposit in other cases

(3)

So, the resulting objective function for this task is as follows:

100
E

E

∑
n=1

r(n) + (1− 2θ(n)) · (1−
√
| l(n)− r(n) |) · l(n) + r(n)

2
(4)

The pick up action is considered valid only if the robot is in the correct region, while the
deposit action is only possible if the robot has previously collected a virtual object. In this
task, robots do not have information about the object possession; they have to keep in
memory the state they are in. The position of the hook may represent a feedback to exploit;
indeed, if it is closed, the robot may assume to possess an object, but this is not guaranteed.
This task, and the previous one in a similar but different way, is designed to force the
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control software to maintain a memory of this information and act accordingly. The need
for memory is a design requirement that rules out the possibility of attaining simple,
Braitenberg-like [33], robot controllers. Finally, note that in this task, it was necessary
to further penalize colliding robots; for this purpose, we introduced a factor of 2 that
multiplies θ.

For information on the interpretation of the parameters used in Equations (1), (2)
and (4), refer to Appendix A.2 and especially Table A2. Meanwhile, a summary of the
parameters used for the experiments carried out is shown in Table 1.

Table 1. Summary of the parameters used for the experiments.

n = 100 , k = 3, p ∈ {0.1, 0.21, 0.5, 0.79, 0.9}, (no self loops allowed)
∆t = 0.1, d = 80 s;
Population of 10 robots per each run;
Adaptive mechanisms ∈ {In-Out Mapping, Mutation, Hybrid};
Tasks ∈ {I, II, III};
50 runs for each parameters combination

2.3. Adaptive Mechanisms

Here, we introduce the three adaptive mechanisms used: in–out mapping, mutation,
and hybrid. Their differences are reviewed below:

In–Out Mapping The internal structure of the Boolean network remains unchanged; what
this mechanism changes is, at the end of each epoch, the coupling between BN nodes
and robot actuators and sensors. In particular, driven by the objective function that
we are going to present later, the robot replaces two input nodes and one output
node in a random fashion. This causes the network to be perturbed by sensor values
in different regions of the BN and the output for the actuators to be derived from a
different combination of nodes.

Mutation At the end of each epoch, the robot changes the internal structure of the Boolean
network as follows: 1% of the truth table entries (80 bits, result of networks with
1000 nodes and Boolean functions with 8 entries each) is negated, and 1% of the
connections between nodes (30 arcs) are redistributed. Both entries and edges are
chosen randomly. The internal structure of the network thus changes, while the set of
input and output nodes remains unchanged.

Hybrid The combined effect of the previous techniques.

Note that both the hybrid and mutation techniques mutate the internal structure of
the Boolean network.

3. Results

In this section, we will summarize the results of the comparison of adaptive mechanisms
tested in the three presented tasks, focusing on the performance differences induced by
robots controlled by Boolean networks taken from ordered, critical and chaotic ensembles.

Comparison of the Adaptive Mechanisms

As stated before, we run 50 replicas for each configuration of parameters and collected
the following statistics:

Mean of max objective function per epoch To represent the robots’ ability to adapt as the
length of the adaptation phase increases, we take for each epoch the maximum score
(returned value by the objective function) achieved so far by the robot, taking into
account all previous epochs. Subsequently, we calculate the average so as to obtain
for each epoch, 500 in total, a point that represents the average of the maximum score
obtained so far by all robots. The trend will always be increasing.



Entropy 2022, 24, 1368 7 of 21

Area under the curve To provide quantitative information about the differential perfor-
mances of all the combinations of adaptive mechanisms and dynamical regimes, we
calculate and rank from highest to lowest the area under the curve of the trend traced
by the mean of the maximum objective function along the epochs.

Box-plot of max objective function scores In this type of statistic, each box-plot is popu-
lated by the maximum objective function score of each robot. The maximum score is
the highest score that a robot was able to reach in one of the 500 epochs available.

Mean rank of max scores For this analysis, we sort all the robot’s max scores from highest
to lowest and assign a rank. Afterwards, we compute the mean of the rank of
every experimental case by grouping them by the mechanism and dynamical regime.
For this statistic, the lower, the better.

In Figure 4, we present, for each task, the trend of the mean score per epoch, pointing
out the relationship between the type of Boolean network and the adaptive mechanism.
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(c) Task III

Legend

p=0.1 hybrid
p=0.1 in−out mapping
p=0.1 mutation
p=0.21 hybrid
p=0.21 in−out mapping
p=0.21 mutation
p=0.5 hybrid
p=0.5 in−out mapping
p=0.5 mutation
p=0.79 hybrid
p=0.79 in−out mapping
p=0.79 mutation
p=0.9 hybrid
p=0.9 in−out mapping
p=0.9 mutation

(d) Legend
Figure 4. Comparison of average maximum score trends obtained in each epoch by all robots with
respect to the p parameter and the three adaptive techniques. Graphs are divided by the task they
address. Given the very low average max score obtained by chaotic parameters in the first epochs
(subplot), the Task III main graph shows the values above to −50.
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First of all, we observe that Boolean networks generated with p = 0.5 (blue ones)
obtain, except for Task II, a lower average score regardless of the adaptive technique
used. Secondly, we can also notice that the critical dynamical regime (green curves),
in general, tends to dominate the others, with a slightly better performance of in–out mapping
with respect to other adaptation schemas. To better characterize the contributions made,
respectively, by the adaptive mechanism and the dynamical regime of the Boolean network
in the critical controller case, we have to note the relative difference in performance obtained
by the mutation mechanism compared to the other two. Indeed, the latter produces lower
values than the other two mechanisms at each epoch, leading us to conclude that the results
of the hybrid mechanism in the critical case were more positively affected by the change
in input and output mapping than by the component concerning the Boolean network
modifications. In contrast, the configuration of (initially) ordered controller (red curves)
with hybrid technique appears to take advantage of the mutational component of the
hybrid mechanism, except in Task I, which is the simplest one. However, how much these
variations affect the dynamical regime of these networks is unclear, and in the following,
we will analyze this aspect by analyzing their Derrida values.

As previously stated, to quantitatively evaluate the differences in performance, we
also calculated the area under each curve shown in Figure 4. We then ranked them and
reported the 5 best for each task in Table 2. Interestingly, the first 4 positions are occupied
by critical RBNs, for all tasks, and on only one occasion does the mechanism of mutation
appear. Furthermore, we note that in 2/3 of the tasks, the in–out mapping turns out to be
the best for this type of statistic.

Table 2. Ranking, for each task, of the first 5 values of the area under the curves of the trends shown
in Figure 4. [i-o] stands for in–out mapping mechanism, while [h] stands for hybrid adaptation and
[m] stands for mutation scheme.

Task I Task II Task III

Rank Case Area Case Area Case Area

1 [i-o] p = 0.21 28,431.61 [h] p = 0.21 23,302.72 [i-o] p = 0.79 35,406.36
2 [i-o] p = 0.79 27,921.29 [i-o] p = 0.21 23,283.64 [h] p = 0.79 34,519.52
3 [h] p = 0.79 26,603.61 [h] p = 0.79 23,148.49 [i-o] p = 0.21 33,832.64
4 [h] p = 0.21 26,414.22 [m] p = 0.79 22,482.42 [h] p = 0.21 33,781.08
5 [h] p = 0.1 26,079.86 [i-o] p = 0.79 22,410.69 [h] p = 0.1 33,630.86

The overall picture seems to point toward the initial postulated hypothesis that the
critical RBNs already have all the computational characteristics to perform the tasks,
and therefore, the in–out mapping technique is sufficient to obtain good results.

In Figure 5, we report the distributions of the maximum objective function scores
obtained by the robots along their epochs of adaptation, which are grouped by task. These
data also confirm that Boolean networks generated with p = 0.5 perform poorly on
average. Indeed, the best robots in this parameter setup fail to achieve high values of the
objective function across all the tasks. In addition, we can state that at least for this kind
of analysis, there is no clear winner between the critical and ordered networks, which
are the best configurations for the previous analysis. However, the box-plots seem to
suggest that as the task difficulty increases, i.e., from I to III, the relationships between the
two distributions gradually change in favor of the critical configuration. As regards the
adaptation mechanism, both cases of critical RBNs (namely, p = 0.21 and p = 0.79) with
in–out mapping present median values comparable to (in Task I) or higher to (Task II and III)
other adaptation mechanisms.

The unpaired Wilcoxon statistical hypothesis tests, reported in Appendix C in Figure A2,
confirm that the medians of the distributions of p = 0.21 and p = 0.79 in–out mapping are
significantly different from the other distributions’ medians in Tasks II and III, with some
exceptions in Task I.
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Figure 5. Comparison of the actual distributions of maximum objective function values obtained by
all the robots, subdivided by task typology.

As briefly introduced above, another prominent analysis is that concerning the nom-
inal dynamical regime, i.e., the one statistically possessed by the networks generated
randomly at the beginning of the adaptation phase, against the actual one, i.e., the oper-
ating dynamical regime expressed by the BNs of the best robots. The actual dynamical
regime is the result of the particular adaptive pressure exerted by the objective function on
the environment–robot system. Indeed, having undergone modifications to the internal
structure through the mutation and hybrid mechanisms, Boolean networks belonging to
the p = {0.1, 0.9} configuration that have performance comparable to the critical ones,
initially ordered, may have undergone a change to their dynamical regime of operation,
which, arguably, could have led them to resemble, dynamically, those in the critical regime.
In general, structural modifications to the Boolean networks introduced by the mutation
and hybrid adaptive techniques no longer allow us to consider the networks as part of
the random Boolean network ensemble from which they were initially sampled, since the
bias selected by the adaptation techniques could have undergone substantial changes. So,
a precise characterization of the dynamical regime of the networks that have been subjected
to adaptation is needed. In this regard, we study their Derrida parameter [34] λ at one step.

The procedure for computing the Derrida value for a single state of a Boolean network
is as follows: a copy of the state of the Boolean network is created, and the value of
a randomly chosen variable is negated; then, a synchronous update is performed for
both states, and the Hamming distance between the two resulting states is measured.
Usually, this procedure is repeated several times, for different variables, to determine an
average value. The result measures the average propagation level of a perturbation and
is statistically greater than 1 in chaotic networks, and it is less than 1 in ordered and 1
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in critical networks. Since in our experiments, Boolean networks are embedded in robot
bodies, and thus regions of their state spaces are not equally accessible due to physical
constraints and the control program they are actually implementing, we compute, for each
robot, the Derrida value using the following procedure:

• We identify the epoch in which the robot obtained the best score;
• We extrapolate the state of the network for all the 800 steps composing the epoch;
• We calculate the Derrida value for each of the 800 states and on all the possible

perturbations, n = 100. Then, an average value of all states belonging to the robot
is computed;

• Finally, the average value is used to generate a point on the scatter plot.

The value thus calculated represents the average propagation level of a perturbation
only on the states in which the robot has transited during its best epoch. Then, these values
are reported in Figure 6 with respect to their relative scores. For reasons of clarity, Figure 6
reports the comparison of initially ordered, critical and chaotic networks generated using
the following bias values: p = {0.1, 0.21, 0.5}. The other bias values taken into account,
namely p = {0.9, 0.79, 0.5}, which show a similar trend, are reported in Appendix B and in
particular in Figure A1.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6. Scatter plot of Derrida values (x-axis) against the relative objective function scores (y-
axis) obtained by the robots in their best epoch. Noting that we used RBNs with k = 3 as robot
controllers, red points represent Boolean networks initially generated using p = 0.1, while the green
dots represent RBNs generated using p = 0.21, and lastly, blue ones have been sampled from the
ensemble of chaotic RBNs, i.e., using p = 0.5. (a) Task I: Mutation (b) Task II: Mutation (c) Task III:
Mutation (d) Task I: Hybrid (e) Task II: Hybrid (f) Task III: Hybrid (g) Task I: In-Out Mapping (h) Task
II: In-Out Mapping (i) Task III: In-Out Mapping.
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In the cases where only an in–out mapping adaptive mechanism is applied, it is possible
to notice well-divided clusters in relation to the Derrida value and to the parameter p used
to generate the RBNs. When the mutation is introduced (hybrid and mutation techniques),
the regions start to overlap. In particular, it is possible to notice that the green and red
regions (p = 0.21 and p = 0.1, and in the same way for p = 0.79 and p = 0.9 in Figure A1)
move to the right, obtaining a higher average Derrida value. Remarkably, the effect is
particularly marked for the initially ordered networks. To better evaluate the effect of
the “dynamical regime shift” observed in Figure A1) and induced by the mechanisms
that change the BNs structure, we perform a further analysis: we compute the mean of
the ranking of the maximum scores in both nominal and actual dynamical regimes. To do
so, for the nominal dynamical regime, we considered as ordered the BNs generated with
p = {0.1, 0.9}, critical those with p = {0.21, 0.79} and chaotic with p = {0.5}. Meanwhile,
for the actual dynamical regime, we considered them ordered if D < 1 − ε, critical if
D ≥ 1− ε and D ≤ 1 + ε, and, lastly, chaotic if D > 1 + ε, with ε = 0.3. The results are
reported in Table 3 for Task III, while those concerning the dynamical regime shift observed
in Tasks I and II are presented in Appendix D, in Tables A6 and A7. In general, we can
note how all the configurations with (initially) ordered networks that are present in the first
positions of the “nominal” column (remember that in this analysis, the lower, the better) are
superseded by the critical ones when we consider the actual operating dynamical regimes
expressed by the BNs that control the robots.

Overall, this result demonstrates how initially ordered networks that undergo adapta-
tion by the hybrid and mutation mechanisms have statistically similar dynamical character-
istics to the critical ones and strengthen our initial hypothesis.

Table 3. Mean of the ranking of the maximum scores for Task III; in this analysis, the lower, the better.
[i-o] stands for in–out mapping mechanism, while [h] stands for hybrid adaptation and [m] stands for
mutation scheme. For the nominal dynamical regime, we considered as ordered the BNs generated
with p = {0.1, 0.9}, critical those with p = {0.21, 0.79} and chaotic those with p = {0.5}. Meanwhile,
for the actual dynamical regime, we considered them ordered if D < 1− ε, critical if D ≥ 1− ε and
D ≤ 1 + ε, and, lastly, chaotic if D > 1 + ε, with ε = 0.3.

Task III

Nominal Actual

Rank Case < Rank > Case < Rank >

1 [i-o] critical 2593.62 [i-o] critical 2600.79
2 [h] ordered 2975.89 [h] critical 2956.95
3 [h] critical 3185.77 [m] critical 4002.53
4 [m] critical 4366.05 [i-o] ordered 4779.87
5 [m] ordered 4435.57 [h] ordered 5468.71
6 [i-o] ordered 4804.36 [m] ordered 6687.97
7 [h] chaotic 6967.89 [h] chaotic 6734.92
8 [i-o] chaotic 7134.18 [m] chaotic 7063.64
9 [m] chaotic 7557.92 [i-o] chaotic 7134.17

4. Discussion

The results presented in the previous section can be considered as a further piece of ev-
idence supporting the so-called criticality hypothesis [2,3,35,36]. In the following subsection,
we first elaborate on that. Subsequently, we discuss the role of criticality in the broader
context of phenotypic plasticity.

4.1. Remarks on the Criticality of Adaptive BN Robots

The results presented in the previous section are coherent with the hypothesis that
criticality brings an advantage for the online adaptation of BN robots. As previously
recalled, this advantage is commonly believed to manifest itself in two ways:
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(i) Behavior: optimal balance between the system’s repertoire of actions and their reliabil-
ity with respect to external inputs.

(ii) Evolvability: trade-off between robustness against mutation and phenotypic innovation.

Our experiments make it possible to set these properties in a more precise context,
as they enable us to provide a formal instantiation of the objects involved. Let us first focus
on “Behavior”. In our experimental setting, the BN is coupled with the environment via (a)
an encoding layer that imposes temporary values on network nodes from sensors readings
(the “external inputs”) and (b) a decoding layer that reads the values of some nodes and
translates them into actuation signals (the “actions”). The actions the robot can take are low
level, as they consist of activating the actuators (e.g., the wheels) for a short time duration,
i.e., the interval between two simulation steps (in our experiments, 100 milliseconds).
The sequence of these low-level actions produces the actual high-level actions, such as
“going straight”. Therefore, the overall robot behavior is the result of the integration in time
of low-level actions, which depend upon the inputs and the internal state of the network.
Note that inputs may change both by robot movements (e.g., moving toward a wall makes
it detectable by proximity sensors) and uncontrolled external events (e.g., other robots
moving in the arena). The behavior of the whole system—i.e., the robot controlled by the
BN—is quantitatively evaluated by means of a task-dependent objective function: The
higher the evaluation, the greater the robot’s capability of elaborating inputs to produce
useful high-level actions. In summary, property (i) can be defined as the capability of the
BN—which is the robot control system—to discriminate useful inputs from useless ones
and to translate them into proper time-extended signals to the actuators in such a way that
a high performance with respect to the objective function is achieved.

As for property (ii), in our experiments, “robustness against mutation” has to be read
as the aptitude of the network to react with slight behavioral changes to local permanent
perturbations of its structure. In other words, on average, the dynamics of the network
should not be profoundly changed by local structural perturbations. “Phenotypic innova-
tion” counterbalances robustness in that it should enable changes that carry novelty in the
dynamics of the network. In our experimental setting, this corresponds to the possibility of
introducing adjustments to the network such that it can improve its behavior. Therefore,
the trade-off between robustness against mutation and phenotypic innovation is indirectly
assessed by the objective function improvements along the adaptive epochs: The larger the
area under the curve, the better the trade-off between robustness and innovation—under
structural adaptation, i.e., the Mutation mechanism.

We remark that the in-out mapping adaptive scheme does not perturb the network
structure, but it intervenes on the functioning of the network by changing its connections
to sensors and actuators. This mechanism does not change the dynamical regime of the
network if taken as an isolated system, as indeed, it is commonly used to evaluate the
BN dynamical regime. However, different couplings with sensors and actuators give rise
to different dynamics: The same BN robot might react with different behaviors to the
same environmental stimuli depending on the input–output connections. Therefore, our
observations on the dynamical regime concern the isolated network rather than the one of
the compound open system network–environment.

In the following, we discuss our results in light of the previous considerations. We first
observe that RBNs in the chaotic regime are rather not suitable for successfully controlling
adaptive robots, while in general, ordered and critical RBNs have shown noteworthy
capabilities in this respect. The probability of attaining a sufficiently good performance
with an RBN picked from the chaotic ensemble is indeed negligible, independently of the
adaptation mechanism. Interestingly, this outcome is in agreement with previous results in
eukaryotic cells, which were not found in the chaotic regime [37].

This is a further example of the difficulty of evolving or adapting a chaotic RBN;
moreover, it provides further evidence to the general conception that chaotic systems do
not react reliably to external inputs. In our experiments, the latter sentence takes a precise
meaning: a good performance is associated with the capability of capturing the regularities
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of the external world, filtering out noise and perturbations, and transforming them into
actions coherent with the final goal. Chaotic RBNs do not provide such ability to the
robots they control. Conversely, RBNs picked from the critical and ordered ensembles
have shown to be able to control robots achieving high performance although with some
remarkable differences. First and foremost is that critical RBNs achieve a slightly better
overall average performance than ordered ones (Figure 4). However, if we look at the best
solutions (Figure 5), or better at the mean of their ranks (Table 3), the results are clearer
and lead us to conclude that critical RBNs achieve superior performance with respect to
other regimes.

A further point to be remarked is that the best results achieved by robots controlled
by critical RBNs are attained under the in-out mapping adaptive mechanism, indicating
that the intrinsic dynamics of critical RBNs constitutes an abundant repertoire of actions,
as in the case of reservoir computing [24]. This is a distinguished feature of those systems
that are characterized by a rich dynamics but are robust against external perturbations.
Conversely, ordered RBNs, when the difficulty of the task becomes not negligible (i.e., Task
II and III), greatly benefit from the adaptive schemes that change the topology and Boolean
functions (i.e., Mutation, and Hybrid, which encompasses the former). This result is further
reinforced by observing that initially ordered RBNs tend to move toward the critical regime
when their structure is evolved. Plots g–i of Figure 6 show the Derrida value distribution of
RBNs that do not undergo structural changes; hence, they represent the initial distribution
of Derrida values for RBNs in the three regimes. Roughly, ordered network values are
centered on 0.5, critical on 1.0 and chaotic on 1.5. If we compare these plots with the ones of
Mutation and Hybrid adaptive schemes, we observe that the cloud of points corresponding
to ordered RBNs tends to move right, i.e., toward the critical regime. One of the reasons
for this phenomenon is the drift toward Boolean function bias equal to 0.5 imposed by
random mutations in the Boolean functions. In fact, we observe a similar tendency also
in critical RBNs. However, in ordered RBNs, this effect is considerably more pronounced,
suggesting that other causes come into play. The most likely candidate is the adaptive
pressure toward higher objective function values. To prove this conjecture and thus better
frame the relative effect of this “shift toward chaos” induced by random mutations with
respect to the adaptation pressure exerted by the objective function, we formulate a simple
but effective model of dynamical regime change along the epochs of adaptation. The
aforementioned model together with the relative results are present in Appendix E. In
particular, Figure A3 shows the results of applying this model with the parameters used
in our experiments. Based on the results obtained, it is clear that a complete shift toward
chaotic dynamical regimes is already observed starting from the epoch number 200 in
the absence of adaptation by the objective function. This leads us to conclude that in our
experiments, this is not the dominant force, but that adaptive pressure is instead effective
in shaping robots’ behaviors.

A final consideration concerns the results achieved under the Mutation adaptive
mechanism: in all the tasks, critical RBNs attain the best average performance. This
supports the advantage of criticality in evolutionary settings (property (ii)).

4.2. Criticality and Phenotypic Plasticity

Our results show that the highest performance in adaptive robots controlled by critical
RBNs is attained under the in–out mapping adaptive mechanism. This is a notable finding,
as it demonstrates that the repertoire of dynamics in a critical RBN is rich and flexible
enough to be successfully tailored to the task at hand without the need for changing
either the Boolean functions or the connections between nodes, or both. This property
can be rephrased in more abstract terms as the capability of the same system to produce
different behaviors in the face of different environmental conditions and inputs. In biology,
the capacity of the same genotype to produce different phenotypes depending on the
environment where it lives is defined as phenotypic plasticity [12,13]. The discussion of
this phenomenon is out of the scope of this contribution, but it is important to emphasize
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that from the cybernetics standpoint, the ability of adapting one genotype to produce
different phenotypes resembles the capability of producing an internal model of the external
world [38]. In abstract terms, this process makes it possible for an organism to compress
the wealth of information coming from the external world into an internal representation
that values only the pieces of information relevant to the organism’s survival. On the basis
of this internal model, the organism acts so as to accomplish its missions, in primis to attain
homeostasis, i.e., maintaining its essential variables within physiological ranges [38]. We can
then state that phenotypic plasticity not only is a vital property for living organisms, but it
may also be of great value for artificial ones that need to be autonomous.

The in–out mapping adaptive mechanism we have implemented can be said to be a case
of phenotypic plasticity. The main reason is that in our setting, adaptation involves only the
way external information is filtered by the robot; hence, it concerns the sensing module of
the system. This adaptation takes place during the “life” of the individual, and it is based on
a feedback that rewards specific behaviors (i.e., those rewarded with high objective function
values) without changing the actual “genetic” structure. This mechanism mimics a kind
of sensory development tailored to the specific environment [39,40]. In general, the robot
can be coupled with the environment in a huge number of possible combinations, each
constraining the system to express a particular behavior (i.e., phenotype). The mapping
between sensor readings and network nodes is the result of the embodied adaptation of the
sensory-motor loop and manifests one particular phenotype, emerging from the interaction
between the robot and the environment.

In addition to providing evidence to the criticality hypothesis, the results we have
presented make it possible to speculate further: criticality might be an advantage because it
enables phenotypic plasticity. We believe that the outcome of our experiments provides a
motivation for a deeper investigation. We also envisage the possibility of devising wet lab
experiments, in which the dynamical regime of an organism is externally controlled and its
ability to exhibit phenotypic plasticity can be estimated.

It is important that it is now well established that real gene regulatory networks are,
in fact, dynamically critical [6,7]. The cortex is also critical [41–43]. Thus, two major highly
evolved systems have evolved to attain critical behavior. It seems reasonable to suggest
that dynamical criticality will be of broad use in adaptive robots.

5. Conclusions

In this work, we have studied the performance of robots controlled by RBNs from
ordered, critical and chaotic regimes, in three tasks of varying complexity. We have
found evidence that the ensemble of critical RBNs (1) produces the best average results;
(2) produces the best maximum results as well; (3) can be adapted without changing their
internal structure; and finally, (4) shows the best average performance among the three
regimes in the case of the Mutation adaptive mechanism.

In the frame of our experimental setting, these outcomes reinforce the hypotheses
of the advantage of critical systems in accomplishing tasks in an environment. However,
our findings are somehow indirect: the advantage of being critical is assessed by means
of the performance quantitatively evaluated in terms of an objective function. The actual
internal processes that led to these achievements still need to be studied and put in the
context of information processing in critical systems [44]. A possibility is to investigate the
relation between the criticality of controlling BNs, their performance and the maximization
of some information theory measures, such as predictive information [45], integrated
information [46] and transfer entropy [47].

Finally, in light of the great complexities posed by the path-dependent nature of the
online adaptation process [20,48,49], we conclude that a mechanism such as the one we have
introduced might be an effective tool for tuning artificial systems to the specific environment
in which they have to operate. As a futuristic application, we imagine the construction of
miniaturized robots that can accomplish missions precluded to humans, such as recovering
polluted environments. In fact, recent technological advances have made it possible to
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build incredibly small robots to the size of tens of nanometers. The current smallest robots—
built by biological matter—can perform only a few predetermined actions (see, e.g., the
recent prominent case of Xenobots [50]); therefore, they cannot attain the level of adaptivity
and robustness needed for a complex mission. On the other hand, Artificial Intelligence
software has recently made tremendous advancements and has been proved capable of
learning and accomplishing difficult tasks with a high degree of reliability. This software,
however, cannot be run onto tiny robots. A viable way for filling this gap is provided by
control programs based on unconventional computation, such as the ones derived from
cell dynamics models, where phenotypic plasticity may play an important role.
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Appendix A. Experimental Parameters

Appendix A.1. Simulations Parameters

Below, in Table A1, we list all the parameters used for the simulations in the ARGoS
simulator [51].

Table A1. In the table, we describe the parameters and their relative values used in the ARGoS
simulator to perform the experiments.

Parameter Value

no. of robots for each run 10

no. of steps per second (∆t) 10

epoch duration (in seconds) 80

no. of epochs per run 500

maximum wheel speed (in cm/s) 25

no. output nodes controlling robot wheels 2

binarization threshold for proximity sensors values 0.1

no. of input nodes for proximity sensors 8

binarization threshold for light sensors 0.1

no. of input nodes for light sensors 0 for Task I and II, 8 for Task III

Appendix A.2. Parameters of the Objective Function

Table A2 shows the values of the parameters used in the objective functions introduced
in Equations (1), (2) and (4), along with their meaning. In particular, the parameter θ(n)
represents the maximum proximity value read by the robot sensors at step n. The smaller it
is, the farther the robot is from any obstacle. l(n) (r(n) respectively) indicates the power
of the left (right) motor at step n. With a value of 0, the motor is off, while with a value
of 1, it runs at maximum speed. Since the foot-bot has a differential drive system, if the
powers applied to the left and right motors are different, the robot will curve, while it will

https://github.com/edobrb/progetto-irs
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go straight if the values of the motors are equal. Finally, it will remain stationary if both
motors are off.

Table A2. In the table, we briefly describe the meaning of the parameters introduced in the objective
functions presented in Equations (1), (2) and (4).

Parameter Description

E = d/∆t = 800 number of steps in each epoch

n actual step

θ(n) ∈ [0, 1] max proximity value read by sensors step at time n

l(n) ∈ {0, 1} left motor power at time n

r(n) ∈ {0, 1} right motor power at time n

Appendix A.3. Parameters of the Adaptive Mechanisms

In the following Tables A3 and A4, the values of the parameters used in the adaptive
mechanisms are reported.

Table A3. Parameters used in the case of the application of the mutation and hybrid adaptive schemes.

Mutation and Hybrid Mechanisms

Parameter Value

no. of edges mutation per epoch 30

self-loops allowed after edges mutation False

k = 3 distinct incoming nodes per node after edges mutation True

no. of bit flips in Boolean functions per epoch. 80

Table A4. Parameters used in the case of the application of the in–out mapping adaptive mechanism.

In–Out Mapping Mechanism

Parameter Value

no. of input nodes to rewire per epoch 2

no. of output nodes to rewire per epoch 1

allow input nodes to be used as output nodes and vice versa False

Appendix A.4. Random Boolean Networks Parameters

In Table A5, parameters used for RBN generation are reported.

Table A5. Parameters used for the generation of random Boolean networks.

Parameter Value

n 1000

k 3

p ∈{0.1, 0.21, 0.5, 0.79, 0.9}

self-loops allowed False

k = 3 distinct incoming nodes per node True

p of output nodes 0.5

allow input nodes to be used as output nodes and vice versa False
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Appendix B. Derrida Against Fitness

In Figure A1, the scatter plots of Derrida values (x-axis) against the relative objective
function scores (y-axis) for the remaining bias values (p = {0.9, 0.79, 0.5}) are reported.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A1. Scatter plot of Derrida values (x-axis) against the relative objective function scores (y-
axis) obtained by the robots in their best epoch. Noting that we used RBNs with k = 3 as robot
controllers, red points represent Boolean networks initially generated using p = 0.9, while the green
dots represent RBNs generated using p = 0.79, and lastly, blue ones have been sampled from the
ensemble of chaotic RBNs, i.e., using p = 0.5. (a) Task I: Mutation (b) Task II: Mutation (c) Task III:
Mutation (d) Task I: Hybrid (e) Task II: Hybrid (f) Task III: Hybrid (g) Task I: In-Out Mapping (h) Task
II: In-Out Mapping (i) Task III: In-Out Mapping.

Appendix C. Statistical Significance Tests

In Figure A2, we report the results of the unpaired Wilcoxon statistical tests in a
graphical form.
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Figure A2. Graphical representation of the results of the Wilcoxon test for the distributions presented
in Figure 5. Blue cells represent p-value < 0.05 and red ones represent values ≥ 0.05.

Appendix D. Performance of Nominal vs. Actual Dynamical Regime

As completed for Task III in the main text, we report in Tables A6 and A7 the compar-
ison of the mean of the ranking (the lower the better) for nominal vs. actual dynamical
regimes for Task I and Task II.

Table A6. Mean of the ranking of the maximum scores for Task I; in this analysis, the lower, the better.
[i-o] stands for in–out mapping mechanism, while [h] stands for hybrid adaptation and [m] stands for
mutation scheme. For the nominal dynamical regime, we considered as ordered the BNs generated
with p = {0.1, 0.9}, critical those with p = {0.21, 0.79} and chaotic with p = {0.5}. Meanwhile,
for the actual dynamical regime, we considered it ordered if D < 1− ε, critical if D ≥ 1− ε and
D ≤ 1 + ε, and, lastly, chaotic if D > 1 + ε, with ε = 0.3.

Task I

Nominal Actual

Rank Case < Rank > Case < Rank >

1 [i-o] critical 2592.96 [i-o] critical 2592.96
2 [h] ordered 2762 [h] critical 3203.58
3 [i-o] ordered 3588.44 [i-o] ordered 3588.42
4 [h] critical 3709.62 [h] ordered 3862.18
5 [m] critical 4922.71 [m] critical 4637.69
6 [m] ordered 5207.89 [h] chaotic 6728.48
7 [h] chaotic 6758.2 [m] chaotic 6748.2
8 [m] chaotic 6978.95 [i-o] chaotic 7078.08
9 [i-o] chaotic 7078.09 [m] ordered 8246.23



Entropy 2022, 24, 1368 19 of 21

Table A7. Mean of the ranking of the maximum scores for Task II; in this analysis, the lower, the better.
[i-o] stands for in–out mapping mechanism, while [h] stands for hybrid adaptation and [m] stands for
mutation scheme. For the nominal dynamical regime, we considered as ordered the BNs generated
with p = {0.1, 0.9}, critical those with p = {0.21, 0.79} and chaotic with p = {0.5}. Meanwhile,
for the actual dynamical regime, we considered them ordered if D < 1− ε, critical if D ≥ 1− ε and
D ≤ 1 + ε, and, lastly, chaotic if D > 1 + ε, with ε = 0.3.

Task II

Nominal Actual

Rank Case < Rank > Case < Rank >

1 [i-o] critical 2602.67 [i-o] critical 2602.64
2 [h] ordered 3418.02 [h] critical 3333.58
3 [h] critical 3560.18 [m] critical 3428.67
4 [m] critical 3696.67 [m] chaotic 5850.27
5 [m] ordered 4315.74 [i-o] ordered 6063.59
6 [i-o] ordered 6063.65 [h] ordered 6081.39
7 [m] chaotic 6118.02 [h] chaotic 6324.15
8 [h] chaotic 6332.71 [i-o] chaotic 6617.91
9 [i-o] chaotic 6617.91 [m] ordered 8054.52

Appendix E. Dynamical Regime Shift with Random Mutation

To better understand the role of adaptive pressure with respect to the “shift toward
chaos” induced by the mutation mechanism, we propose a mathematical model that we
report in Equation (A1). The model estimates the accumulation of random mutations
applied to the truth tables along the epochs of adaptation and their effect on the bias
parameter. In particular, it models the expected change of the number of entries with value 1
(i.e., N1) and hence of the overall bias value, which was induced by mutations in the form
of bit flips: the ones we use in our experiments.

E
[

N1
t+1

]
= N1

t + ∆N1

where ∆N1 =

{
−x N1

N , if flip 1→ 0

x N−N1

N , if flip 0→ 1

N = no. of truth tables entries,

N1 = entries with value 1,

x = no. of flips

Therefore:

E
[

N1
t+1

]
= N1

t + x(1− 2
N1

t
N

)

(A1)

In Figure A3, we can see, for initially ordered, critical and chaotic BNs, the model previsions
for the changes of the number of ones in the truth tables for the parameters that characterize
or experiments, i.e., networks with 1000 nodes and so N = 1000× 8 = 8000 total entries,
x = 80, 1% of the truth table entries modified at the end of each epoch and, lastly, 500 epochs
in total.
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Figure A3. Expected number of ones in the truth tables along the adaptation epochs according to the
model (A1). Blue lines represent RBNs with k = 3 initially ordered N1

t=0 ∈ {8000× 0.1, 8000× 0.9},
green ones represent those initially critical N1

t=0 ∈ {8000× 0.21, 8000× 0.79}, and eventually, the red
line represents chaotic ones N1

t=0 = 8000× 0.5.
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