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Information Flow in Biological Networks for Color Vision
Jesús Malo

Image Processing Lab, Universitat de Valencia, 46980 Valencia, Spain; jesus.malo@uv.es; Tel.: +34-963-544-099

Abstract: Biological neural networks for color vision (also known as color appearance models) consist
of a cascade of linear + nonlinear layers that modify the linear measurements at the retinal photo-
receptors leading to an internal (nonlinear) representation of color that correlates with psychophysical
experience. The basic layers of these networks include: (1) chromatic adaptation (normalization of
the mean and covariance of the color manifold); (2) change to opponent color channels (PCA-like
rotation in the color space); and (3) saturating nonlinearities to obtain perceptually Euclidean color
representations (similar to dimension-wise equalization). The Efficient Coding Hypothesis argues that
these transforms should emerge from information-theoretic goals. In case this hypothesis holds
in color vision, the question is what is the coding gain due to the different layers of the color appearance
networks? In this work, a representative family of color appearance models is analyzed in terms
of how the redundancy among the chromatic components is modified along the network and how
much information is transferred from the input data to the noisy response. The proposed analysis is
performed using data and methods that were not available before: (1) new colorimetrically calibrated
scenes in different CIE illuminations for the proper evaluation of chromatic adaptation; and (2) new
statistical tools to estimate (multivariate) information-theoretic quantities between multidimensional
sets based on Gaussianization. The results confirm that the efficient coding hypothesis holds for
current color vision models, and identify the psychophysical mechanisms critically responsible for
gains in information transference: opponent channels and their nonlinear nature are more important
than chromatic adaptation at the retina.

Keywords: chromatic information; color appearance networks; efficient coding hypothesis; total
correlation; mutual information; Gaussianization

1. Introduction

Biological vision is relevant to manage visual data because natural visual systems
evolved to develop efficient representations of visual features that may be an inspiration
for artificial systems. Examples include (1) the equivalence between the spatio-spectral sen-
sitivity of receptive fields in natural neural systems and those emerging from information
maximization and optimal matching [1], or the filters found by maximizing classification
performance [2], and (2) the importance of human-like spatio-chromatic representations in
image coding algorithms [3,4].

Conversely, the quantitative tools of statistical learning are key to propose principled
theories in visual neuroscience. For instance, the classical efficient coding hypothesis argues
that the organization of biological sensors comes from the optimization of information-
theoretic goals [5,6]. The conventional approach to check this hypothesis is from-statistics-to-
perception: i.e., deriving the biological behavior from statistical arguments. In color vision,
this includes the derivation of opponent channels from principal components [7], and the
derivation of the frequency bandwidth of color channels [8,9] nonlinearities of opponent
channels [10,11], and even the reproduction of color illusions [12,13], from information
maximization or error minimization arguments. However, there is an alternative way
to check the hypothesis: from-perception-to-statistics [14–16]. In this case, perceptually
meaningful models which have not been statistically optimized are shown to have a
statistically efficient behavior.
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In this work, we take this alternative approach (from-perception-to-statistics) for color
vision models. Here, we analyze the communication efficiency of standard color vision
models (that already describe a wide range of color vision psychophysics) using multivari-
ate information-theoretic measurements. This analysis is interesting for data science and
computer vision because the building blocks of color appearance models have received
statistical interpretation: adaptation is related to manifold alignment [17], opponency is
related to the principal components of color data [7], and the nonlinearities of the opponent
channels are related to histogram equalization [10–12]. In case the efficient coding hypothe-
sis holds for color vision networks, the question is what is the coding gain due to the different
layers of the color appearance networks?

A quantitative response to that question is interesting for data science to select which
process should be addressed first for the efficient management of color data. The perception-
to-statistics approach has been previously applied to texture perception [14,15] and to
models that involve spatial transforms [16], but it is original in purely color vision: note
that previous information-theoretic analysis of color vision (e.g., Ref. [18] and the references
therein) were focused on the amount of information from an image which can be obtained
from the corresponding scene under a different illumination and not on the efficiency
of the system to transmit generic color information (irrespective of the illumination) as
done herein. The work presented here is an extended version of the preliminary results
presented in an oral communication [19].

2. Statistical Interpretation of Building Blocks of Color Vision

The basic elements of biological color vision are:
(1) Linear integration of spectral irradiance at the retina by three sensors tuned to

Long, Medium and Short wavelengths, which are commonly referred to as LMS sensors [20].
In every natural or artificial system, this initial linear stage is the necessary transduction
from electromagnetic energy to the first numerical representation of color data. Here, we
will start by expressing colorimetrically calibrated images in LMS tristimulus values via
the Stockman and Sharpe fundamentals [21].

(2) Nonlinear adaptation at the retina adjusts the sensitivity (or gain) of LMS sensors to
the illumination of the scene. For instance, classical von Kries chromatic adaptation normalizes
the sensors by the responses of what is considered to be white in the scene [22]. From a statistical
point of view, the role of chromatic adaptation is the same as manifold alignment in machine
learning to make the interpretation of the data easier in changing environments (in this case,
environments with different illuminations). According to this interpretation, generalizations
of the von Kries transform have been proposed, such as, for instance, trying to make first
and second moments of the different color manifolds equal [17,23], or using higher-order
equalization transforms for the different datasets and making their dimensions equal in the
canonical domain. The latter higher-order methods may be linear [1] or nonlinear [11,12].
Here, we will explore the behavior of classical von Kries adaptation [22], and the adaptation
through the equalization of mean and covariance, which will be referred to as the Webster–
Clifford approach following [17,23]. More sophisticated nonlinear equalization techniques
such as the sequential principal curves analysis (SPCA) [11,12] will be used as a convenient
statistical benchmark.

(3) Linear opponent channels in ganglion cells and beyond. The change from a color
representation mediated by sensors with all-positive (physically realizable) sensitivities, as
the LMS sensors at the retina, to color representations in opponent channels is obtained via
the linear recombination of the LMS signals. This recombination leads to an achromatic
channel and two red-green and yellow-blue chromatic channels [20,22,24]. As such, neural
computation allows to obtain sensors with opponent (positive-and-negative) spectral sensi-
tivities that are not easy to implement physically. Spectral sensitivities which are effectively
opponents are found at different layers along the neural pathway: at the ganglion cells, the
lateral geniculate nucleus, and the visual cortex [25]. This linear change of color represen-
tation has been statistically interpreted as the identification of the principal components
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of the color manifold [7]. Here, we will use the classical Jameson and Hurvich transform
to opponent channels [24], which is not based on image statistics, but on color-matching
experiments. These opponent channels are also called achromatic, tritanopic, and deuteranopic
(ATD) due to their relation with dichromatic vision [20,26].

(4) Nonlinearities of opponent channels. Nonuniform color discrimination thresh-
olds [27,28] imply that the saturation of the Weber law occurring in the achromatic
channel [22,29] also appears in the chromatic channels [20]. This nonlinearity of the
opponent channels has been explained as the necessary transform to obtain equalized
PDFs in the responses [10]. This nonlinearity can be optimized for PDF equalization or
error minimization after uniform quantization. The authors referred to this nonlinearity
as the pleistochrome transform [10]. This dimension-wise equalization concept was
generalized to multivariate scenarios through principal curves (the above mentioned
SPCA) [11,12]. Here, the simpler (univariate) pleistochrome transform will be compared
to the more general SPCA transform.

The sequence of the building blocks considered above fits into the current deep-
network paradigm [30] because it can be implemented as a cascade of two linear+nonlinear
layers performing spectral integration + adaptation followed by opponency + saturation:

x0

L(1)
##
r1

N (1)
$$
x1

L(2)
##
r2

N (2)
$$
x2 (1)

In this architecture, x0 is the spectral irradiance at the photo-receptors, r1 is the vector
of linear LMS responses, x1 is the vector of nonlinearly adapted LMS responses, r2 is
the vector of linearly recombined ATD responses, and x2 is the vector of nonlinear ATD
responses. The goal of the work was to measure how much information from the linear
LMS stage is transmitted to the other layers of the network. As such, we check whether
information transmission can be a sensible organization principle for these natural systems
which are the critical layers of the network.

3. Materials and Methods
3.1. Colorimetrically Calibrated Database

The IPL color image database [1,11,12] is well suited to study color adaptation because
its controlled illumination under CIE A and CIE D65 allows us to know the white point
in each scene. This implies that chromatic adaptation transforms will not require extra
approximations such as the gray-world assumption. The acquisition of the controlled
images and resulting data is illustrated in Figure 1.

Figure 1. Natural colors used in the experiments. (Left): experimental setting to record the natural
scenes under calibrated illumination (CIE D65 and CIE A spectra) and representative corresponding
scenes. (Right): color measurements in the CIE xy diagram. Blue and red dots represent the colors
under D65 (white) and A (yellowish) illuminations.
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3.2. Quantification of the Information Flow

The information flow along the considered networks can be measured in direct and
indirect ways. The direct measure consists of estimating the information about the input
natural colors x0 contained at the color representation (or response) at the i-th layer of the
network, xi: the Mutual Information I(x0, xi). Of course, the information transferred from
the input can also be measured for the stages after the linear transforms, I(x0, ri). Given
samples of the color signals at the different stages (either ri or xi), the same numerical
technique will be applied to estimate the corresponding mutual information I. Therefore,
below we will give expressions for xi which will also be applicable for ri.

These direct measures, I, can be put in terms of other (indirect) magnitudes. For
illustration purposes, following [16], one can compare the efficiency of the representation in
the i-th layer assuming that it performs a certain deterministic transform, f i(·), corrupted
by noise due to the non-ideal nature of the sensors: xi = f i(x0) + ni. In this setting, from
the definition of I in terms of the joint and the conditional entropies (chapter 2 in [31]) leads
to: I(x0, xi) = h(xi)− h(xi|x0) = h(xi)− h(ni), because the uncertainty in the i-th layer
given the input just comes from the noise ni. Then, from the definition of Total Correlation, T,
Refs. [32,33] that describe the redundancy between the coordinates, xj, of a d-dimensional
vector, T(x) = ∑d

j=1 h(xj)− h(x), the information transferred up to the i-th layer is just [16]:

I(x0, xi) =
d

∑
j=1

h(xi
j)− T(xi)− h(ni) (2)

where the superindex refers to the i-th layer and the subindex j refers to the individual
neurons within that layer.

The right-hand side of Equation (2) implies that the transferred information can be
increased in different ways: (1) by increasing the entropy of the coefficients of the response,
which is limited by energy constraints that prevent arbitrarily large gains to increase the
variance; (2) by reducing the noise at that layer, which is also limited by the finite quality
of the sensors; and finally (3) by reducing the redundancy, T, between the sensors in the
representation. Therefore, for sensors of fixed signal/noise quality, indirect measures
of efficiency include the redundancy, T, within each layer along the networks, and the
differential entropy, h, of the signal at each layer of the networks.

Equation (2) introduced in [16] clarifies the statements made in [34]: representations
that minimize the redundancy, T, and maximize the entropy, h, are better for signal repre-
sentation because independent components lead to factorial codes that maximize the use of
the channel (maximize the transferred information), and maximum entropy representations
imply that the signal accepts more noise without significant information loss.

By definition, noiseless and invertible representations preserve all the information from
the input. Therefore, the measurement of the transmitted information only makes sense for
noisy sensors (which is the case of actual physiological mechanisms). According to this,
just for illustrative purposes as in [16], in our experiments measuring I, every considered
sensor (or representation) was subject to Gaussian noise whose standard deviation was 5%
of the total deviation of the response. We computed I between these noisy representations
and the input (assuming a negligible noise in the input, with a standard deviation of 0.05%
of the total deviation). The I between the noiseless input and the negligible-noise input will
set a convenient reference for the maximum available information.

Finally, the Kullback–Leibler divergence, KLD or DKL, which measures the lack of
correspondence between data distributions [31], is a convenient information-theoretic
measure to assess the match between the color-compensated sets using different chromatic
adaptation mechanisms. Lower divergences indicate better adaptation.

In summary, I, T, h, and DKL are appropriate measures to assess the information
flow and adaptation in color appearance networks. However, the estimation of these
(multivariate) quantities directly from the color samples injected into the networks is not
straightforward: the naive use of the direct definitions implies the estimation of multivariate
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PDFs and this would introduce substantial bias in the results. This estimation problem is
addressed in the next section.

3.3. Total Correlation, Mutual Information, and Kullback–Leibler Divergence from Gaussianization

In this work, we solve the problem of estimating multivariate information-theoretic
quantities using a novel estimator of T which only relies on easier (univariate) density
estimations: the rotation-based iterative Gaussianization (RBIG) [35,36].

The RBIG transform, x′ = Gx(x), is a cascade of nonlinear+linear iterations, or the
sequential application of two operations: nonlinear marginal Gaussianizations, Ψ, and
linear rotations, R:

x = x(0)

R(0) ·Ψ(0)

88

Gx(x)

))
x(1)

R(1) ·Ψ(1)

== x
(2) · · · x(n)

R(n) ·Ψ(n)

;;x
(n+1) · · · x(N−1)

R(N−1) ·Ψ(N−1)

77x
(N) = x′ (3)

where n refers to the step in the sequence, and convergence takes N steps, n = 0, . . . , N − 1.
This invertible iterative procedure in Equation (3) is able to transform any input

PDF into a zero-mean unit-covariance multivariate Gaussian even if the chosen rotations
are random [35]. This ability to completely remove the structure of any PDF is useful
to estimate the T of arbitrary vectors x: as the redundancy of a Gaussianized signal is
zero, T(x) corresponds to the sum of the individual variations that take place along the
iterations of RBIG while Gaussianizing x. Interestingly, the individual variation in each
RBIG iteration only depends on (easy to compute) univariate entropies [36]:

T(x) =
N−1

∑
n=0

∆T(n) =
(N − 1)d

2
log(2πe)−

N

∑
n=1

d

∑
j=1

h(x(n)j ) (4)

where the (hard) multivariate problem was reduced to the computation of many (easy to
compute) univariate entropies h(x(n)j ).

The entropy of the multivariate signal at the i-th layer, h(xi), can be obtained from
T(xi), and univariate entropy estimations from the aforementioned definition of T:

h(xi) = −T(xi) +
d

∑
j=1

h(xi
j) (5)

The information shared by multidimensional datasets, I, is just the remaining total
correlation within the variables once they have been separately Gaussianized [36,37]:

I(x, y) = T([Gx(x), Gy(y)]), (6)

where Gx(·) and Gy(·) are the Gaussianization transforms learnt for the random variables
x and y, and T in Equation (6) can be reduced to univariate operations using Equation (4).

Similarly, the KLD between two multidimensional variables depends on the redun-
dancy and the negentropy of one of the variables when it has been Gaussianized using the
Gaussianization transform learnt from the other [36]:

DKL(x|y) = T(z) +
d

∑
j=1

DKL(pzj(zj)|N (0, 1)) (7)

where z = Gx(y) is the variable y transformed according to the Gaussianization mapping
for x.



Entropy 2022, 24, 1442 6 of 14

In summary, according to Equations (4)–(7), all the hard-to-compute multivariate
measures (T, h, I, DKL) can be reduced to the computation of univariate quantities thanks
to RBIG.

We also computed T and I via the Kozachenko–Leonenko estimator [38] used in other
studies on color data [39]. However, note that this alternative estimator cannot be used to
compute the KLD.

4. Experiments and Results

Here, we studied the communication efficiency of three illustrative families of color
vision models:

• Physiological networks: Cascades of physiologically meaningful linear + nonlinear
layers:

(i) LMS sensors [21] + von Kries or Webster–Clifford adaptation [17], followed by
(ii) Jameson and Hurvich linear opponent channels [24] + pleistochrome satura-

tions [10].

• Psychophysical networks: Standard color appearance models that are made of the
same ingredients, including

(i) The classical CIE L∗a∗b∗ model [40],
(ii) The LLAB model [22,41], and
(iii) The more recent CIECAM02 [42,43].

• Statistical models: Multivariate equalization based on principal curves, SPCA, was
used to explain color vision [11,12], and this will also be considered (with or with-
out classical chromatic adaptation transforms) as a convenient statistically based
benchmark.

We used the following parameters in the above models. In the von Kries adaptation,
the corresponding white points were computed by the mean of the color samples obtained
under the different illuminations. The same was performed in the Webster–Clifford ap-
proach, which also used the sample covariance matrices for manifold alignment. The
pleistochrome saturation functions were approximated by exponential functions. All the
psychophysical networks also used the mean of the color samples for the different illumina-
tions to obtain the white points. This is the only parameter in CIE L∗a∗b∗. However, LLAB
and CIECAM02 require extra parameters. In LLAB, we took the adaptation and inductions
parameters listed in [22] for a default average surround. In CIECAM02, we also assumed an
average surround (with the corresponding consequence in adaptation, impact of surround,
and induction parameters [43]). Moreover, we took the adapting field, the background, and
the white point from the mean of the colors. Given the luminances of these mean colors, the
degree of adaptation in CIECAM02 was approximately 0.9 in the [0, 1] range. Finally, in
the statistical SPCA, we used the parameters for information maximization in color mani-
folds reported in [11], which imply relatively stiff principal curves but adaptive histogram
equalization (or generalized pleistochrome) at different points of these curves.

The physiological and psychophysical networks are implemented in Colorlab [44]
available here (https://isp.uv.es/code/visioncolor/colorlab.html, accessed on 5 October
2022) and the SPCA algorithm [11,12] is available here (https://isp.uv.es/spca.html, ac-
cessed on 5 October 2022).

4.1. Visualization of the Color Manifolds

First, we show how the color manifolds of natural scenes under the CIE D65 and
CIE A illuminations change through the layers of the considered networks. Information
measures are related to the volume and density of the data distribution [31]. As a result, the
visualization of the shape of the manifolds is important to understand the geometric effect
of the considered transforms, and hence, their impact on the measures. Specifically, Figure 2
shows the separate effect of the elements of the physiological networks (opponency and
nonlinearities of opponent channels without and with different chromatic adaptations).

https://isp.uv.es/code/visioncolor/colorlab.html
https://isp.uv.es/spca.html
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Figure 3 shows the effect of different (psychophysical) color appearance models once the
corresponding chromatic adaptation has been performed and after the nonlinear opponent
responses have been obtained. Finally, Figure 4 shows the result of the nonlinear equaliza-
tion SPCA when it is applied to nonaligned manifolds or to manifolds aligned according to
different color adaptation transforms.

Figure 2. Manifold changes through physiological networks. (Top Row): Retinal responses of LMS
cones with no adaptation (left) and with different retinal adaptation schemes (center and right).
(Center Row): Linear opponent ATD responses (recombination after the retina) with no adaptation
(left) and different adaptation schemes. (Bottom Row): Nonlinear opponent ATD responses after
dimension-wise PDF equalization (pleistochrome transform). Red and blue dots represent the samples
under the A and D65 illuminations.
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Figure 3. Manifold changes through psychophysical color appearance models. (Top): Responses of
sensors of standard models tuned to long, medium, and short wavelengths. All these representations
already include divisive adaptation schemes for manifold alignment. (Bottom): Nonlinear opponent
responses in the different color appearance models. Red and blue dots represent the samples under
the A and D65 illuminations.

Figure 4. Manifold equalization using nonlinear independent component analysis (sequential prin-
cipal curves, SPCA). (Left): Responses of the SPCA sensors from non-aligned manifolds. (Center):
SPCA responses from von Kries adapted measurements. (Right): SPCA responses from Webster–
Clifford adapted colors. Red and blue dots represent the samples under the A and D65 illuminations.

4.2. Quantification of the Information Flow

We provide indirect measures of efficiency, such as the redundancy, T, within each
layer along the networks, and the differential entropy, h, of the signal at each layer of the
networks (Tables 1 and 2, respectively). We also provide a direct measure of efficiency: the
mutual information between the noiseless input and the noisy response, I, at each layer of
the network (Table 3).
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Table 1. Intra-layer Total Correlation through the networks (in bits). Optimal systems (Equation (2))
should have T = 0 bits.

Physiol. Models No Adaptation Von Kries Webster–Clifford

Linear LMS input 5.71 ± 0.04 6.26 ± 0.02 6.29 ± 0.03
Linear ATD channels 3.23 ± 0.03 2.21 ± 0.03 2.30 ± 0.05

Pleistochrome 3.26 ± 0.04 2.22 ± 0.04 2.33 ± 0.05

Color App. Models CIE L∗a∗b∗ LLAB CIECAM

LMS nonlin. sensors 5.89 ± 0.04 5.84 ± 0.02 6.55 ± 0.03
ATD nonlin. sensors 1.04 ± 0.06 2.00 ± 0.02 1.58 ± 0.05

Statist. Model No adaptation Von Kries Webster–Clifford

Infomax SPCA 1.12 ± 0.04 0.95 ± 0.06 1.08 ± 0.04

Table 2. Differential entropy of color through the networks (in bits). Upper bound for h in the 3D
cube of size 10 is hunif = 3 log210 = 9.97 bits.

Physiol. Models No Adaptation Von Kries Webster–Clifford

Linear LMS input −4.97 ± 0.04 −4.01 ± 0.04 −4.01 ± 0.02
Linear ATD channels −1.68 ± 0.03 −0.71 ± 0.03 −0.72 ± 0.01

Pleistochrome 6.24 ± 0.04 7.64 ± 0.0.3 7.56 ± 0.02

Color App. Models CIE L∗a∗b∗ LLAB CIECAM

LMS nonlin. sensors 1.93 ± 0.04 −2.18 ± 0.02 −1.70 ± 0.03
ATD nonlin. sensors 4.61 ± 0.02 1.10 ± 0.03 2.74 ± 0.01

Statist. Model No adaptation Von Kries Webster–Clifford

Infomax SPCA 8.70 ± 0.04 8.82 ± 0.03 8.71 ± 0.03

Table 3. Transferred information (input–output mutual information, in bits). Empirical RBIG upper
bound for I is 14.1 bits (negligible noise of 0.05% deviation).

Physiol. Models No Adaptation Von Kries Webster–Clifford

Linear LMS input 5.0± 0.1 5.1± 0.1 5.2± 0.1
Linear ATD channels 7.7± 0.2 7.6± 0.2 7.6± 0.1

Pleistochrome 8.58± 0.05 8.6± 0.1 8.7± 0.1

Color App. Models CIE L∗a∗b∗ LLAB CIECAM

LMS nonlin. sensors 6.6± 0.1 5.44± 0.03 5.8± 0.1
ATD nonlin. sensors 9.8 ± 0.2 7.8± 0.2 8.8 ± 0.3

Statist. Model No adaptation Von Kries Webster–Clifford

Infomax SPCA 8.9 ± 0.2 8.7± 0.3 8.8 ± 0.3

These magnitudes were estimated from the responses of the models to test sets of
randomly chosen color samples from the IPL database shown in Figure 1. The parameters
of the models that require statistical training (namely the Webster–Clifford adaptation, the
pleistochrome nonlinearity, and SPCA) were trained over a set with 2× 106 natural color
samples. Then, 4× 104 color samples not included in the training set were transformed
using the perceptual models and the purely statistical SPCA. Ten independent estimations
of the quantities were performed using random subsets of 80% of the test set. All tables
shown were estimated using the RBIG (code in https://isp.uv.es/RBIG4IT.htm, accessed
on 5 October 2022). Additionally, entropy and mutual information were also estimated
using the Kozachenko–Leonenko procedure leading to qualitatively similar results (tables
equivalent to Tables 2 and 4, not shown).

 https://isp.uv.es/RBIG4IT.htm
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Table 4. Chromatic adaptation (KLD between the D65 and A sets, in bits). Perfect color compensation
is represented (by definition) by KLD = 0 bits.

Physiol. Models No Adaptation Von Kries Webster–Clifford

Linear LMS input 5.7 ± 0.1 0.84 ± 0.05 0.67 ± 0.06
Linear ATD channels 3.6 ± 0.3 0.83 ± 0.05 0.78 ± 0.04

Pleistochrome 3.6 ± 0.3 0.7 ± 0.1 0.82 ± 0.07

Color App. Models CIE L∗a∗b∗ LLAB CIECAM

LMS nonlin. sensors 0.54 ± 0.07 0.72 ± 0.09 0.73 ± 0.07
ATD nonlin. sensors 0.55 ± 0.07 0.72 ± 0.07 0.72 ± 0.02

Statist. Model No adaptation Von Kries Webster–Clifford

Infomax SPCA 2.2 ± 0.1 1.8 ± 0.1 1.6 ± 0.1

Finally, in Table 5, we report the KLD that measures the correspondence between the
color sets corresponding to D65 illumination and A illumination after chromatic adaptation
(or white balance).

Table 5. Gains in available information (∆I, in bits) due to different features of the models.

Retinal Adaptation Opponency Saturation

Physiol. Models 0.1 ± 0.1 2.5 ± 0.2 1.0 ± 0.2

Retinal Adaptation Opponency + Saturation

Color App. Mod. 0.9 ± 0.9 2.8 ± 0.4
Infomax SPCA 0.0 ± 0.3 3.7 ± 0.2

The tables have to be interpreted according to the following reference values:

• Total correlation in Table 1 should be interpreted in light of Equation (2) where the
transmitted information is maximized only if redundancy is completely removed:
optimal means T = 0.

• The differential entropy, h, depends on arbitrary changes of scale (or units) of the
response. It can be even negative for PDFs of small support (chapt. 17 in [31]). Thus,
for fair comparison, all h values in Table 2 were computed after linearly re-scaling
the signals to be inscribed in the same 3D cube of size S. As such, the h values do
describe how uniform the distributions are in the common support (in our case, we
chose S = 10). As a useful reference, the upper bound for h is achieved by the uniform
distribution, which is hunif = d log2S = 3 log210 = 9.97 bits.

• As stated in Section 3.2, the information shared by the noiseless input, x0, and the
negligible-noise input, x0

?, is a convenient reference because other (more noisy) layers
will share less information with x0. Assuming, as indicated in Section 3.2, that noise in
LMS with 0.05% deviation is negligible, the empirical RBIG computation of I(x0, x0

?)
on natural colors in LMS gives 14.1± 0.1 bits. The values of I in Table 3 should be
compared to that upper bound.

• In Table 4, lower divergences indicate a better match between the color compensated
sets, so the optimal value would be DKL = 0.

In all tables, the three best results are highlighted in blue.

5. Discussion

The visualization of the manifold changes through the transforms of the considered
models confirms their statistical interpretation outlined in the introduction. Adaptation
aligns the data obtained under different acquisition conditions: compare the unaligned
sets in blue and red in the plots of the left column of Figure 2 (no adaptation) with all
the other cases where both sets overlap. Linear opponent channels rotate the input LMS
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representation following the axes of the data: this rotation is particularly clear in the
transition from the first row to the second row in Figure 2, which shows rotations of the sets
consistent with the principal component analysis interpretation of opponent channels [7].
Finally, the nonlinear nature of the opponent channels equalizes the responses: note in the
bottom row of Figures 2 and 3 how the biological networks make the different dimensions
comparable in size. The nonlinearities equalize the responses as opposed to the linear
representations where the luminance has substantially bigger energy and the PDF is more
nonuniform. This is consistent with the equalization goal proposed in [10,11,45].

While data in the input representation are highly correlated due to the overlap of the
LMS sensitivities (strong alignment along the diagonal of the domain in the top row of
Figures 2 and 3), the redundancy between the responses clearly reduces at later stages.
This is quantitatively confirmed by the reduction in T along the layers of the networks in
Table 1. On the other hand, visualizations suggest that data are progressively equalized
along the networks and this is quantitatively confirmed by the progressive increase in
the differential entropy along the columns of Table 2. As a result of the progressive
independence and equalization, the amount of information about the input available at the
different representations increases along the columns of Table 3.

It is remarkable that psychophysically-tuned models such as CIE-Lab and CIECAM
have similar or better information transmission performance than an unsupervised learning
method, SPCA, specifically trained for information maximization. While the emergence of
perceptual nonlinearities, adaptation, and aftereffects from SPCA [11,12] is a confirmation
of the efficient coding hypothesis in the classical from-statistics-to-perception direction, the
quantitative efficiency of CIE color appearance models presented here is a confirmation in
the opposite direction (from-perception-to-statistics). The results presented here complement
in the purely chromatic modality previous results of this alternative approach to check
Barlow’s hypothesis [14–16].

Beyond this confirmation, our results enable the quantification of the gain in informa-
tion transference due to the specific layers of the network: retinal adaptation, transform
to opponent channels, and the saturation nonlinearities of the opponent channels. The
average results of ∆I are given in Table 5. These gains, ∆I, imply that opponency is the most
relevant feature of color vision to favor the efficient information transmission, followed by
the saturating response of the opponent channels. These processes are way more important
than chromatic adaptation. One may argue that the goal of chromatic adaptation is making
scene interpretation more robust and not merely improving the information capacity of the
visual pathway.

Note also that KLD results in Table 4 show that SPCA (designed for information
maximization) actually achieves a lower adaptation performance than the simple von Kries
or Webster–Clifford procedures in the LMS space. This, together with the small impact
of chromatic adaptation in information transmission, suggest that adaptation should be
explained by a different principle. The small effect of chromatic adaptation in information
theoretic terms was also identified in a previous analysis of biological spatio-chromatic
vision models [16]: von Kries did not reduce redundancy and the chromatically adapted
domain with the same amount of noise shared less information with the original signal than
the linear LMS space. In that study [16], the benefits of chromatic adaptation in information
transmission were only apparent, if any, after the consideration of spatial transforms.

The communication efficiency analysis performed herein following the perception-to-
statistics logic is different from the work of Foster et al., which was also concerned about the
use of accurate information-theoretic measures in color vision [18]. Note that their work is
mainly focused on determining the number of discriminable colors/surfaces under different
illumination conditions [46–48], which is related to the amount of color information in
a scene that can be extracted from color measurements under other illumination [18,39].
These problems are related to entropy and mutual-information measures, but they do not
quantify the information transference through the visual pathway (mutual information
between layers and redundancy within layers). As an example, in [47,49], the redundancy is
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only considered because of its impact on the available information in the color compensation
context, not as a measure of information transmission of the visual system.

In more general scenarios (where perception is complemented with action), it has been
suggested that information flow is not solely a function of the scenes to be encoded, but it
can be maximized through active interaction between the system and the environment [50],
e.g., through saccades, foveation, or adaptive saliency. This (more general) perception–
action loop is beyond the scope of our work which is restricted to bottom–up feed-forward
networks. However, from the technical point of view, the estimation of information-
theoretic quantities using Gaussianization can relax the severe quantization and Gaussian
assumptions that had to be used in [50]. Similarly, following [51], where estimations
based on Gaussianization were used to quantify connectivity between nodes in neural
networks, RBIG could be used to measure normalized mutual information which is the
core of successful methods to identify actual relations in noisy networks [52].

6. Conclusions

The results show that biological architectures that mediate color vision are quite effi-
cient in information theoretic terms: they reduce approximately 75% of the redundancy
present at the input linear responses (Table 1 shows that the redundancy of the raw signal
(input linear LMS) is 5.71 bits while the redundancy in the inner representation of psy-
chophysical models is in the range of [1,2] bits, which represents reductions of [65,82]%
of the redundancy present in the input). As a result, while noisy sensors at the input
representation would only retain approximately 35% of the chromatic information (Table 2
shows that LMS sensors with noise of 5% deviation would retain 5.0 bits compared to the
ideal 14.1 bits assuming negligible noise of 0.05% deviation), sensors with the same amount
of noise at the inner representations retain approximately 65% of the information. The
inner representation of the psychophysical models with 5% noise shown in Table 2 retain
approximately [7.8, 9.8] bits from the input. This is approximately 65% of the maximum
available information, 14.1 bits). The results of biological networks (not explicitly optimized
for statistical goals) are on par with those of non-linear equalization methods. In terms of
communication efficiency, the most relevant transform in color vision is the consideration
of opponent channels followed by the nonlinear response of the opponent channels. On
the contrary, the impact of adaptation to improve the transmission is almost negligible (see
Table 5). The small impact of chromatic adaptation in information transmission is consistent
with the previous analysis of the von Kries transform in more general (spatio-chromatic)
vision models [16].

From the theoretical neuroscience perspective, these results confirm the Efficient Coding
Hypothesis for human color vision in the perception-to-statistics direction: statistically agnostic
color vision models such CIE L∗a∗b∗ and CIECAM02 (only based on psychophysics)
are remarkably efficient in transmitting natural colors. Moreover, for the data science
community, these results rank the relevance of color vision features in terms of their impact
in optimal color information transmission: linear decorrelation and nonlinear equalization
are more important than manifold alignment (or white balance).
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