
Citation: Toscani, G. On

Fourier-Based Inequality Indices.

Entropy 2022, 24, 1393. https://

doi.org/10.3390/e24101393

Academic Editors: Jean-Marc Girault

and Tuan D. Pham

Received: 6 September 2022

Accepted: 26 September 2022

Published: 29 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

On Fourier-Based Inequality Indices
Giuseppe Toscani 1,2

1 Department of Mathematics “L.Casorati”, University of Pavia, 27100 Pavia, Italy; giuseppe.toscani@unipv.it
2 Institute of Applied Mathematics and Information Technologies “E. Magenes”, 27100 Pavia, Italy

Abstract: Inequality indices are quantitative scores that take values in the unit interval, with a zero
score denoting complete equality. They were originally created to measure the heterogeneity of
wealth metrics. In this study, we focus on a new inequality index based on the Fourier transform
that demonstrates a number of intriguing characteristics and shows great potential for applications.
By extension, it is demonstrated that other inequality measures, such as the Gini and Pietra indices,
can be usefully stated in terms of the Fourier transform, allowing us to illuminate characteristics in a
novel and straightforward manner.
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1. Introduction

As recently discussed in [1–3], the challenge of measuring the statistical heterogeneity
of measures arises in most fields of science and engineering, and it is one of the fundamental
features of data analysis.

In economics and social sciences size measures of interest are wealth measures, and
in the context of wealth measures many inequality indices have been introduced [4–7].
Specifically, inequality indices quantify the socio-economic divergence of a given wealth
measures from the state of perfect equality. In this area, the most used measure of inequality
is the Gini index, first proposed by the Italian statistician Corrado Gini more than a century
ago [8,9]. However, although it has had an economic origin, the use of the Gini index has
not been limited to wealth alone [10].

A second important index of inequality, still introduced in economics, is the Pietra
index [11]. As discussed in [12], the Pietra index is an elemental measure of statistical
heterogeneity which has a number of properties that render it not only an alternative to
the popular Gini index, but rather, a far more natural and meaningful quantitative tool for
the measurement of egalitarianism, and, consequently, for the measurement of statistical
heterogeneity at large.

In addition, other indices have been introduced so far. An alternative to the Gini index
was introduced by Bonferroni in 1930 in a textbook for students at Bocconi University
in Milan [13]. The main properties and representations of the Bonferroni index and its
connections with the index of Gini and other measures were studied in [3]. Furthermore, it
is important to mention the Kolkata index, first introduced in [14] as a measure of inequality,
whose connections with the Gini and Pietra indices have been studied in [1,15].

An indispensable tool for measuring statistical heterogeneity of measures is the Lorenz
function and its graphical representation, the Lorenz curve [16]. For wealth measures, the
Lorenz curve plots the percentage of total income earned by the various sectors of the
population, ordered by the increasing size of their incomes. The Lorenz curve is typically
represented as a curve in the unit square of opposite vertices in the origin of the axes and
the point (1, 1), starting from the origin and ending at the point (1, 1).

The diagonal of the square exiting the origin is the line of perfect equality, representing
a situation in which all individuals have the same income. Since the diagonal is the line
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of perfect equality, one can say that that the closer the Lorenz curve is to the diagonal, the
more equal is the distribution of income.

This idea of closeness between the line of perfect equality and the Lorenz curve can be
expressed in many ways, each of which gives rise to a possible measure of inequality. Thus,
starting from the Lorenz curve, several indices of inequality can be defined, including the
Gini index. Various indices were obtained by looking at the maximal distance between
the line of perfect equality and the Lorenz curve, either horizontally or vertically, or
alternatively parallel to the other diagonal of the unit square [2].

Despite the enormous amount of research illustrating the fields of application of
inequality indices, the use of arguments based on Fourier transforms appears rather limited.
In particular, although the Gini index can be easily expressed in terms of the Fourier
transform, at least to our knowledge, its expression in Fourier has never been considered in
applications. The same conclusion can be drawn for the Pietra index, whose expression in
Fourier transform is very useful to understand its nature, and to introduce from that other
Fourier-based measures of inequality, including the one considered in this paper.

We would like to point out that having inequality indices expressed in terms of the
Fourier transform could be very interesting for a variety of applications. Indeed, the
Fourier transform makes it possible to model many (often very surprising) phenomena
ranging from environmental problems to image processing and social sciences. To name
a few, environmental pollution [17], image processing [18,19], markets description as
quantum processes, where supply and demand strategies are described as reciprocal
Fourier transforms [20].

The objective of this paper is to introduce a new inequality index based on the
Fourier transform, which satisfies some properties that make it very interesting for possible
applications.

Denote by Ps(R), s ≥ 1, the class of all probability measures F on the Borel subsets of
R such that

ms(F) =
∫
R
|x|sdF(x) < +∞.

Further, denote by P̃s(R) the class of probability measures F ∈ Ps(R) which possess a
positive mean value

m(F) =
∫
R

x dF(x) > 0,

and with P+
s (R) the subset of probability measures F ∈ Ps(R) such that F(x) = 0 for x ≤ 0.

Let Fs be the set of Fourier transforms

f̂ (ξ) =
∫
R

e−iξx dF(x).

of probability measures F in P̃s(R). On Fs we introduce an inequality index, named T(F),
given by the formula

T(F) =
1
2

sup
ξ∈R

∣∣∣∣∣ f̂ (ξ)− f̂ ′(ξ)
f̂ ′(0)

∣∣∣∣∣, (1)

In definition (1), f̂ ′(ξ) = f̂ ′ξ(ξ) denotes the derivative of the Fourier transform f̂ (ξ) with

respect to its argument ξ. Indeed, F ∈ Ps(R) implies that f̂ (ξ) is continuously differentiable
on the entire real line.

In the following, we will show that the functional T(F) is a measure of inequality
which satisfies most of the properties required to be a good measure of sparsity and/or
heterogeneity [10]. The interest in having a measure of inequality based on the Fourier
transform, such as T(F), is twofold. On the one hand, it is very simple to calculate the value
taken by this measure at probability distributions for which the characteristic function is
explicitly available. This is the case, among others, of the Poisson distribution and, for
probability measures defined on the whole real line R, of the stable laws. On the other
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hand, in the case of dealing with a discrete probability measure, the use of the Fourier
transform makes it possible to develop very fast computational procedures [21,22].

From a certain point of view, the measure of inequality defined by (1) has many points
of contact with the inequality measures obtained from the Lorenz curve through the concept
of maximum distance.

In fact, the index (1) expresses the maximum value of the modulus of the difference
between the Fourier transforms of a probability measure F of positive mean m and its
derivative normalized by the mean. In the economic context, the closer the Fourier trans-
form of the probability measure is to its derivative normalized by dividing it by the mean,
the more equal is the distribution of income. In other words, the line of perfect equality
in the Lorenz square is here substituted by the Fourier transform of a Dirac delta function
located in a point different from zero.

It is interesting to note that, as will become clear from the examples, the maximum
value is usually taken in the finite interval (−2π, 2π).

Before studying the new index T(·) defined in (1) and listing its properties, we will
begin with a brief introduction to the use of the Fourier transform to express the classical
Gini and Pietra indices. This will be done in Section 2. As we shall see, the use of
Fourier transform allows to clarify the functional setting where these indices live. It is
worth mentioning that, unlike the classical Gini and Pietra indices, neither the Bonferroni
index nor the Kolkata index seem to be expressible in closed form in terms of the Fourier
transform.

Next, Section 3 will be devoted to the study of the main properties of the new inequality
measure. Various examples will be collected in Section 4. Last, Section 5 illustrates how
some property of the index can be fruitfully used in connection with linear kinetic models.

2. A Fourier Approach to Gini and Pietra Indices
2.1. A Fourier-Based Expression of Gini Index

In the rest of the paper, for any fixed constant a > 0, we will denote by Fa(x) the
Heaviside step function defined by

Fa(x) :=
{

0 x < a
1 x ≥ a

(2)

Clearly, Fa(x) is the cumulative measure function of a random variable which is almost
surely equal to a. It belongs to Ps(R) for any s ≥ 1, and m(Fa) = a.

To obtain an explicit expression in Fourier transform for the Gini index, which admits
many equivalent formulations [23], we will resort to its well-known form in terms of a
continuous probability measure. For a probability measure F ∈ P+

s (R) with mean m, the
Gini index is defined by the formula

G(F) = 1− 1
m

∫
R+

(1− F(x))2 dx (3)

Since F ∈ P+
s (R), F(x) = 0 for x ≤ 0. Hence, resorting to the definition of the Heaviside

step function F0(x), we have the identity∫
R+

(1− F(x))2 dx =
∫
R
|F0(x)− F(x)|2 dx.

For any given pair of probability measures F, G ∈ Ps(R), the Parseval formula implies∫
R
|F(x)− G(x)|2 dx =

1
2π

∫
R
|F̂(ξ)− Ĝ(ξ)|2 dξ, (4)
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where F̂ and Ĝ are the Fourier transforms of the probability measures F, G. If

f̂ (ξ) =
∫
R

e−iξx dF(x), ĝ(ξ) =
∫
R

e−iξx dG(x),

it holds that

F̂(ξ)− Ĝ(ξ) =
f̂ (ξ)− ĝ(ξ)

iξ
. (5)

Indeed, considering that F(−∞)− G(−∞) = F(+∞)− G(+∞) = 0, integration by parts
gives ∫

R
(F(x)− G(x))e−iξx dx =

∫
R
(F(x)− G(x))

d
dξ

(
e−iξx

−iξ

)
dx =[

(F(x)− G(x))
e−iξx

−iξ

]+∞

−∞
+
∫
R

e−iξx

iξ
d(F(x)− G(x)) =

f̂ (ξ)− ĝ(ξ)
iξ

.

Consequently, we have the identity

∫
R
|F(x)− G(x)|2 dx =

1
2π

∫
R

| f̂ (ξ)− ĝ(ξ)|2
ξ2 dξ. (6)

Therefore, for any probability measure F ∈ P+
s (R), the Gini index has a simple

expression in Fourier transform, given by

G(F) = 1− 1
2πm

∫
R

|1− f̂ (ξ)|2
ξ2 dξ. (7)

Remark 1. For a given constant q > 0, let Ḣ−q denote the homogeneous Sobolev space of fractional
order with negative index −q, endowed with the norm

‖h‖Ḣ−q
=
∫
R
|ξ|−2q|ĥ(ξ)|2 dξ. (8)

Then, the variable part of the Gini index coincides with the scaling invariant distance between the
probability measure F and the Heaviside step function F0 in the homogeneous Sobolev space Ḣ−1.

Remark 2. Considering that the value zero in (7) is obtained when f̂ (ξ) = e−imξ , namely when
F = Fm, we can rewrite Gini index as

G(F) =
1

2πm

[∫
R

|1− e−imξ |2
ξ2 dξ −

∫
R

|1− f̂ (ξ)|2
ξ2 dξ

]
. (9)

2.2. Another Fourier-Based Inequality Measure

Expression (9) suggests considering a related expression in which the dispersion of the
probability measure F of mean value m > 0 coincides with its scale invariant Ḣ−1–distance
from the Heaviside step function Fm with the same mean value m. We define

H(F) =
1

2πm

∫
R

| f̂ (ξ)− e−imξ |2
ξ2 dξ. (10)

Unlike the Gini index, which requires F ∈ P+
s (R), the inequality measure H(F) is well-

defined for any measure F ∈ P̃s(R).
It is interesting to remark that, similarly to the Gini index, the inequality measure

H(F), for F ∈ P+
s (R), is bounded above by 1. This property is shown in the Appendix A.

The interest in having an inequality index that quantifies the statistical heterogeneity
of probability measures defined on the whole real line R in terms of the Fourier transform
is evident. As an example, let us compute the value of the functional H for a Gaussian
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probability measure F of mean m > 0 and variance σ2. Since the Fourier transform of the
Gaussian density is given by

f̂ (ξ) = exp
{
−i m ξ − σ2

2
ξ2
}

, (11)

we easily obtain

H(F) =
1

2πm

∫
R

(
1− exp

{
− σ2

2 ξ2
})2

ξ2 dξ.

Integration by parts yields

∫ ∞

0

(
1− exp

{
− σ2

2 ξ2
})2

ξ2 dξ =

[
−
(

1− exp
{
−σ2

2
ξ2
})2 1

ξ

]∞

0

+

+
∫ ∞

0

1
ξ

(
1− exp

{
−σ2

2
ξ2
})

σ2ξ exp
{
−σ2

2
ξ2
}

dξ =

σ
∫ ∞

0

(
e−x2/2 − e−x2

)
dx = σ

(
√

2− 1)
√

π

2
.

Thus, for a Gaussian probability measure F of mean m > 0 and variance σ2 we have the
value

H(F) =
(
√

2− 1)
2
√

2π

σ

m
, (12)

namely a value proportional to the coefficient of variation σ/m, with an explicit constant
strictly less than one.

2.3. A Fourier-Based Expression of Pietra Index

For a probability measure F ∈ P+
s (R) with mean m, the Pietra index P(F) [11,12] is

defined by the formula

P(F) =
∫ +∞

m
(1− F(x)) dx. (13)

As remarked in [12], the definition (13) seems to disregard the part of the measure below the
mean. This, however, is not true, and (13) makes use of the full information encapsulated
in the probability law of the random variable X of measure F.

There is a simple way to verify the previous assertion. Indeed, since

m =
∫
R+

(1− F(x)) dx,

it holds

H(F) =
1
m

∫
R+

[F(x)− Fm(x)]2 dx =
1
m

∫
R+

[1− F(x)− (1− Fm(x))]2 dx =

1
m

∫
R+

[1− F(x)]2 dx +
1
m

∫
R+

[1− Fm(x)]2 dx− 2
m

∫
R+

[1− F(x)][1− Fm(x)] dx =

1
m

∫
R+

[1− F(x)]2 dx + 1− 2
m

∫ m

0
[1− F(x)] dx =

1
m

∫
R+

[1− F(x)]2 dx− 1 +
2
m

∫ +∞

m
[1− F(x)] dx = −G(F) + 2P(F).

Hence, we have the identity

P(F) =
1
2
[G(F) + H(F)]. (14)



Entropy 2022, 24, 1393 6 of 20

In other words, the Pietra index of a probability measure F ∈ P̃+
s is represented by the mean

value of the two indices G(F) and H(F), where H is defined in (10), identically weighted.
Resorting to the Fourier expressions of Gini and H indices we then obtain for the

Pietra index the expression

P(F) =
1
2

[
1− 1

2πm

∫
R

|1− f̂ (ξ)|2
ξ2 dξ +

1
2πm

∫
R

| f̂ (ξ)− e−imξ |2
ξ2 dξ

]
. (15)

Remark 3. The Fourier expression (15) clarifies that the Pietra index is obtained by taking into
account at the same time the distances in Ḣ−1 of a probability measure in P+

s (R) from the Dirac
delta functions located in zero, and, respectively in mean value m. From this point of view, the Pietra
index appears as a well-balanced inequality index. This feature is hidden in the classical definition.

Remark 4. Since
H(F) = 2P(F)− G(F),

the values of the inequality index H(F) for a large number of probability measures can be easily
computed resorting to the tables of values assumed by Gini and Pietra indices.

Remark 5. If one considers only one-dimensional discrete measures, the inequality index H(F)
defined by (10) coincides with a particular case of the discrepancy function recently introduced
in [22], where the discrepancy measures the distance in L2 distance between the characteristic
functions of two given discrete measures weighted by the function k2, with k = 1, 2, . . . , N. In this
case, one of the two discrete measure is a Dirac delta function located in the mean value.

2.4. Towards New Inequality Indices

A part from the scaling constant, the functional H(F), coincides with the square of the
L2(R)–norm of the function

h(ξ) =
| f̂ (ξ)− e−imξ |

|ξ| .

It is simple to verify that a further scaled invariant functional can be obtained by considering
the L∞(R)–norm of h(ξ). This functional is given by

H∞(F) =
1

2m
sup
ξ∈R

| f̂ (ξ)− e−imξ |
|ξ| . (16)

Resorting to the triangular inequality, we can easily conclude that, if F ∈ P̃+
s , H∞ satisfies

the standard bounds
0 ≤ H∞(F) < 1. (17)

Indeed, for F ∈ P+
s with mean value m

H∞(F) =
1
m

sup
ξ∈R

| f̂ (ξ)− e−imξ |
|ξ| ≤ 1

m
sup
ξ∈R

|1− e−imξ |
|ξ| +

1
m

sup
ξ∈R

|1− f̂ (ξ)|
|ξ| .

Now

1
m

sup
ξ∈R

|1− e−imξ |
|ξ| =

1
m

sup
ξ∈R

√
2(1− cos ξm)

|ξ| = lim
ξ→0

√
2(1− cos ξm)

m|ξ| = 1.

Moreover, since by (5)

1− f̂ (ξ)
iξ

=
∫
R
(F0(x)− F(x))e−iξx dx,
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we obtain
1
m
|1− f̂ (ξ)|
|ξ| =

1
m

∣∣∣∣∫R(F0(x)− F(x))e−iξx dx
∣∣∣∣ ≤

1
m

∫
R

∣∣∣|(F0(x)− F(x))e−iξx
∣∣∣ dx =

1
m

∫
R+

(1− F(x)) dx = 1.

The functional H∞ is a particular case of a metric for probability measures which have
been used to study convergence to equilibrium for the Boltzmann equation. This is an
argument that in kinetic theory of rarefied gases goes back to [24], where convergence to
equilibrium for the Boltzmann equation for Maxwell pseudo-molecules was studied in
terms of a metric for Fourier transforms (cf. also [25–27] for further applications).

The metric introduced in [24] in connection with the Boltzmann equation for Maxwell
molecules was subsequently applied in various contexts, which include kinetic models
for wealth measures [28], thus establishing a number of common points between kinetic
modeling and inequality measures.

For a given pair of random variables X and Y distributed according to F and G these
metrics read

dr(X, Y) = dr(F, G) = sup
ξ∈R

| f̂ (ξ)− ĝ(ξ)|
|ξ|r , r > 0. (18)

As shown in [24], the metric dr(F, G) is finite any time the probability measures F and G
have equal moments up to [r], namely the entire part of r ∈ R+, or equal moments up
to r− 1 if r ∈ N, and it is equivalent to the weak∗ convergence of measures for all r > 0.
Among other properties, it is easy to see [24,28] that, for two pairs of random variables
X, Y, where X is independent from Y, and Z, Z̃ (Z independent from Z̃), and any constant c

dr(X + Y, Z + Z̃) ≤ dr(X, Z) + dr(Y, Z̃)

dr(cX, cY) = |c|rdr(X, Y).
(19)

These properties classify ds as an ideal probability metric in the sense of Zolotarev [29].
Properties of H∞(F) can be easily extracted from (19) considering that, if X is a random
variable with probability measure F of mean value m

H∞(F) = H∞(X) =
1

2m
d1(F, Fm)

In particular, the second property in (19) implies the scaling invariance of H∞.
Moreover, the first inequality in (19) implies that, for any pair of independent variables

X and Y, with means mX (respectively mY ), by choosing Z and Z̃ with probability measures
FmX (respectively FmY )

H∞(X + Y) ≤ mX
mX + mY

H∞(X) +
mY

mX + mY
H∞(Y), (20)

namely a property of sub-additivity for convolutions. Moreover, if Y is distributed with
probability measure FmY , Inequality (20) gives

H∞(X + Y) ≤ mX
mX + mY

H∞(X) < H∞(X). (21)

Inequality (21) is a typical feature of sparsity measures, which translates to the case of
a continuous variable the property that adding a constant to each coefficient decreases
sparsity [10].

In view of its properties, the functional H∞(·) appears to be a good measure of
inequality. Unfortunately, the computation of the values of H for most probability measures
is cumbersome. In particular, it seems not possible to explicitly compute the value of H∞(X)
in the simplest case in which the variable X takes only two positive values. Consequently,
we can not evaluate if, for a given ε � 1, there exists a probability measure with index
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1− ε. Indeed, as we saw in Section 2.2, this basic property follows from the analysis of the
values taken by the inequality index at two-valued random variables.

The upper bound 1 can be found also by resorting to Lagrange theorem. Indeed, since
F ∈ Ps(R) the function h(ξ) = | f̂ (ξ)− e−imξ | is continuously differentiable on the entire
real line, and satisfies h(ξ = 0) = 0.

Therefore, by Lagrange theorem, for any given ξ ∈ R, there exists ξ0 ∈ R such that

h(ξ)
ξ

=
h(ξ)− h(0)

ξ − 0
= h′(ξ0),

which implies

sup
ξ∈R

∣∣∣∣h(ξ)ξ

∣∣∣∣ ≤ sup
ξ∈R
|h′(ξ)|.

Since |eimξ | = 1, we have the identity

h(ξ) = | f̂ (ξ)− e−imξ | = | f̂ (ξ)eimξ − 1|,

and
|h′(ξ)| ≤

∣∣∣ f̂ ′(ξ)eimξ + im f̂ (ξ)eimξ
∣∣∣ = ∣∣∣ f̂ ′(ξ) + im f̂ (ξ)

∣∣∣.
We therefore obtain

1
m

sup
ξ∈R

| f̂ (ξ)− e−imξ |
|ξ| ≤ 1

m
sup
ξ∈R

∣∣∣ f̂ ′(ξ) + im f̂ (ξ)
∣∣∣ = sup

ξ∈R

∣∣∣∣∣ f̂ (ξ)− f̂ ′(ξ)
f̂ ′(0)

∣∣∣∣∣. (22)

Using the argument leading to the upper bound in (24) one easily concludes that H∞(F) is
bounded above by T(F), where T(F) is the functional defined by (1), and that H∞(F) ≤ 1.

3. A New Fourier-Based Index of Inequality

This Section will be devoted to study in more details the main properties of the
inequality index T(F), as given by (1). Depending on convenience, given a random variable
X with probability measure F ∈ P̃s(R), we will write indifferently T(X) or T(F).

The inequality index T satisfies various properties we list and prove in the following.

3.1. Scaling

For any constant c > 0, the index T(F) is invariant with respect to the scaling F(x)→
F(cx). The scaling invariance of T(F) can be easily seen by noticing that, if f̂ (ξ) is the
Fourier transform of F(x), f̂ (ξ/c) is the Fourier transform of F(cx), and

f̂ ′ξ(ξ/c)

f̂ ′ξ(0)
=

f̂ ′η(η)

f̂ ′η(0)

∣∣∣∣∣
η=ξ/c

,

that implies

sup
ξ∈R

∣∣∣∣∣ f̂ (ξ/c)−
f̂ ′ξ(ξ/c)

f̂ ′ξ(0)

∣∣∣∣∣ = sup
ξ∈R

∣∣∣∣∣ f̂ (η)− f̂ ′η(η)

f̂ ′η(0)

∣∣∣∣∣
η=ξ/c

= T(F). (23)

3.2. Lower and Upper Bounds

If F ∈ P̃s(R), the values of the functional T(F) lie between zero and one, where the
value zero (minimal inequality) is assumed in correspondence to a Heaviside probability
measure Fm, with m > 0. Indeed, let F ∈ P+

s (R). Since | f̂ (ξ)| ≤ f̂ (0) = 1, and

f̂ ′(ξ) = −i
∫
R+

xe−iξx dF(x),
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so that f̂ ′(0) = −i m(F) = −i m, and | f̂ ′(ξ)| ≤ | f̂ ′(0)| = m, it is easy to conclude, by the
triangular inequality, that T(F) satisfies the bounds

0 ≤ T(F) ≤ 1, (24)

and T(F) = 0 if and only if f̂ (ξ) satisfies the differential equation

f̂ ′(ξ) = f̂ ′(0) f̂ (ξ),

with f̂ (0) = 1, so that the unique solution is given by f̂ (ξ) = e−imξ , namely by the Fourier
transform of a Dirac delta function located in the mean value x = m(F) > 0. Note however
that, even if the functional F is defined in the whole class P̃s(R), the upper bound is lost if
the probability measure F /∈ P+

s (R), since in this case the inequality | f̂ ′(ξ)/ f̂ ′(0)| ≤ 1 does
not hold.

The value T(F) = 1, corresponding to maximal inequality is approached if we compute
the value of T(X) when the random variable X of mean value m is a two-valued random
variable where

P(X = 0) = 1− ε; P
(

X =
m
ε

)
= ε; ε� 1.

In this case
f̂ (ξ) = 1− ε + ε exp

{
−i

m
ε

ξ
}

,

while
f̂ ′(ξ) = −im exp

{
−i

m
ε

ξ
}

.

Therefore

2 T(X) = sup
ξ∈R

∣∣∣1− ε + ε exp
{
−i

m
ε

ξ
}
− exp

{
−i

m
ε

ξ
}∣∣∣ =

(1− ε) sup
ξ∈R

∣∣∣1− exp
{
−i

m
ε

ξ
}∣∣∣ = (1− ε) sup

ξ∈R

√
2(1− cos

m
ε

ξ) = 2(1− ε),

and T(X) = 1− ε.

3.3. Convexity

Let F, G ∈ P̃s(R) two probability measures with the same mean value, say m. Then,
for any given τ ∈ (0, 1) it holds τ f̂ ′(0) + (1− τ)ĝ′(0) = f̂ ′(0) = ĝ′(0), so that

T(τF + (1− τ)G) =
1
2

sup
ξ∈R

∣∣∣∣∣τ f̂ (ξ) + (1− τ)ĝ(ξ)− τ f̂ ′(ξ) + (1− τ)ĝ′(ξ)
τ f̂ ′(0) + (1− τ)ĝ′(0)

∣∣∣∣∣ =
1
2

sup
ξ∈R

∣∣∣∣∣τ f̂ (ξ)− τ
f̂ ′(ξ)
f̂ ′(0)

+ (1− τ)ĝ(ξ)− (1− τ)
ĝ′(ξ)
ĝ′(0)

∣∣∣∣∣ ≤ τ T(F) + (1− τ)T(G).

This shows the convexity of the functional T on the set of probability measures with the
same mean.

3.4. Sub-Additivity for Convolutions

The most important property characterizing the inequality index T is linked to its
behavior in presence of convolutions. For any given pair of Fourier transforms of probability
measures in P̃s(R), let us set

ĥ(ξ) = f̂ (ξ)ĝ(ξ).
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Then, since | f̂ (ξ)| ≤ f̂ (0) = 1 and |ĝ(ξ)| ≤ ĝ(0) = 1

sup
ξ∈R

∣∣∣∣∣ĥ(ξ)− ĥ′(ξ)
ĥ′(0)

∣∣∣∣∣ = sup
ξ∈R

∣∣∣∣∣ f̂ (ξ)ĝ(ξ)− f̂ ′(ξ)ĝ(ξ) + f̂ (ξ)ĝ′(ξ)
f̂ ′(0) + ĝ′(0)

∣∣∣∣∣ =
sup
ξ∈R

∣∣∣∣∣ f̂ (ξ)ĝ(ξ)− f̂ ′(0)
f̂ ′(0) + ĝ′(0)

f̂ ′(ξ)ĝ(ξ)
f̂ ′(0)

− ĝ′(0)
f̂ ′(0) + ĝ′(0)

f̂ (ξ)ĝ′(ξ)
ĝ′(0)

∣∣∣∣∣ ≤
f̂ ′(0)

f̂ ′(0) + ĝ′(0)
sup
ξ∈R

∣∣∣∣∣ f̂ (ξ)ĝ(ξ)− f̂ ′(ξ)ĝ(ξ)
f̂ ′(0)

∣∣∣∣∣+
ĝ′(0)

f̂ ′(0) + ĝ′(0)
sup
ξ∈R

∣∣∣∣∣ f̂ (ξ)ĝ(ξ)− f̂ (ξ)ĝ′(ξ)
ĝ′(0)

∣∣∣∣∣ ≤
f̂ ′(0)

f̂ ′(0) + ĝ′(0)
sup
ξ∈R

∣∣∣∣∣ f̂ (ξ)− f̂ ′(ξ)
f̂ ′(0)

∣∣∣∣∣+ f̂ ′(0)
f̂ ′(0) + ĝ′(0)

sup
ξ∈R

∣∣∣∣ĝ(ξ)− ĝ′(ξ)
ĝ′(0)

∣∣∣∣.
Therefore, if X and Y are independent random variables with probability measures in
P̃s(R), and mean values mX (respectively mY) the inequality index T satisfies the inequality

T(X + Y) ≤ mX
mX + mY

T(X) +
mY

mX + mY
T(Y). (25)

In particular, if Y is a random variable that takes the value m > 0 with probability 1 (so
that ĝ(ξ) = e−imξ and T(Y) = 0),

T(X + Y) ≤ mX
mX + m

T(X) < T(X). (26)

Since X + Y corresponds to adding the constant m to X, this property asserts that adding a
constant wealth to each agent decreases inequality.

Furthermore, if the random variables X1 and X2 are distributed with the same law of
X, thanks to the scale property

T
(

X1 + X2

2

)
= T(X1 + X2) ≤ T(X), (27)

while the mean of (X1 + X2)/2 is equal to the mean of X.

Remark 6. Inequality (27) is fully operational in the case where the two variables X1 and X2 are
characterized either by a continuous probability measure or take on an infinite number of values.
Only in this case, in fact, do the probability measure remain of the same type under the operation of
convolution.

Suppose in fact that the variables Xi, i = 1, 2, are Bernoulli variables, such that

P(Xi = 0) = P(Xi = 1) =
1
2

, i = 1, 2,

The probability measure of Xi, i = 1, 2, has Fourier transform

f̂ (ξ) =
1
2

(
1 + e−i ξ

)
,

and the probability measure of the convolution corresponds to the Fourier transform

f̂ (ξ)2 =
1
4

(
1 + 2e−i ξ + e−2i ξ

)
.
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Hence, the random variable Y = X1 + X2 takes the three values 0, 1, 2 with probabilities

P(Y = 0) = P(Y = 2) =
1
4

, P(Y = 1) =
1
2

.

Clearly, it makes little sense to relate the heterogeneity of a two-valued random variable to a
three-valued random variable.

3.5. Adding a Noise

Another important consequence of inequality (25) is related to the situation in which
the random variable Y represents a noise (of mean value m > 0) that is present when
measuring the inequality index of X. The classical choice is that the additive noise is
represented by a Gaussian variable of mean m and variance σ2.

If this is the case, the Fourier transform of the Gaussian density is given by (11), which
is such that

f̂ ′(ξ) = (−im− σ2ξ) f̂ (ξ); f̂ ′(0) = −im.

Hence, since | f̂ (ξ)| ≤ f̂ (0) = 1,∣∣∣∣∣ f̂ (ξ)− f̂ ′(ξ)
f̂ ′(0)

∣∣∣∣∣ =
∣∣∣∣ f̂ (ξ)− −im− σ2ξ

−im
f̂ (ξ)

∣∣∣∣ = σ

m

∣∣∣σξ f̂ (ξ)
∣∣∣.

Finally, if Y denotes the Gaussian random variable of mean m > 0 and variance σ2 we
obtain

T(Y) =
σ

2m
sup
ξ∈R

∣∣∣ξe−ξ2/2
∣∣∣ = σ

2m
1√

e
.

As we showed in Section 2.2 for the index H defined by (10), for a Gaussian variable,
the inequality index T(Y) is proportional to the coefficient of variation of Y. We have in
this case

T(X + Y) ≤ mX
mX + m

T(X) +
σ

mX + m
1√

e
, (28)

namely an explicit upper bound for the inequality index in terms of the mean value and
the variance of the Gaussian noise.

Remark 7. It is important to note that inequality (28) remains valid even if the mean value of the
Gaussian noise is assumed equal to zero. In this case, by letting m→ 0 we obtain the upper bound

T(X + Y) ≤ T(X) +
σ

mX

1√
e

,

4. Examples

In this section we will recover the values of the inequality index T for some well-
known probability measures. With few exceptions, any time the explicit expression of the
Fourier transform of the probability measure is available, the computation of the value
of the inequality index T(·) is straightforward. The list of probability measures that can
be treated via Fourier transform is consistent, and includes both discrete and continuous
distributions. For an in-depth look at this topic, the interested reader can consult the
book [30].

We do not consider in this paper the possibility to make use of the fast Fourier
transform to compute the values of the functional T in the case of a random variable taking
only a finite number of values, a situation that we intend to treat in a companion paper.
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4.1. Two-Valued Random Variables

Let X be a Bernoulli random variable, characterized by the probability measure with
Fourier transform

f̂ (ξ) = 1− p + pe−iξ , 0 < p < 1.

Then, since f̂ ′(ξ) = −ipe−iξ , it immediately follows that

T(X) =
1
2
(1− p) sup

ξ∈R

∣∣∣1− e−iξ
∣∣∣ = 1− p. (29)

For given positive constants a, b, let Y = aX + b: Then Y is characterized by the Fourier
transform

ĥ(ξ) = f̂ (aξ)e−ib ξ .

We have ∣∣∣∣∣ĥ(ξ)− ĥ′(ξ)
ĥ′(0)

∣∣∣∣∣ =
∣∣∣∣∣ ap f̂ (aξ)− f̂ ′(aξ)

ap + b

∣∣∣∣∣ = ap
ap + b

(1− p)
∣∣∣1− e−iξ

∣∣∣,
so that

T(Y) =
ap(1− p)

ap + b
.

Choosing α = b and β = a + b, where β > α, we then conclude that a two valued random
variable Y such that

P(Y = α) = 1− p, P(Y = β) = p

has an inequality index

T(Y) =
(β− α)p(1− p)
α(1− p) + βp

. (30)

The same value is assumed by the Gini and Pietra indices of Y.

4.2. Poisson Distribution

Poisson distribution is characterized by the Fourier transform

f̂ (ξ) = exp
{

λ
(

e−iξ − 1
)}

.

In this case∣∣∣∣∣ f̂ (ξ)− f̂ ′(ξ)
f̂ ′(0)

∣∣∣∣∣ = ∣∣∣(e−iξ − 1
)

f̂ (ξ)
∣∣∣ = √2(1− cos ξ) exp{−λ(1− cos ξ)}.

Let us set 0 ≤ 1− cos ξ = x2 ≤ 2. Then

T(F) =
√

2
2

sup
0≤x≤

√
2

x e−λx2
.

If λ ≤ 1/4, the maximum is taken in x̄ =
√

2, and T(F) = e−2λ. If λ > 1/4, the maximum
is taken at the point x̄ = 1/

√
2λ, and in this case

T(F) =
1

2
√

λ
e−1/2.

Hence, if F is a Poisson probability measure of mean λ we have

T( f ) =

{
e−2λ if λ ≤ 1/4
1

2λ e−1/2 if λ > 1/4
(31)
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Note that, as a function of λ, the functional T(F) is differentiable at the point λ = 1/4, and
it decreases as λ increases. Hence, small values of λ corresponds to large heterogeneity.

Remark 8. It is interesting to remark that the value of the Gini index of a Poisson distribution, say
F, can not be computed explicitly by resorting to its expression in Fourier transform, as given by
formula (7). The same conclusion holds if we try to compute the values of H(F), as given by (10),
and H∞(F), defined in (16).

Remark 9. The previous computations can be extended, at the cost of more complicated calculations,
to evaluate the explicit values of the index T to distributions which are obtained by summing
up independent Poisson variables. Maybe the most interesting case corresponds to the Skellam
distribution [31,32], that is the discrete probability distribution of the difference of two independent
random variables X1 and X2, each Poisson-distributed with expected values λ1 and, respectively λ2,
with λ1 6= λ2.

4.3. Stable Laws

As further example of probability measures defined on the whole real line R, we will
compute the value of T in correspondence to a stable law [33]. We will restrict ourselves
here to the case of symmetric alpha-stable distributions of scale parameter σ > 0 and shift
parameter m > 0, characterized by the Fourier transform

f̂α(ξ) = exp
{
−iξ m− |σξ|α

}
, α > 1.

Note that the Gaussian distribution of mean m and variance 2σ2 corresponds to the choice
α = 2.

For these distributions∣∣∣∣∣ f̂α(ξ)−
f̂ ′α(ξ)
f̂ ′α(0)

∣∣∣∣∣ = α

m

∣∣∣σα|ξ|α−2ξ f̂α(ξ)
∣∣∣ = α

m
σ|σξ|α−1 exp

{
−|σξ|α

}
.

Consequently

T(Fα) =
σα

2 m
sup
x≥0

x(α−1)/αe−x

Evaluating the value of the supremum, we obtain

T(Fα) =
σα

2 m

(
α− 1

α

)(α−1)/α

exp
{
−α− 1

α

}
(32)

For α = 1 the distribution reduces to a Cauchy distribution with scale parameter σ and
shift parameter m. In this case

T(F1) =
σ

2 m
sup
x≥0

e−x =
σ

2 m
.

4.4. An Interesting Case: The Uniform Distribution

The uniform distribution in the interval (−a, a), with a > 0 is characterized by the
Fourier transform

f̂ (ξ) =
sin(aξ)

aξ
. (33)

Hence, if X is a random variable uniformly distributed on (−a, a), for any constant b > 0,
X + b is uniformly distributed on the interval (−a + b, a + b), and the Fourier transform of
the probability measure of X + b, of mean value b is given by

ĝ(ξ) = f̂ (ξ)e−ibξ .
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Then

sup
ξ∈R

∣∣∣∣ĝ(ξ)− ĝ′(ξ)
ĝ′(0)

∣∣∣∣ = sup
ξ∈R

∣∣∣∣∣ f̂ (ξ)e−ibξ − f̂ ′(ξ)e−ibξ − ib f̂ (ξ)e−ibξ

−ib

∣∣∣∣∣ = 1
b

sup
ξ∈R
| f̂ ′(ξ)|.

Next, since f̂ is expressed by (33)

f̂ ′(ξ) =
aξ cos(aξ)− sin(aξ)

aξ2 ,

which implies

sup
ξ∈R
| f̂ ′(ξ)| = a sup

ξ∈R

∣∣∣∣ ξ cos ξ − sin ξ

ξ2

∣∣∣∣ = a δu

where δu is a positive constant. Hence, if X is uniformly distributed on the interval (−a, a),
and b > 0

T(X + b) =
a

2b
δu.

In particular, if b > a, by setting α = b− a and β = b + a, we conclude that, if Y is a random
variable uniformly distributed on the interval (α, β) ∈ R+, it holds

T(Y) =
δu

2
β− α

β + α
. (34)

In this case, at difference with the Gini index, which takes the explicit value

G(Y) =
1
3

β− α

β + α
,

the value of the coefficient δu can be achieved only numerically. It is however interesting
to remark, in the case of a uniform distribution, the values of the two indices have deep
similarities.

A rough estimation of the constant δu follows by studying the function

u(x) =
sin x− x cos x

x2 , x ≥ 0.

It is easy to show that any extremal point x̄ of the function u(x) solves the equation

(x2 − 2) sin x− 2x cos x = 0,

that implies

sin x̄− x̄ cos x̄ =
x̄2

2
sin x̄.

Consequently, if x̄ is an extremal point of u(x),

|u(x̄)| = 1
2
| sin x̄| ≤ 1

2
.

Hence δu ≤ 1/2.
To end this Section, we list in Table 1 the values of the inequality index T for some

probability measures in R+ and R allowing explicit computations. It is remarkable that the
Fourier-based index T is well-adapted to compute the heterogeneity index of discrete prob-
ability measures, such as the negative binomial distribution, or the geometric distribution,
which are explicitly expressible in terms of the Fourier transform. We leave the details of
the evaluation to the reader.
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Table 1. Values of the index T for some probability measures.

Measure Density Fourier Transform Index T(·)

Exponential λe−λ x (1 + iξ/λ)−1 1
4

Gamma 1
Γ(k)θk xk−1e−x/θ (1 + iθξ)−k

1
2
√

k

(
1 + 1

k

)−(k+1)/2

k > 0

Chi-squared 1
2k/2Γ(k/2) xk/2−1e−x/2 (1 + 2iξ)−k/2

1√
2k
(1 + 2/k)−(k+2)/4

k ≥ 1
Laplace 1

2σ e−|x−m|/σ e−im ξ
(
1 + σ2ξ2)−1 σ

m
16
25

5. An Application to Kinetic Theory of Wealth Distribution

Kinetic modelling of agent-based markets are based on few universal assumptions [28].
First, agents are indistinguishable, so that an agent’s state at any instant of time t ≥ 0 is
completely characterized by his current wealth w ≥ 0. Second, the time variation of the
wealth distribution is entirely due to binary trades between agents. A trade represents
a binary interaction in which part of the money of each agent is modified according to
well-defined rules. When two agents undertake in a trade, their pre-trade wealths v, w
change into the post-trade wealths v∗, w∗ according to a linear exchange rule:

v∗ = p1v + q1w, w∗ = q2v + p2w. (35)

The interaction coefficients pi and qi, i = 1, 2, are, in general, non negative random parameters.
The first explicit description of a binary wealth-exchange model dates back to the

seminal work of Angle [34], (cf. also [35]), even if the intimate relation to statistical
mechanics was only described about a decade later [36,37]. In each binary interaction,
winner and loser are randomly chosen, and the loser pays a random fraction of his wealth
to the winner. From here, Chakraborti and Chakrabarti [38] developed the class of strictly
conservative exchange models, which preserve the total wealth in each individual trade,

v∗ + w∗ = v + w. (36)

In its most basic version, the microscopic interaction is determined by one single parameter
λ ∈ (0, 1), which is the global saving propensity. In the interactions, each agent retains
the corresponding fraction of its pre-trade wealth, while the rest (1− λ)(v + w) is equally
shared equally between the two trading partners,

v∗ = λv +
1
2
(1− λ)(v + w), w∗ = λw +

1
2
(1− λ)(v + w). (37)

The wealth distribution f (v, t) of the system of agents coincides with agent’s density
and satisfies the associated spatially homogeneous Boltzmann equation,

∂t f + f = Q+( f , f ), (38)

on the real half-line, v ≥ 0. The collisional gain operator Q+ acts on test functions ϕ(v) as

Q+( f , f )[ϕ] =
∫
R+

ϕ(v)Q+
(

f , f
)
(v) dv

(39)
=

1
2

∫
R2
+

〈ϕ(v∗) + ϕ(w∗)〉 f (v) f (w) dv dw.

Because of (37), the average wealth of the society is conserved with time, so that

m(t) =
∫
R+

w f (w, t) dw = m, (40)
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where m > 0 is finite. A useful way of writing Equation (38) is to resort to the Fourier trans-
form [28]. Assuming the initial distribution of wealth in P+

s , with s > 1, the transformed
kernel reads

Q̂
(

f̂ , f̂
)
(ξ) = f̂

(
1− λ

2
ξ

)
f̂
(

1 + λ

2
ξ

)
, (41)

where, since the initial density has a bounded mean,

f̂0
′
(0) = −im.

Hence, the Boltzmann Equation (38) can be rewritten in terms of the Fourier transform of
f (v, t) as

∂ f̂ (ξ, t)
∂t

+ f̂ (ξ, t) = f̂
(

1− λ

2
ξ, t
)

f̂
(

1 + λ

2
ξ, t
)

. (42)

It immediately follows that the functions e−iµξ , with µ > 0, namely the Fourier transforms
of a Dirac delta concentrated at the wealth µ, are stationary solutions of Equation (42).

More can be said if we assume that s ≥ 2. Then, the moment of order two of the initial
distribution is finite, and, applying (41) with ϕ(v) = (v−m)2, and recalling that the mean
value is preserved during the evolution, shows that the variance of f (v, t) satisfies

d
dt

∫
R+

(v−m)2 f (v, t) dv = −1
2
(1− λ2)

∫
R+

(v−m)2 f (v, t) dv. (43)

As a result, all agents tend, for large times, to become equally rich. Indeed, the steady
state f∞(v) is a Dirac delta concentrated at the mean wealth, and is approached at the
exponential rate (1− λ2)/2.

To remain into the framework of inequality indices, the previous result implies that, if
the initial distribution belongs to P+

s , with s ≥ 2, the coefficient of variation is monotonically
decreasing towards zero at the explicit rate (1− λ2)/4.

This result is lost as soon as the value of s is less than 2. It is however interesting to
remark that the inequality index T(F(t)), where F(v, t) is the probability measure associated
to the solution f̂ (ξ, t) of Equation (42), is monotonically decreasing in time as soon as s ≥ 1.
Indeed, if we set

h(ξ, t) = f̂ (ξ, t)− f̂ ′(ξ, t)
f̂ ′(0)

,

it is easy to show that h(ξ, t) satisfies the equation

∂h(ξ, t)
∂t

+ h(ξ, t) = f̂
(

1− λ

2
ξ, t
)

f̂
(

1 + λ

2
ξ, t
)
−

[
f̂
(

1−λ
2 ξ, t

)
f̂
(

1+λ
2 ξ, t

)]′
f̂ ′(0, t)

,

which implies

∣∣∣∣∂h(ξ, t)
∂t

+ h(ξ, t)
∣∣∣∣ ≤ sup

ξ

∣∣∣∣∣∣∣ f̂
(

1− λ

2
ξ, t
)

f̂
(

1 + λ

2
ξ, t
)
−

[
f̂
(

1−λ
2 ξ, t

)
f̂
(

1+λ
2 ξ, t

)]′
f̂ ′(0, t)

∣∣∣∣∣∣∣. (44)

If now X(t) and Y(t) are random variables with probability measures of Fourier transforms
f̂ (ξ (1− λ)/2, t) (respectively f̂ (ξ (1 + λ)/2, t)), which have mean values m (1 − λ)/2
(respectively m (1 + λ)/2), Formula (25) for convolutions gives

T(X(t) + Y(t)) ≤ 1− λ

2
T(X(t)) +

1 + λ

2
T(Y(t)). (45)
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On the other hand, by scaling invariance T(X(t)) = T(Y(t)) = T(Z(t), where the probabil-
ity measure of Z(t) has Fourier transform f̂ (ξ, t). Hence, Equation (44) implies∣∣∣∣∂h(ξ, t)

∂t
+ h(ξ, t)

∣∣∣∣ ≤ sup
ξ

|h(ξ, t)|, (46)

that, for any given t0 < t by Gronwall inequality implies [28]

T(Z(t)) ≤ T(Z(t0),

and, consequently the monotonicity in time of the inequality index T(F(t) of the probability
measure solution of the kinetic Equation (38). It is remarkable that this result, which does
not require the condition s > 1, is a direct consequence of the convolution property of the
inequality index T. Hence, the monotonicity result does not hold if we resort to Gini and
Pietra indices.

6. Conclusions

Inequality indices are quantitative scores that take values in the unit interval, with the zero
score characterizing perfect equality. Measuring the statistical heterogeneity of measures arises
in most fields of science and engineering, which makes it important to know the strengths
and possible weaknesses of heterogeneity measures in applications [1,2,4–7,10]. In this paper,
we draw attention to a new inequality index, based on the Fourier transform, which
exhibits a number of interesting properties that make it very promising in applications. In
comparison with the well-known and widely used Gini index, which can still be expressed
by resorting to the Fourier transform, the new index T allows to compute explicitly the
heterogeneity of various probability measures, such as the Poisson distribution, which can
not be measured explicitly resorting to the Gini index. Moreover, this new Fourier-based
index has an interesting property of sub-additivity for convolutions, which in principle
makes it interesting for applications to models of kinetic theory which contain mass and
mean preserving bilinear operators [28].
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Appendix A

Lemma A1. Let F ∈ P+
s (R) be a probability measure of mean value m. Then

0 ≤ H(F) < 1. (A1)

Proof. Let F ∈ P+
s (R) be a probability measure of mean value m. Thanks to the Parseval

formula, the value of the expression (10) in the Fourier space coincides with the value

H(F) =
1
m

∫
R+

|F(x)− Fm(x)|2 dx. (A2)

The simplest case in which we can explicitly evaluate H(F) is when F(x) ∈ P+
s (R) is the

measure function of a random variable X taking only two non-negative values, that is, for
0 < p < 1

P(X = m− a) = p; P(X = m + b) = 1− p, a, b > 0; a ≤ m.
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Since X has mean value m, a and b are related to p by the relation

pa = (1− p)b. (A3)

In this case, it is a simple exercise to verify that

1
m

∫
R+

|F(x)− Fm(x)|2 dx =
1
m

[
p2a + (1− p)2b

]
,

so that, thanks to (A3)
H(F) =

pa
m

.

Therefore, since a ≤ m and p < 1, we conclude with H(F) < 1.
An interesting application of the previous expression is obtained by assuming a = m,

and p = 1− ε, with 0 < ε � 1. In this case the random variable X of mean value m is
such that

P(X = 0) = 1− ε; P
(

X =
m
ε

)
= ε.

In economics, this situation describes a population in which most of agents have zero
wealth, while one small part possesses an extremely high wealth, while maintaining the
mean wealth fixed. In this case H(F) = 1− ε.

Let us now consider a random variable X of mean value m that takes three non
negative values x1 < x2 < m < x3, where

P(X = xk) = pk, k = 1, 2, 3; p1 + p2 + p3 = 1.

In this case∫
R+

|F(x)− Fm(x)|2 dx = p2
1(x2 − x1) + (p1 + p2)

2(m− x2) + p2
3(x3 −m).

Let
x =

p1

p1 + p2
x1 +

p2

p1 + p2
x2. (A4)

Then, x ∈ (x1, x2), and
(p1 + p2)x = p1x1 + p2x2.

Let Y be the two valued random variable defined by

P(Y = x) = p1 + p2; P(Y = x3) = p3.

Then, thanks to (A4), Y has mean value m. Moreover, if we denote by G the measure
function of Y, ∫

R+

|G(x)− Fm(x)|2 dx = (p1 + p2)
2(m− x) + p2

3(x3 −m).

Owing to (A4) we obtain

(p1 + p2)
2(x2 − x) = (p1 + p2)

2
(

x2 −
p1

p1 + p2
x1 +

p2

p1 + p2
x2

)
=

p1(p1 + p2)(x2 − x1) ≥ p2
1(x2 − x1).

Consequently

p2
1(x2 − x1) + (p1 + p2)

2(m− x2) ≤ (p1 + p2)
2(x2 − x) + (p1 + p2)

2(m− x2) =

(p1 + p2)
2(m− x),
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that implies
H(F) ≤ H(G) < 1. (A5)

The same conclusion holds if we consider a random variable X of mean value m that takes
the three non negative values x1 < m < x2 < x3, and we choose the value x ∈ (x2, x3) like
in (A4). The previous computations show that, by suitably choosing the point, we can built,
starting from a random variable with three values, a random variable with two values,
with the same mean and with a bigger value of the functional H, which by the previous
computations is less than 1. At this point, we can iterate the procedure and conclude that
the upper bound in (A1) holds for the measure function F ∈ P+

s (R) of any discrete random
variable X, and finally for any F ∈ P+

s (R).
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