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Abstract: We study the dynamics of classical particles confined in a time-dependent potential well.
The dynamics of each particle is described by a two-dimensional nonlinear discrete mapping for the
variables energy en and phase φn of the periodic moving well. We obtain the phase space and show
that it contains periodic islands, chaotic sea, and invariant spanning curves. We find the elliptic and
hyperbolic fixed points and discuss a numerical method to obtain them. We study the dispersion
of the initial conditions after a single iteration. This study allows finding regions where multiple
reflections occur. Multiple reflections happen when a particle does not have enough energy to exit
the potential well and is trapped inside it, suffering several reflections until it has enough energy to
exit. We also show deformations in regions with multiple reflection, but the area remains constant
when we change the control parameter NC. Finally, we show some structures that appear in the e0e1

plane by using density plots.

Keywords: time-dependent potential well; dispersion of the initial conditions; multiple reflections

1. Introduction

In the area of chaos and dynamical systems [1], we have several models that deal with
multiple reflections. The Fermi–Ulam model is one of these models [2–4]; it corresponds
to a classical particle with mass m, confined between two rigid walls, where one of them
stays at a fixed position while the other moves accordingly to a cosine function. In this
system, the particle can hit several times the moving wall before leaving the reflections
zone. Another example is the bouncer model [5], which is an alternative model to the
Fermi–Ulam model. Here, we consider a particle of mass m moving vertically under the
influence of a gravitational field g. In this movement, the particle collides with a horizontal
surface oscillating vertically in an interval that defines the reflections zone. When a particle
has more than one reflections with this oscillating surface before leaving the reflections
zone, we say that the particle has suffered multiple reflections.

We can also consider billiard systems [6], which describes the movement of a particle
inside a closed region, where this particle collides with the billiard boundary (which
can have circular, elliptical, or oval shapes) [7]. In these systems, we can also observe
the occurrence of multiple reflections, and it happens when we apply a time-dependent
perturbation in the boundaries [8–10].

Multiple reflections can also be observed when studying classical particles confined
within time-dependent potential well or barriers. The dynamics of these particles is an
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object of study for many researchers [11–16]. We can find applications in classical mechanics,
quantum mechanics and electromagnetism [17–19]. In Ref. [19], the authors show classical
particles interacting with one, two, or an infinite chain of squared potential wells, where
the bottoms oscillate periodically in time. The dynamics of these systems are described
by a two-dimensional mapping [20,21] that generates a phase space of mixed-type, e.g.,
containing chaotic sea, stability islands, and invariant spanning curves.

In these systems, it is possible to study the survival probability of an ensemble of
particles [16]. Through these studies, an outstanding result was obtained, showing that the
histograms of escaping particles are scaling invariant [22,23]. We consider that a particle
escaped if its energy is higher than a given value. These histograms grow fast until they
reach their maximum value and then decrease to zero for sufficiently long times. It is also
possible to obtain other scaling properties, for example, when studying the deviation of the
average energy [24]. Scaling exponents were also found: namely, acceleration, saturation,
and crossover exponents. After an appropriate rescaling of the axis, a collapse of all curves
in a single universal plot was possible [24], showing a scaling invariance. The authors in
Ref. [25] showed, for a time-dependent potential barrier, that there are some regions in the
phase space presenting multiple reflections. Inspired by this work, in this paper, we study
a potential well. We divide this system into two regions; in the first region, the bottom has
an oscillatory behavior. The second region has a constant potential energy.

In this paper, we intend to answer the following questions: What are the initial
conditions in the time-dependent potential well that lead to multiple reflections? Are there
preferred regions where these multiple reflections occur? We also show that the multiple
reflections are essential to understand the density plots in the e0e1 plane. Finally, we study
the histogram for the number of multiple reflections, which present a power-law behavior
as a function of i, which is the integer that satisfies the reflection condition. We will show
that these histograms are scaling invariant, e.g., they exhibit a universal behavior for any
combination of parameters.

Our work has the following organization: We present the model in Section 2, and we
describe, in detail, how to construct the mapping. After that, some results are drawn in
Section 3. Section 4 shows our final remarks.

2. The Model and Mapping

We consider a classical particle moving under the influence of a potential energy
V(x, t). Figure 1a considers a chain of infinity time-dependent potential wells, where the
bottoms are synchronously moving according to F(t) = V1 cos(ωt). According to Figure 1a,
we consider V0 as the height of the potential well. Observe that the particle can move
freely along the x-axis, and the dynamics leads to diffusion in space. We emphasize that
the different kinds of potential shapes lead to similar dynamics in energy and time plane.
One can also assume a single oscillating square well with periodic boundary conditions,
as shown in Figure 1b, with a and b giving the widths of the potential well. In this new
figure, we can imagine a particle moving from left to right. If this particle reaches the
dashed vertical line in the right, it is instantly moved to the left dashed line, and the particle
continues going from left to right, analogously to periodic boundary conditions. Note
that it is analogous to the case shown in Figure 1a. With this in mind, one can change the
boundary conditions shown in Figure 1b, where we can consider an infinite potential as
boundaries. As an example, we are going to admit a particle that travels from left to right.
If it reaches the infinite potential on the right-hand side, it experiences an elastic reflection,
that is: it starts to move in the opposite direction after the shock without losing energy,
changing its direction and traveling backward (from right to left) [19].
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Figure 1. (a) A sequence containing an infinite number of time-dependent potential wells, where
b is the distance between potential wells, a is the width of the moving wall, V0 is the depth of the
potential well, and the bottom of the moving well moves accordingly F(t) = V1 cos(ωt). (b) After
observing some symmetries, one can take a unique time-dependent potential well with an infinity
potential on both sides. In (c), we use another symmetry, where we split the potential well in the
middle. This last time-dependent potential well is our object of study.
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Figure 1. (a) A sequence containing an infinite number of time-dependent potential wells, where
b is the distance between potential wells, a is the width of the moving wall, V0 is the depth of the
potential well, and the bottom of the moving well moves accordingly F(t) = V1 cos(ωt). (b) After
observing some symmetries, one can take a unique time-dependent potential well with an infinity
potential on both sides. In (c), we use another symmetry, where we split the potential well in the
middle. In (d), we have the time-dependent potential well obtained by a cut in the center of (c) where
we consider an infinite potential. This last time-dependent potential well is our object of study, which
is our object of study.

The potential well shown in Figure 1c presents an important symmetry. Observe that
we can split it into two halves, where one of these halves is shown in Figure 1d. We consider
an infinite potential in x = 0. The dynamics shown in Figure 1d is exactly the same as
shown in Figure 1a–c in energy and time plane. In this paper, we are going to consider
Figure 1d, where the potential energy of the particle is given by

V(x, t) =





∞, if x ≤ 0 or x ≥ (a + b)/2
F(t), if 0 < x < a/2
V0, if a/2 ≤ x < (a + b)/2

. (1)

a, b, ω, V1 and V0 are control parameters. The most frequently potential well model studied
is the model of Figure 1c [12]. However, we will see later that using the model of Figure 1d
and fixing the Poincaré section on the position a+b

2 make the results the same, but the fixed
points are symmetrical, facilitating our studies.

We consider a classical particle starting at x = (a + b)/2, with initial energy En > V0
and an initial time t = tn. Each time the particle reaches the position x = (a + b)/2,
we save the energy E and time t; then, this position will be our Poincaré section [26,27],
which is different from previous publications [25]. This change is necessary because some
observables in this paper are better observed when using this specific Poincaré section.
With all these observations in mind, we start by showing how to obtain the new mapping.

Assuming the particle starts at x = (a + b)/2, it travels to the left with initial velocity
v0 =

√
2K0/m, where K0 = En −V0 is the initial kinetic energy. We name ∆tb = b/(2v0) as

the time to travel the distance b/2 with velocity V0.
The particle reaches the position x = a/2, where it suffers an abrupt change in the

potential energy after entering the moving well. Here, it is necessary to consider the
conservation of mechanical energy, which leads to

Ka = En −V1 cos[ω(tn + ∆tb)], (2)
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which is the kinetic energy of the particle when entering the moving well. After that, the
particle travels the distance a/2 with constant velocity va =

√
2Ka/m (no forces are acting

in the system), reaches the infinity potential at x = 0 and goes to the right, traveling again a
distance a/2. The particle is back to the position x = a/2, with mechanical energy given by

Ea = Ka + V1 cos[ω(tn + ∆tb + ∆ta)]. (3)

where ∆ta is the time taken for the particle to go from x = a/2 to x = 0 and back to x = a/2.
If the energy is not enough to trespass the potential energy V0, i.e., Ea ≤ V0, then the particle
is deflected and goes to the left. The particle stays trapped until its energy at x = a/2 is
higher than V0, where it can be expressed by solving

Ea = Ka + V1 cos[ω(tn + ∆tb + i∆ta)] > V0, (4)

where i is the smallest integer number that satisfies this condition. Therefore, the particle
is trapped inside the moving well until it has enough energy to escape. Taking this into
account, we define the number of multiple reflections as

nsuc = i− 1. (5)

If i = 1 (or nsuc = 0), we do not have multiple reflections, i.e., the particle leaves the
reflections zone directly. If i = 2, the particle undergoes multiple reflections before escaping
the moving well. If i = 3, the particle undergoes two multiple reflections before escaping,
and so on.

When the particle has enough energy to trespass the potential energy V0, we observe
an abrupt change in the kinetic energy. It happens because the potential energy is changed
to V0 (due to energy conservation). The new kinetic energy is given by Kb = Ea − V0.
The particle travels again the distance b/2 but now going from left to right with constant
velocity vb =

√
2Kb/m. The time to travel the distance is b/2 is ∆t′b = b/(2vb).

Now that the particle traveled the distance b/2, it finally reaches the position x =
(a+ b)/2, which is our Poincaré section. One can conclude that the final energy is En+1 = Ea
and the final time is tn+1 = tn + ∆tb + i∆ta + ∆t′b.

We will consider a set of dimensionless variables. It is necessary to reduce the number
of variables and control parameters of the system. First, we consider e = E/V0, which is
the dimensionless energy. φ = ωt is the phase of the moving wall. The time to travel some
distance is changed to a phase variation by considering: ∆φb = ω∆tb, ∆φ′a = ω∆ta and
finally ∆φ′b = ω∆t′b. The dimensionless control parameters are r = b/a, which changes the
width of the potential well, δ = V1/V0 changes the height of the potential well, and finally
Nc =

ωa
2π

√
m

2V0
. Nc corresponds to the number of oscillations the moving part completes

when a particle travels the distance a with energy E = V0. It is important to pay attention at
0 < δ < 1, because if delta has a value greater than 1, we will no longer have the potential
well, as the oscillating part may have a potential greater than vo. We also can observe
that Nc is directly proportional to the oscillation frequency of the well ω and inversely
proportional to the square root of V0. Therefore, increasing the value of Nc has the same
effect of increasing the angular frequency ω.

Thus, after considering this set of dimensionless variables, we obtain the follow-
ing map:

en+1 = en + δ[cos(φn + ∆φb + i∆φa)− cos(φn + ∆φb)], (6)

where i is the smallest number that makes the expression en+1 > 1 true. The final phase is

φn+1 = (φn + ∆φb + i∆φa + ∆φ′b) mod2π. (7)
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The auxiliary variables are given by

∆φb =
πNcr√
en − 1

, (8)

∆φa =
2πNc√

en − δ cos(φn + ∆φb)
, (9)

and
∆φ′b =

πNcr√
en+1 − 1

. (10)

These dimensionless variables represent, respectively, the time to travel the distance b/2,
time to travel distance a, and time to travel the distance b/2 before returning to the
Poincaré section.

3. Results

Figure 2a shows the phase space e vs. φ. Observe that the phase in such a plot is
mod(2π). As one can see, the phase space is of mixed-type, containing a set of periodic
islands, a large chaotic sea, and some invariant spanning curves limiting the size of the
chaotic sea.
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Figure 2. (Color online) Phase space e vs. φ, where in (a), we highlighted the fixed points (elliptic
and hyperbolic). In (b), the color represents the value of d(e, φ), which is given by Equation (17).
(c,d) show colors as the value of σ, which implicitly shows the dispersion of the phase φ. (d) is
an enlargement in the black rectangle shown in (c). For all graphs, we considered the following
combination of control parameters: Nc = 3, r = 1 and δ = 0.5.
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We can obtain the period-1 fixed points by considering φn+1 = φn = φ∗ + 2πl and
en+1 = en = e∗ in Equations (6) and (7), where l is an integer value and (φ∗, e∗) is the
position of the fixed point. When solving for en+1 = en = e∗, we found out the expression

cos(φ∗ + ∆φb + i∆φa) = cos(φ∗ + ∆φb). (11)

Equation (11) yields: (i) i∆φa = 2πk or (ii) i∆φa = 2πk− 2(φ∗ + ∆φb), where k is also an
integer number.

Considering case (i), and taking i∆φa = 2πk to Equation (7), it is possible to find an an-
alytical result, where the position (φ∗, e∗) of the period-1 fixed point can be obtained when

e∗ = 1 +
(

Ncr
l − k

)2
. (12)

φ∗ assumes two possible values

φ∗ = arccos

{
1
δ

[
e∗ −

(
Nc

k

)2
]}
− πNcr√

e∗ − 1
, (13)

or

φ∗ = 2π − arccos

{
1
δ

[
e∗ −

(
Nc

k

)2
]}
− πNcr√

e∗ − 1
. (14)

We use the following notation A(k, l) when talking about the period-1 fixed points obtained
analytically. As an example, in Figure 2a,b, we show the fixed point A(2, 5), so the position
(φ∗, e∗) is obtained analytically through Equations (12) and (13). A∗(k, l) is the fixed point
obtained through Equations (12) and (14), where Figure 2a shows A∗(2, 5) as an example.
Both A(2, 5) and A∗(2, 5) are hyperbolic fixed points.

Let us now discuss the case (ii). When we take i∆φa = 2πk − 2(φ∗ + ∆φb) to
Equation (7), we obtain the following expression:

e∗ − δ cos[π(k− l) + ∆φb]−
(

πNc

πl − ∆φb

)2
= 0, (15)

which needs to be solved numerically to find e∗. The phase φ∗ is then obtained by the
following expression

φ∗ = π(k− l). (16)

We use N(k, l) to represent the period-1 fixed points obtained numerically through Equa-
tions (15) and (16). Figure 2a shows the result for the numerical fixed points. As one can
see, there exists a clear sequence of fixed points arising. For example, on the left of the
figure, we have N(3, 3), N(4, 4) and N(5, 5) following a sequence where the values of k
and l are both increased by one unit each. In the middle of the figure, we observe another
sequence, where the fixed points N(4, 3), N(5, 4), N(6, 5) and N(7, 6) arise. It is nice to
observe that N(4, 3) and N(4, 4) are stable fixed points (elliptic), which are inside periodic
islands, while N(3, 3), N(5, 5), N(5, 4), N(6, 5), N(7, 6), A(2, 5) and A∗(2, 5) are unstable
fixed points (hyperbolic).

3.1. Observable d(e, φ)

Now, we show an observable named d(e, φ). Observe that unstable fixed points, as
shown in Figure 2a, cannot be observed when looking directly at the phase space, and we
can only highlight them by solving the periodicity condition. This observable d(e, φ) can
show both stable and unstable fixed points, where we define it as

d(e, φ) =

√
(φn+1 − φn)

2 + (en+1 − en)
2, (17)
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where φn+1 is mod(2π). The result is plotted in Figure 2b, where in order to construct
this figure, we considered a grid of 1000 by 1000 different values for the initial conditions
φn ∈ (0, 2π) (horizontal axis) and en ∈ (1, 6) (vertical axis). So, we iterate the map once and
use a color palette that represents the value of d(e, φ). One important result found appears
when the color tends to black (d→ 0), where in such cases, we have the position of a fixed
point. Thus, it highlights both elliptical and hyperbolic ones. The fixed points found by
cases (i) and (ii) confirm that this observation is true, so using d(e, φ) is the fastest way to
observe fixed points without the necessity of solving equations.

If our aim is to highlight period-2 fixed points; the only necessary change is to consider
φn+2 and en+2 instead of φn+1 and en+1 in Equation (17). It is unnecessary to go further
and study higher-order periodic fixed points because we have another information arising
in Figure 2b. As one can see, there exist abrupt changes of color, for example, near the fixed
point N(3, 3), where the color tends to be red/black, but going a little above, we see that
the color tends to be green. There are several curves such as that presenting a complex
behavior. Our goal is to understand what happens near them.

3.2. Observable σ

We define another observable, named as σ, which measures how the phase φ spreads
along this axis. We define this observable as

σ =
φn+1

2π
, (18)

where σ ∈ <. It is important to emphasize that the function mod is not applied in the
phase φ, so φn+1 can assume greater values than 2π. If σ ∈ (0, 1), we can interpret that
φn+1 ∈ (0, 2π). For σ ∈ (1, 2), we know that φn+1 ∈ (2π, 4π), and so on. We then showed
the result in Figure 2c. The way to construct this figure is like the one shown in Figure 2b,
but now, the color represents the value of σ. As shown in the color palette presented on
the right side of the figure, for σ ∈ [2, 3), we use the black color, while for σ ∈ [3, 4), we
use the red color and so on. If σ ∈ [16, ∞), we use the dark-gray color. The white regions
have i > 1, i.e., these are regions with multiples reflections, which at first moment will be
disregarded.

As one can see in Figure 2c, there exists a clear line separating the black (σ ∈ (2, 3))
from the red regions (σ ∈ (3, 4)). To obtain this line, we need to isolate φn+1 in Equation (18)
and bring this to Equation (7). As a result, we find a transcendental equation

F(σ) = φn − 2πσ + ∆φb + i∆φa + ∆φ′b, (19)

that needs to be solved numerically for F(σ) = 0 to find the values of (φn, en) that are
solutions. The results obtained are plotted as dashed curves in Figure 2c,d. As one can
see, curve F(3) is the one that separates the red and black regions. F(4) separates the red
[σ ∈ (3, 4)] and green [σ ∈ (4, 5)] regions, and so on, following a logical sequence tending
to infinite.

Figure 2d shows an enlargement in the black rectangle of Figure 2c. Here, we show
with more details that a sequence of curves F(6), F(7), F(8), · · · , F(∞) is observed. It is
possible to show that every time that σ → ∞ or F(∞) → ∞, we have the boundary that
separates regions with and without multiple reflections. As an example, the white-colored
regions in Figure 2c,d are regions with multiple reflections (i.e., i > 1). We find this border
by finding the curve F(∞).

Considering σ→ ∞ and bringing this to Equation (7), one can conclude that ∆φb → ∞,
∆φa → ∞ or ∆φ′b → ∞. In the first option, ∆φb → ∞ is meaningless because according to
Equation (8), for that, it is necessary that en → 1 and so the particle would never escape
the well. The second option, ∆φa → ∞ given by the Equation (9) is also not viable for the
same reason and furthermore, it is mathematically impossible for the denominator of this
equation to be zero, since we have an > 1 and we have already seen that it is necessary to
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have 0 < δ < 1. So, we only have to use the third option, ∆φ′b → ∞, which is the only one
of the three options that makes physical and mathematical sense. As we already know, ∆φ′b
is given by Equation (10), so ∆φ′b → ∞ has as a possible solution e1 → 1. The idea is to
solve this equation, which can be done by finding the root of G(i) = 0, which is given by

G(i) = e0 − 1 + δ[cos(φ0 + ∆φb + i∆φa)− cos(φ0 + ∆φb)]. (20)

An important result appears when we find the solution of G(1) = 0, which is the same
curve F(∞) in Figure 2d. Therefore, we finally have the border that separates regions
containing multiple reflections.

3.3. Multiple Reflections

In this section, we show details in the multiple reflections regions. Figure 3a shows
the phase space for Nc = 0.1, r = 1 and δ = 0.5. The phase space shows a large chaotic sea,
with some periodic islands and invariant spanning curves.
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Figure 3. (Color online) Phase space e vs ϕ. We used the following set of control parameters:
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the border that separates regions with multiple reflections (i > 1) from the region without multiple
reflections (i = 1). In (c,d) the colors represent the value of i when i > 1, e.g., we highlight regions
with multiple reflections.

The equation (11) yields: (i) i∆ϕa = 2πk or (ii) i∆ϕa = 2πk − 2(ϕ∗ + ∆ϕb), where k is also 131

an integer number. 132

Considering case (i), and taking i∆ϕa = 2πk to Eq. (7). It is possible to find an
analytical result, where the position (ϕ∗, e∗) of the period-1 fixed point can be obtained
when

e∗ = 1 +
(

Ncr
l − k

)2
. (12)

ϕ∗ assumes two possible values

ϕ∗ = arccos

{
1
δ

[
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Nc
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)2
]}

− πNcr√
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, (13)

or

ϕ∗ = 2π − arccos

{
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δ

[
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(
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k

)2
]}

− πNcr√
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. (14)

We use the following notation A(k, l) when talking about the period-1 fixed points got 133

analytically. As an example, in figure 2(a,b) we show the fixed point A(2, 5), so the position 134

(ϕ∗, e∗) is obtained analytically through Eqs. (12) and (13). A∗(k, l) is the fixed point got 135

through Eqs. (12) and (14), where figure 2(a) shows A∗(2, 5) as an example. Both A(2, 5) 136

and A∗(2, 5) are hyperbolic fixed points. 137

Figure 3. (Color online) In (a) phase space e vs. φ. We used the following set of control parameters:
(Nc; r; δ) = (0.1; 1; 0.5). In (b), we highlight as colors the value of G(1). When G(1) = 0, we find
the border that separates regions with multiple reflections (i > 1) from the region without multiple
reflections (i = 1). In (c,d), the colors represent the value of i when i > 1, e.g., we highlight regions
with multiple reflections.

To highlight the regions containing multiple reflections (i > 1), one can start by
looking at Figure 3b. In this plot, we considered a grid of 1000 by 1000 different values of
φ0 ∈ (0, 2π) and e0 ∈ (1, 1.5), and for each combination of initial conditions, we calculated
G(1) through Equation (20). We used a continuous color pallete, from red to yellow
(negative values) and green to blue (positive values). Negative values of G(1) characterize
regions with multiple reflections (i > 1), while positive values mark regions without
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multiple reflections (i = 1). As said before, the border that marks regions with and without
multiple reflections is obtained by solving G(1) = 0.

Now that we know the location of the regions with multiple reflections (i > 1), one
can build Figure 3c, where again a grid of 1000 by 1000 different values of φ0 and e0 is
considered, but the color represents the value of i. As one can see, there exists a logical
sequence of i starting from i = 2 (black), i = 3 (red) and tending to infinity in the cyan
region (i ≥ 7).

Figure 3d shows an enlargement of Figure 3c. Here, we show more details about
how to obtain the border that separates regions with different values of i. The border that
separates i = 2 from i = 3 is obtained by solving G(2) = 0 (see Equation (20)). The other
separations were also obtained by solving G(3) = 0, G(4) = 0, G(5) = 0, G(6) = 0 and
so on.

As a comparison, Figure 4a–f shows e0 vs. φ0, and the color is the value of G(1). Our
goal is to highlight regions with multiple reflections (i > 1) for different values of Nc. The
value of Nc is equal to (a) 0.2, (b) 0.5, (c) 1, (d) 5, (e) 10 and (f) 50. We kept constant the
value of the other control parameters by setting r = 1 and δ = 0.5. As one can see, if we
increase the value of Nc, it will considerably change the complexity of the curves. We can
see that regions with multiple reflections are stretching along the phase space, but for all
situations, the regions with i > 1 are limited to energies below 2.4. Figure 2a shows us that
the chaotic sea can be observed for e . 6, and when we increase the value of Nc, this energy
grows quick.
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Figure 4. (Color online) Phase space e vs. φ for different values of Nc. We use (a) Nc = 0.2,
(b) Nc = 0.5, (c) Nc = 1, (d) Nc = 5, (e) Nc = 10 and (f) Nc = 50. In all simulations, the fol-
lowing set of control parameters was used (r; δ) = (1; 0.5).

3.4. Histogram for Multiple Reflections

Here, we will study the area occupied by the regions with i > 1. To do this, we started
by considering the following simulation: we take a grid containing M by M different values
of φ0 ∈ (0, 2π) and e0 ∈ (1, 2.5), and for each combination of (φ0, e0), we check the value
of i after one iteration. After that, we accumulate it in a histogram H. So, the histogram
counts the number of initial conditions that started in a i > 1 region. It is an indirect way to
measure the area occupied by i, i.e., the greater the value of H, the greater the area.
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Figure 5a shows the result obtained when considering different values grid-size M.
As one can see, when increasing M, the curves of H go to the right. If we apply a re-scale in
the vertical axis, i.e., H → H/M2, we see that all curves have a universal behavior, with
a slope (for a power-law fit) near −3. With this result, we prove a scaling invariance of
the plot of H vs. i; i.e., we can take any value of M, and the behavior is described by the
same curve.
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Figure 5. (Color online) Histogram H as function of i for different values of M in (a). After a suitable
rescale in the vertical axis

(
H → H/M2), all curves present a universal behavior, showing a scaling

invariance in (b). In (c), we show that changing the value of Nc does not affect the position of the
curves. For these simulations, we fixed the other control paramters, i.e., r = 1 and δ = 0.5.

Now, we considered M = 105, and we changed the value of Nc considering it equal
to 100, 101, 102, and 103. As one can see, independently of the value of Nc, all curves stay
at the same position, so, as we said before, we can argue that the area of the regions with
multiple reflections is constant for any Nc taken. These regions i stretch and shrink in
several directions, as shown in Figure 4a–f, but the area seems to be constant.

3.5. Density Plots in the e0e1 Plane

In the last part of the paper, we show some interesting structures that appear in the
e0e1 plane. Again, a grid of M by M different values of φ0 ∈ (2, π) and e0 ∈ (1, 5) is
taken, and for each combination of (φ0, e0), we find the corresponding value of e1. Observe
that M = 104 for all next results. Now, we can plot e1 vs. e0 directly, but this result does
not reveal much information. It is better to consider a density plot, which is completed
as follows: we count the number of trajectories (points) that visited boxes in a grid of
1000× 1000 equally spaced intervals in the e1e0 plane. We define the quantity ξ as the
logarithm of the number of trajectories that visit a given box Σ:

ξ = log(Σ). (21)

The log function is used to suppress regions with huge counts. Figure 6a–d show us
the results for different values of Nc and constant values of (r, δ) = (1, 0.5). In (a), we
considered Nc = 3, in (b) Nc = 5, in (c) Nc = 10 and in (d) Nc = 50. We see a very
complicated behavior, and more details need to be extracted.

In our simulations, we noticed that when we changed the value of the control pa-
rameter δ, the width of the structure found in the plane e0e1 changed depending on this
parameter; that is, when we increased or decreased the value of δ, the width of the structure
also increased or decreased, as we can see in Figure 7, where we plot this structure for
δ = 0.2, δ = 0.4, δ = 0.7 and δ = 1, keeping the values of Nc = 5 and r = 1 constant. We
then decided to investigate the existence of a mathematical relationship between δ and the
width of such a structure. To do this, first, we draw the line e1 = e0, through which we
can see that the structure is symmetric with respect to this line. Next, we draw parallel
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lines with the line e1 = e0, tangent to the structures at their outermost points, and carefully
analyze the values where the parallel lines cut the coordinate axes of the plane e0e1. We
note that this point is always given by 1 + 2δ, which means that the distance from the point
(e0, e1) = (1, 1) to the intersection point of lines parallel to e1 = e0 is always 2δ on both
axes, as shown in Figure 8, which is an enlargement of Figure 7c, where we call the line
e1 = e0 from r2 and from r1 and r3 the lines parallel to r2 that are tangent the structures. In
this figure, we draw a line segment of size l, joining the intersection points of the parallel
lines with e1 = e0 with the coordinate axes. Note that the length of l will have exactly the
same measurement as the maximum width of the structure, as shown by the straight line
under the line r4. Thus, in the isosceles right triangle that was formed, we can apply the
Pythagorean Theorem and conclude that

l = 2δ
√

2. (22)

The mathematical explanation for this relationship is given by the Equation (6). We
can note that in this equation, the greatest value that cos(φn + ∆φb + i∆φa) mode assumes
is 1 and the greatest value that − cos(φn + ∆φb) can assume that it is also 1. When this
happens, we have that ∆emax, which is the greatest distance between two consecutive
values of energy is given by

∆emax = en+1 − en = 2δ, (23)

where ∆emax, which is exactly the distance from the point (1,1) to the points where the lines
tangent to the structures cut the axes e0 and e1 of the plane e0e1.

Let us focus on Figure 6a. We will consider an enlargement in the region e0 ∈ (1, 1.4)
and e1 ∈ (1, 1.4), where the result is plotted in Figure 9a. We see several structures,
which, apparently, does not present a pattern. It differs from the results obtained for a
time-dependent potential barrier in a previous work [25]. In that work, it was possible to
show the structures had an auto-similar pattern, but here, the structures are more complex.
Basically, the structures shown in Figure 9a are structures with different values of i. For
example, Figure 9b shows only structures with i = 1 (without multiple reflections).
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Figure 6. (Color online) Density plots e0e1 where the colors show the value of ξ given by Equation (21).
In (a–d), different values of Nc are taken. We used (a) Nc = 3, (b) Nc = 5, (c) Nc = 10 and (d) Nc = 50.
The other control parameters were fixed as r = 1 and δ = 0.5.
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Figure 7. Density plots e0e1 where the colors show the value of ξ given by Equation (21). In (a–d),
different values of δ are taken. We used (a) δ = 0.2, (b) δ = 0.4, (c) δ = 0.7 and (d) δ = 1. The other
control parameters were fixed as r = 1 and Nc = 0.5.
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Figure 9. (Color online) Density plots, where in the horizontal and vertical axis, we have e0 ∈ (1, 1.4)
and e1 ∈ (1, 1.4), respectively. In (a), we show the complete scenario, where all values of i are shown.
Item (b) highlights only structures with i = 1, in (c) i = 2, in (d) i = 3, in (e) i = 4 and finally in
(f) i = 5.

Figure 9c shows the structures with i = 2. As one can see, a single structure appeared.
Figure 9d shows the structures with i = 3, where two structures appear. It is interesting
to observe Figure 9e which presents i = 4. The second structure observed in the right
portion of the plot seems to be incomplete. These incomplete structures can also be seen
in Figure 9f, which highlights only one structure with i = 5. The five structures observed
are incomplete.

When increasing the value of i, we will check an increased number of structures,
which contribute to the last scenario shown in Figure 9a. It is important to mention
that similar structures appear, for example, in the Fermi–Ulam model [28], in concave
billiards [29,30] and in the time-dependent potential barrier [25], but more studies are
necessary to understand completely the mechanism that produces these structures.

4. Conclusions

Summarizing, we studied the dynamics of a classical particle confined to move in a
time-dependent potential well. The bottom of the well is allowed to oscillate in time. Three
parameters control the dynamics of the particle, which is made via a two-dimensional,
nonlinear and area preserving mapping written in terms of energy and phase. Since there
is no gradient of the potential, a particle moves with a constant velocity inside of the
potential changing the velocity only when it departs from region a to region b or vice
versa. The phase space, which gives the specification of all possible states for the dynamics,
is of mixed form exhibiting then large chaotic seas, islands of periodicity, and a set of
invariant spanning curves, limiting the chaotic diffusion. The expression of the period one
fixed points are obtained analytically, while larger periods are obtained numerically. The
multiple reflections, which denote a rare event for the dynamics along the phase space, are
investigated from the density of points σ inside of the reflection zone. It is shown in a color
plate with a degrade of colors showing differences of intensity, hence proving different
concentrations. In fairness, there is a set of continuous curves separating regions where
multiple reflections are observed in energy vs. energy plane.
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