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Abstract: To address the difficulty of extracting the features of composite-fault signals under a low
signal-to-noise ratio and complex noise conditions, a feature-extraction method based on phase-space
reconstruction and maximum correlation Re’nyi entropy deconvolution is proposed. Using the Re’nyi
entropy as the performance index, which allows for a favorable trade-off between sporadic noise
stability and fault sensitivity, the noise-suppression and decomposition characteristics of singular-
value decomposition are fully utilized and integrated into the feature extraction of composite-fault
signals by the maximum correlation Re’nyi entropy deconvolution. Verification based on simulation,
experimental data, and a bench test proves that the proposed method is superior to the existing
methods regarding the extraction of composite-fault signal features.
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1. Introduction

As a core component ensuring the safety of aircraft flight, aeroengines have a complex
structure and need to operate continuously for a prolonged time under extremely severe
conditions such as high temperature, high pressure, high speed, high strength, and variable
load. The failure of rolling bearings, as a common component of aeroengines, seriously
affects the aircraft flight safety. Hence, the early fault diagnosis of key aeroengine com-
ponents is of great significance to ensuring flight safety and lowering economic and life
losses [1].

Given the tight arrangement and complex structure of aeroengines, it is difficult to
arrange vibration-monitoring sensors at the proximal end of the core components. As a
result, the dynamic response of the core component failure will be subjected to the modula-
tion of complex transfer paths, as well as the impact of other excitations [2,3]. Moreover,
the early bearing fault may appear as a composite fault with multiple coexisting faults.
Due to the coupling and interference among different faults and between faults and other
excitations, the identification and separation of fault-signal features are hardly achievable,
which produces huge challenges regarding the fault diagnosis of aircraft bearings [4].

To separate and extract the composite bearing fault features under complex excitations,
it is necessary to deal with three aspects, namely, the selection of the sensitive feature norm,
the suppression method of noise and other excitations, and the separation and decoupling
method of composite noise, in order to attain a preferable performance.

Kurtosis (Sk), as a sensitive feature capable of detecting instantaneous impacts, has
received extensive attention in the fault-diagnosis field in recent years. Its successful
application has been seen in the diagnosis of wind-turbine gear faults [5]; the vibration
source identification for offshore wind turbines [6]; and the detection of gearbox composite
faults [7], planetary gearbox faults [8], and rolling bearing faults [9], achieving a good effect.
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Antoni [10] elaborated on the relevant theory of Sk and formally gave its mathematical
definition, i.e., the energy-normalized fourth-order spectral cumulant. Later, in 2007, a fast
kurtogram (Fk) method based on short-time Fourier transform or finite impulse-response
bandpass filter was proposed capable of adaptively obtaining the appropriate filter center
frequency and bandwidth and effectively extracting the fault features. This method has
greatly promoted the Sk application in the fault-diagnosis field. Subsequently, Lee [11]
introduced a weighted kurtogram approach, whereas Wang [12] adaptively determined
the filter bandwidth and center frequency by maximizing the filtered signal Sk through
the incorporation of a right-expanding window. Although the above methods have all
improved the Fk method to varying degrees and enhanced the fault-signal monitoring
ability, all of them have encountered an unavoidable problem in practical use. That is, the
primary function of Sk is to find instantaneous impacts. Thus, they are excessively sensitive
to random impulses. Moreover, the inevitable sporadic strong impulse signals in actual
production will greatly interfere with the ability of Sk to distinguish the real fault signals,
which will even lead to the filtering failure [13]. In recent years, as an extended form of
Shannon entropy, Re’nyi entropy (Re), has been widely used in the estimation of signal
information content [14]. Boškosk and Juričić [15] proposed a new method to diagnose
gearbox faults, using Re’nyi entropy as the characteristic index. Subsequently, it is also
widely used in the fault diagnosis of bearings [16,17].

Given the structural peculiarity of the rotating machinery and bearings, the bearing
signals are generated essentially by some periodic or cyclic mechanisms, so the dynamic
response of bearings has cyclostationary features, and their fault signals exhibit typical
repetitive transient characteristics [18]. Deconvolution is effective at eliminating the in-
fluence of complex transfer paths and enhancing the impact vibration characteristics of
periodic faults. At its core, this method designs a finite impulse-response (FIR) filter with
the aim of maximizing the value of the post-filtering signal sensitive characteristic index.
For example, the minimum entropy deconvolution (MED) proposed by Wiggins [19], which
finds the optimal filter based on the filtering result Sk, enables the iterative extraction of
the impact signals from the test signals with unknown transfer paths. With advantages
such as requiring less parameter adjustment and possessing fast convergence, MED has
been widely applied in the field of mechanical fault-diagnosis [20,21]. However, since MED
aims at Sk maximization in the iterative process, the iterations are more inclined to extract
unit-impulse signals with larger values, which often fall into the local optimal solution.
In 1984, Cabrelli [22] proposed the optimal minimum entropy deconvolution (OMED)
and proved that it was an accurate global optimal solution. To improve the sensitivity of
the MED technique to periodic impulse signals, McDonald [23] proposed the maximum
correlated kurtosis deconvolution (MCKD) in 2012, with which the problem of periodic
impulse deconvolution is solved. On the downside, MCKD requires the presence of priori
knowledge about the fault cycle, which easily falls into the local optimal solution and is
susceptible to strong noise interference. Later, McDonald put forward the multipoint opti-
mal minimum entropy deconvolution adjusut (MOMEDA) in 2017, which eliminated the
discontinuity problem between input signals and addressed some problems with OMED
and MCKD, achieving preferable effects. However, all of the aforementioned deconvolution
methods are considered for single-fault conditions, which are ineffective in the case of
impulse signals with different periods caused by composite faults.

Phase-space reconstruction (PSR) is suitable for typical nonlinear and nonstationary
mechanical impulse faults, which reflect the dynamic characteristics of the system under
various fault states in a high-dimensional space. Despite receiving extensive attention from
scholars in the industry [2], the use of sequential deconvolution methods of phase-space
reconstruction for fault diagnosis is problematic since the sequential use of multiple methods
inevitably produces signal distortion. Moreover, the use of more sequential methods indicates
higher unpredictability of inter-method coupling. Singular-value decomposition (SVD), as
a phase-space reconstruction algorithm with zero-phase and -time shifts, has been widely
applied in extracting features of early weak-fault signals [24]. Zhao [25] discussed the similarity
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between SVD and the wavelet decomposition in signal processing, believing that SVD has the
noise-suppression characteristics, as well as decomposition and extraction characteristics.

On the basis of the above literature analysis, because the kurtosis is too sensitive to
the occasional pulse signal, it affects the accuracy of fault identification. A new method
is proposed that integrates the phase-space reconstruction technique into the maximum
correlation Re’nyi entropy deconvolution; in this method, the Re’nyi entropy, which can
better balance the sensitivity of fault and the stability of accidental noise, is chosen as the
performance index, the maximum correlation Re’nyi entropy is taken as the optimization
objective, and deconvolution is chosen as the optimization method, in order to solve the
problem of the low signal-to-noise ratio (SNR) and the composite-fault recognition rate,
while the phase-space reconstruction technique is combined with Re’nyi entropy.

The rest of the paper is organized as follows. In Section 2, the concept and process
of Re’nyi entropy, the maximum correlation Re’nyi entropy, the maximum correlation
Re’nyi entropy deconvolution, and the phase-space reconstruction are introduced. In the
third part, the method of phase-space reconstruction combined with maximum correlation
Re’nyi entropy deconvolution is introduced. In Sections 3 and 4, the algorithm is compared
with the existing algorithms by using simulation, experimental data, and the bench test.
The final conclusions are provided in Section 5.

2. Materials and Methods
2.1. Re’nyi Entropy (Re)

It is assumed that the incomplete probability set of a random event X is p = {p1, p2, . . . , pn}, and
its overall probability sum is ω(p) := ∑i pi ≤ 1. Then, the generalized Re parameterized
by order a can be defined as

HR
α (p) =

1
1− α

log2
∑i pα

i
∑i pi

α > 0, α 6= 1 (1)

The parameter α in Rényi entropy can be used to make it more or less sensitive to
particular segments of the probability distributions. The exponent α helps to provide
flexibility by highlighting the values closer to the edges of the probability distribution [26].
The definition of generalized Re is introduced into the actual vibration detection, and the
number set x = {x1, x2, . . . , xN} is assumed as the discrete observation of the actual vibra-
tion process. Let there be a non-negative number set ξ = {ξ1, ξ2, . . . , ξn}; x corresponds

to {ξi} in a one-to-one manner and satisfies 0 ≤ ξi ≤ 1 and
N
∑

i=1
ξi ≤ 1. According to the

definition of generalized Re, the set {ξi} can be regarded as the probability distribution
function of random variable x(t), and ξi is the probability of the instantaneous amplitude
xi for x(t). In actual production, normal bearings often produce Gaussian vibration charac-
teristics. In the presence of a fault, the vibrations collected from defective bearings exhibit
a non-Gaussian distribution due to the fault-excited relative increase in the number of
large-amplitude components. Moreover, the energy of the periodic impulse signal and the
level of defect-induced excitation will increase with the defect development, ultimately
resulting in the change of HR

α value. Hence, Re is able to monitor the bearing-health status.
To ensure the non-negativity of ξi, its value can be derived from the following formula:

(ξi)r = f (xi) =
yi

∑i yi
, yi =

{
|xi − µ|, r = av
(xi − µ)2, r = sv

(2)

where µ denotes the mean value of {xi} and the subscript r represents the conversion
method. Obviously, Formula (2) satisfies two basic conditions of generalized Re: 0< ξi < 1
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and ∑i(ξi)r ≡ 1. By assuming µ = 0 without a loss of generality, the generalized Re of order
α can be obtained as

(Hα)r =
1

1− α
log2

(1/N)∑N
i=1 yα

i(
(1/N)∑N

i=1 yi

)α + log2 N, α > 0, α 6= 1 (3)

We can let

GMα
r =

(1/N)∑N
i=1 yα

i(
(1/N)∑N

i=1 yi

)α =


(1/N)∑N

i=1|xi |α

((1/N)∑N
i=1|xi |)

α , r = av, α > 0,

(1/N)∑N
i=1(x2

i )
α

((1/N)∑N
i=1 x2

i )
α , r = sv, α > 0

(4)

It is clear from Formulas (3) and (4) that when measuring the amplitude distribution
of {xi}, GMα

r is equivalent to (Hα)r and is the kernel function of (Hα)r. The two cases of
Formula (4) can be written as a unified expression as

Mn =
(1/N)∑N

i=1 xn
i(√

(1/N)∑N
i=1 x2

i

)n =
(1/N)∑N

i=1 xn
i

σn (5)

As is clear from Formula (5), GMα
r can be regarded as the generalization of Re. Obvi-

ously, by choosing different r and α values, various statistical parameters can be derived
from GMα

r . When r = av, a = 3, r = sv, a = 3/2, and a = 2, the following three statistical
indicators can be derived separately:

GM3
av =

(1/N)∑N
i=1|xi |3

((1/N)∑N
i=1|xi |)

3 = Re, r = av, a = 3

GM3/2
sv =

(1/N)∑N
i=1((x2

i ))
3/2

((1/N)∑N
i=1(x2

i ))
3/2 =

(1/N)∑N
i=1|xi |3

σ3 = Sr r = sv, a = 3/2

GM2
sv =

(1/N)∑N
i=1((x2

i ))

((1/N)∑N
i=1(x2

i ))
2 =

(1/N)∑N
i=1 x4

i
σ4 = Sk r = sv, a = 2

(6)

According to Formula (6), GM2
sv is equivalent to Sk and GM3/2

sv is equivalent to the
third-order moment Skewness (Sr). Thus, GM3

av has become a new statistical indicator Re,
i.e., the narrow-sense Re proposed herein. This means that Re has a similar mathematical
expression to Sk and Sr. Therefore, Re, Sr, and Sk can be considered as different expressions
derived from the generalized Re, all of which can be explained by generalized Re theory.

Suppose the fault at the inner ring of rolling bearing is

x(t) =
M

∑
j

aje−gγ(t)cos[ω0

√
1− g2

(
γ(t)− τj

)
where aj is the magnitude of the Jth fault shock, g denotes the attenuation coefficient of
the bearing, M is the number of excitation of the bearing shock, γ(t) is the pseudo-cycle
time, T denotes the period of the bearing fault shock, τj stands for the time delay due
to relative slip, and fe stands for the fault characteristic frequency. The values of the
simulation parameters are shown in Table 1.

Table 1. Simulation-signal parameters.

f0/Hz aj M g fe/Hz τj

50 0.7 1 0.7 10 2%T

Figure 1 depicts the variations of Sk, Sr, and Re with the fault defect at the inner
ring of the rolling bearing. To facilitate understanding and display, the defect evolution
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is converted into the SNR change. According to Figure 1, Sr is insensitive to the defect
size, while Re and Sk share similar variation trends. Thus, clearly, Re and Sk are highly
sensitive to the alterations of fault defects, which can rather accurately indicate the bearing
faults. Since this phenomenon may present similar variation trends for the outer ring and
the rolling element faults, it is not described in detail here.
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Figure 1. Sk, Sr, Re schematic diagram of the variation with defects.

Figure 2 depicts the variations of three performance indicators —Sk, Sr, and Re—with
the sporadic impulse-response. Data on the figure demonstrates that Sr has excellent
robustness to the sporadic impulse-response, whereas Sk is highly sensitive to the sporadic
impulse-response. The Sk value increases by over three-fold upon sporadic interference,
indicating that the aero-engine produces a greater impact on Sk when it has sporadic
impulses. Re is somewhat sensitive to sporadic impulses, although the overall variation is
not large. As suggested by Figures 1 and 2, Re has a preferable ability to trade off between
the bearing defects and the sporadic impulse sensitivity.
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2.2. Correlation Re’nyi Entropy (CRe)

Statistical properties of rotating components such as bearings, gears, shafts, and
propellers change periodically over time. Thus, the signals generated by such components
are called cyclostationary signals. Conventional signal processing can extend and exploit
this feature. A signal can be nth-order cyclostationary when its nth-order statistic is
periodic [27]. To exploit the cyclostationarity of rotating components, this study defines the
correlation Re’nyi entropy (CRe) deconvolution on the basis of Re, with a view to extracting
periodic impulse signals. The first-order CRe and Mth-order CRe are defined separately.

CRe1(T) = ∑N
n=1(ynyn−T)

3
2(

∑N
n=1 yn

)3 (7)

CReM(T) =
∑N

n=l

(
∏M

m=0 yn−mT

) 3
2(

∑N
n=1 yn

)M+2 (8)
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Noise signal, sporadic impulse + noise signal, cosine signal + noise signal, and periodic
impulse + noise signal (Figure 3) are defined to analyze Sk, Re, CSk1, and CRe1. Since
Gaussian noise signals are stable for the same higher-order statistics, the normalized
sensitivity ρij is defined to explain the sensitivity of the aforementioned indicators to
typical signals.
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with noise, and (d) periodic pulse with noise.

ρij =
pij
p0j

i = [0, 1, 2, 3] = [a, b, c, d]; j = [0, 1, 2, 3] =
[
Sk, Re, CSk1, CRe1] (9)

It is clear from Figure 4 that Sk has high sensitivity to both sporadic and periodic
impulse signals and is easily affected by sporadic noise. CSk [20] and CRe have good
robustness to both harmonic and sporadic impulse signals, and they are highly sensitive
to periodic impulse signals, which can thus distinguish the periodic impulse signals. A
horizontal comparison reveals that CRe has better sensitivity to CSk under the periodic
impulse condition.
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2.3. Maximum Correlation Re’nyi Entropy Deconvolution (MCReD)

Given the complex and compact interior of aeroengines, the vibration sensors cannot be
arranged near the faulty bearings since the fault signals are easily affected by strong noise and
intricate transmission paths. Thus, the dynamic response of faulty bearings can be regarded
as the linear convolution of vibration signal and channel. The deconvolution method can
effectively eliminate the influence of intricate transmission paths and enhance the fault-impact
vibration characteristics. In this study, a novel MCReD-based method is proposed to overcome
the limitations of heavily Gaussian and non-Gaussian background noises.
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An actual fault signal of the aeroengine bearing will contain multiple components,
which can be expressed as

x(t) = hd ∗ d + hu ∗ u + he ∗ e

x =


x1
x2
...

xN

, d =


d1
d2
...

dN

, u =


u1
u2
...

uN

, e =


e1
e2
...

eN

 (10)

where x stands for the vibration signal acquired by remote vibration sensor; d stands for
the impulse signal generated by a faulty aero-engine bearing; u represents the interference
signal generated by the other aero-engine components; e refers to the background noise;
and hd, hu, and he, respectively, stand for the transfer functions corresponding to different
inputs.

The core idea of the MCReD algorithm is to find the global optimal FIR filter
→
f by

the deconvolution operation on the basis of eliminating the background noise and other
interfering elements to the maximum extent, in order to highlight the pulse sequence in the
fault signal, it can be expressed mathematically as:

→
y =

→
f ∗
(→

hu ∗
→
u
)
+
→
f ∗
(→

hd ∗
→
d
)
+
→
f ∗
(→

he ∗
→
e
)

St.
→
f ∗
(→

hu ∗
→
u
)
→ 0 where

→
f = [ f1 f2 . . . fL]

T

→
f ∗
(→

hd ∗
→
d
)
+
→
f ∗
(→

he ∗
→
e
)
→ 0

(11)

From Formula (7) and the discrete signal convolution formula, the following can
be deduced:

yn = ∑L
k=1 fkxm, m = n− k + 1 (12)

Without a loss of generality, the relevant conclusion can be illustrated by the Formula (7)
for first-order Cre (M = 1). The optimal filter can be obtained by the following formula:

max→
f CRe1(T) =

max→
f

∑N
n=1(ynyn−T)

3
2(

∑N
n=1 yn

)3 ,
→
f = [ f1 f2 . . . fL]

T (13)

To solve the filter coefficient of maximum CRe, Formula (13) can be solved and ex-
pressed as

d
d fk

CRe1(T) = 0, k = 1, 2, 3, . . . L (14)

Calculating the derivative CRe1N of Formula (14)’s denominator and substituting the
d

d fk
yn = xm, m = n− k + 1 yield:

d
d fk

CRe1N = 3
2

1
∑

m=0
XmT

→
a

where Xi = [x1+i−r, x2+i−r, . . . , xN+i−r]
T , Xr = [X1, X2, . . . , XL]

→
a =


y−1

1−mT(y1y1−T . . . y1−MT)
3
2

y−1
2−mT(y2y2−T . . . y2−MT)

3
2

...

y−1
N−mT(ynyn−T . . . yn−MT)

3
2


(15)
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Similarly, calculating the derivative d
d fk

CS1D of numerator yields

d
d fk

CRe1D = 3

(
N

∑
n=1

yn

)2

xm (16)

By synthesizing Formulas (14) and (15), the following can be obtained according to
Formula (13)

d
d fk

CRe1(T) = 3
(

∑N
n=1 yn

)2
CRe1N − 6‖

→
b ‖

3
∑N

n=1 yn(xm)

where :
→
b =


y1y1−T . . . y1−MT

y2y2−T . . . y1−MT
...

y N
yN−T . . . yN−MT



T

(17)

Additionally, since
→
y = XT

0

→
f

the arrangement yields (
∑N

n=1 yn

)2
∑1

m=0 XmT
→
a = 2‖b‖3X0

→
y (18)

If
(
XTXT

0
)−1 exists, the solution formula for first-order CRe1 can be obtained as

→
f =

(
∑N

n=1 yn

)2

2‖
→
b ‖

3

(
X0XT

0

)−1
∑1

m=0 XmT
→
a (19)

This formula can be generalized to the Mth-order as:

→
f =

(
∑N

n=1 yn

)2

2‖
→
b ‖

3

(
X0XT

0

)−1
∑M

m=0 XmT
→
a (20)

2.4. Phase-Space Reconstruction(PSR)

MCReD can enhance the periodic impulse signals and eliminate the negative effects
of transfer function and sporadic impulse-response. However, similar to the case of the
MCKD method, its ability to extract composite faults with different periods is unsatisfactory
at low SNR.

PSR, as a time-series analysis technique, recovers important system-component in-
formation from the high-dimensional space that is extended from a one-dimensional time
series. The phase-space trajectory matrix Xr composed of original signals is a Hankel
matrix, which can be reconstructed by selecting the components of fault information based
on the noise-suppression and decomposition characteristics of SVD.

For a phase-space trajectory matrix Xr∈RL×N , regardless of whether its rows and
columns are correlated or not, there must be orthogonal matrices U = u1, u2 . . . un ∈ RL×N

and V = v1, v2 . . . vn ∈ RL×N , so that

Xr = USVT =
i=L

∑
i=1

δiuivi =
i=L

∑
i=1

Ai (21)
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is established. In the formula, the diagonal matrix is S = diag[δ1, δ2 . . . δm], where δ1 ≥ δ2 ≥
. . . ≥ δm > 0. Formula (20) is called the SVD of x(t). The main diagonal element of S is the
singular value of the matrix Xr. Ai is defined as the subspace of matrix X, and the signal x′

i
(l)

reconstructed by the anti-diagonal method is defined as the sub-signal discretization.
In PSR, different subspaces can be selected for reconstruction to represent different

signal characteristics. After the selection of sub-spaces, signals can be reconstructed to
obtain a reconstructed phase-space that can represent the signal characteristics.

Xc
r= ∑i∈P σiuivi (22)

where P stands for the sub-signal screening
Substituting the reconstruction matrix into Formula (19) yields

→
f =

(
∑N

n=1 yn

)2

2‖
→
b ‖

3

[
Xc

0(X
c
0)

T
]−1

∑M
m=0 Xc

mT
→
a (23)

After the integration of the PSR, substantial priori knowledge required by MCReD
will no longer be important. The rather important filter length L and period T in MCKD, for
instance, only require suitable value-taking in PSR-MCReD due to the noise-suppression,
decomposition, and extraction characteristics of PSR, where no accurate fault eigenperiod
is needed. Thus, PSR-MCReD also has a certain blind-solution property.

2.5. Determination of Screening Space

With the PSR algorithm, screening of the subspace containing more fault information
for reconstruction is critical. Using the sub-signal Re as the performance indicator, this
study carries out reconstruction by selecting the subspace that contains subsignal mapping
with a maximum Re value.

1. Phase-space trajectory matrix Xr is subjected to SVD.
2. Ai values of various orders are derived separately, and the anti-diagonal method is

used to reconstruct the sub-signals x′
i
(l) of various orders for Ai.

3. Rei = Re
(

x′
i
(l)
)

is calculated and arranged in descending order as [Rei1, Rei2, . . . , Reij],

Rei1 ≥ Rei2 ≥ . . . ≥ Reij > 0.
4. By adopting the difference method Dj−1 = Reij − Reij−1 and solving max(Dj−1), the

number of elements in the P space is determined to be j − 1.
5. Screening space P is obtained based on the i mapped by Seij.

3. PSR–MCReD-Based Fault-Diagnosis Method

In the phase-space reconstruction, the key of the phase-space reconstruction algorithm
is to filter the subspace that contains more fault information. In this paper, the Re’nyi
entropy of the subsignal is taken as the performance index, and the subspace containing
the maximum Re’nyi entropy subsignal mapping is selected for reconstruction. The specific
flowchart is shown in Figure 5.

1. Fault signal is input.
2. Xc

r is calculated according to the screening space selection method for PSR.
3. Filter length is assumed as L, and to prevent the filter from falling into local optimal

solution, the initial filter is assumed to be
→
f = [0 0 . . . 1 1 . . . 0 0]T.

4.
→
y = XT

0a

→
f , the filtered signal

→
y is calculated.

5.
→
a and

→
b are calculated according to Formula (14).

6. Filter
→
f is updated according to Formula (19).
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7. If ∇ d
d fk

CSM(T) > ε is determined to be true, step 4 is returned to; if false, the process
is ended. To avoid the iteration falling into an infinite loop, the ε in the formula is
chosen as a tiny positive number.

8. Final filter order result is calculated by formula
→
y = XT

0a

→
f .

9. Envelope spectrum analysis is performed, and fault information is obtained.
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4. Results
4.1. Simulation Analysis

Suppose that the faulty bearing has both inner and outer ring faults and is disturbed
by signals such as random impacts, discrete harmonics, and Gaussian white noise.

x(t) = x1(t) + µx2(t) + x3(t) + x4(t) + n(t)
x1(t) = ∑+∞

−∞ A(KT1)e−ε(t−KT1))sin[2π fs(t− KT1 + ϕk1)]

x2(t) = ∑+∞
−∞ e−ε(t−KT2−

T2
2 ))sin

[
2π fs

(
t− KT2 −− T2

2 + ϕk2

)]
x3(t) = ∑M1

i=1 Die−ε(t−iTr))sin[2π fs(t− iTr + ϕk3)]

x4(t) = ∑M2
j=1 pjsin

(
2π f4jt− ϕk4

)
x1(t) denotes the dynamic response of bearing with the inner ring fault, x2(t) denotes

the dynamic response of bearing with the outer ring fault, x3(t) represents the external ran-
dom impact interference during the measurement, x4(t) stands for the discrete harmonics
from shafts or other components received by the remote sensors, and n(t) represents the
Gaussian white noise with SNR= −8. Table 2 details the specific parameter selection.



Entropy 2022, 24, 1459 11 of 18

Table 2. Simulation-signal parameters.

Parameter Implication Value Parameter Implication Value

fs Sampling frequency 12,000 Hz Di Amplitude of shock Random variable
fi Inner ring 213 Hz T3 Random impact time Random variable
fo Outer ring 143 Hz pj Harmonic amplitude p1= 0.03; p2 = 0.04
fr Rotating frequency 2000 Hz f4j Harmonic frequency f41 = 45.2; f42 = 56.7
µ Ratio coefficient 0.3 ϕki Initial phase Random [−π,π]

Figure 6 displays the time domain waveforms of various component signals.
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Figure 6. Component signal time domain waveform of (a) inner fault x1(t) time domain waveform,
(b) outer fault x2(t) time domain waveform, (c) outer fault x2(t) time domain waveform, and
(d) random pulse x3(t) time domain waveform.

To evaluate the performance, this section compares the proposed FSR-MCReD method
with the MCKD and FK methods [26] using simulation-signals, where the MCKD and
FSR-MCReD filter lengths are L= 100, and the number of iterations is set at 30.

It is clear from Figure 7 that under complex operating conditions, the Sk value of
random impulses is often larger than the periodic impulse sequence of signals, so that the
filter fails to perform filtering in the frequency bands selected by the FK method, leading
to the failure of fault identification. According to Figure 8, the filtering effect with the
MCKD method is greatly compromised under the composite-fault condition, where the
effective fault identification is hardly achievable. Figure 9a displays the differential Re
result of PSR signals by the FSR-MCReD method when M = 1. As is clear, the differential
Re values for two cycles are similar, with the maximum values both being 2. According
to Figure 9b, since FSR-MCReD adopts the Re as the optimization condition, which is
more robust to periodic simple harmonics and sporadic impulses, the decomposition and
noise-suppression characteristics of PSR are fully exploited and integrated into the MCReD
calculation, thereby enabling the preferable identification of composite faults.
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4.2. Aeroengine Fault-Diagnosis

Bearings are the core components of aeroengines. Since the aeroengines are often
tightly arranged, the vibration sensors can hardly be installed at the proximal end, which
causes great difficulties in the feature-extraction of fault signals. Aeroengine vibration
data were acquired from an accessory gearbox (Safran, France) [28]. Figure 10 displays
the structural schematic of the aeroengine and the locations of sensors. At the L5 shaft
location, outer ring spalling damage and retainer failure were present for the rolling bearing
structure. Vibration sensors were arranged near the L1 and L5 shafts of the gearbox, while
the rotational speed sensors were arranged on the L4 shaft. Measured data of vibration
sensor 2 was selected for analysis, and the rotational speed and fault eigenfrequency were
calculated according to the L4 shaft speed, the numbers of teeth on L4 and L5 shafts, and
the bearing parameters of L5 rolling bearing (Table 3). Through comparison with the FK
and FSC [29] algorithms, the ability of FSR-MCReD to extract features of aeroengine fault
signals was verified.
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Figure 11 displays the envelope spectrum analysis results with the FK algorithm. As
is clear, the FK algorithm has a good filtering effect. However, filtering errors are caused
due to excessive and complex external noise, making it difficult to distinguish the fault
features of the outer ring signals. Figure 12 presents the analysis results with the FSC
algorithm. Clearly, the FSC algorithm has a good enhancement effect on the periodic
signals. However, since it has no filtering effect, the fault features of outer ring signals
are covered in substantial irrelevant signal features, making it difficult to diagnose faults
accurately. Figure 13 displays the envelope analysis results with the FSR-MCReD. As is
clear, after integration of PSR into the MCReD algorithm, both the signal filtering and
decomposition effects are improved, thus enabling accurate fault-diagnosis.
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4.3. Validation of Composite-Fault Experimental Data

The accelerated life cycle test data of bearings provided by Professor Lei’s team
from Xi’an Jiaotong University [30] enriches the experimental data on the fault-diagnosis
and performance-degradation research. Under the experimental conditions of composite
outer and inner ring faults, this study used the experimental data collected at t = 20 min,
which were not clearly characterized by the CMS index, to theoretically calculate the fault
frequency fi = 171 Hz, fo = 109 Hz. Further, a comparative analysis was made against
the deconvolution algorithms OMEDA and MOMEDA [2], in order to demonstrate the
advantages of our proposed algorithm in solving composite faults.
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Figure 14 presents the envelope spectrum analysis results with the OMED, the MO-
MEDA, and our FSR-MCRD methods. As demonstrated by the results, both OMED and
MOMEDA can preferably analyze the outer ring faults having obvious failures, with the
MOMEDA exhibiting a better filtering effect since it addresses the local optimal solution
problem in the OMED method. The common defect of the two, however, is that the inner
ring faults are not displayed preferably. The method proposed herein, on the other hand,
allows for better extraction of the fault signals in composite faults due to the incorporation
of FSR’s noise-suppression and decomposition characteristics into the MCRD method.
Thus, it has better diagnostic ability for composite faults.
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4.4. Experimental Verification

Regarding the experimental setup, the rotating machinery fault test bench from Spectra
Quest, the acceleration sensor from Yangzhou Kedong, the displacement sensor from
Bently, and the LMS data acquisition system were adopted. The rotational speed was set
at 2700 rpm, and the faulty bearing model was MB ER-12 K. Composite-fault bearings
with a ball fault, an inner ring fault, and an outer ring fault were set up separately. The
rotational speed was kept constant at 2700 rpm, and the vibration signals of acceleration
sensors were collected by the LMS SCADAS mobile data acquisition system at a sampling
frequency of 25.6 kHz. Table 4 details the eigenfrequency calculations of various faults,
whereas Figure 15 depicts the experimental panorama. MCKD, OMED, MOMOEDA, and
FSR-MCRD were separately used for comparison.
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Table 4. Characteristic frequency of bearings.

Rotating Frequency: fr Rolling Element: fb Outer Ring: fo Inner Ring: fi Cage: ft

45 89.6 137 222.7 17.01
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Figure 16 displays the envelope spectrum analysis results with the aforementioned four
methods. As is clear, the MCKD method has a good effect on signal feature-extraction under
single-fault conditions, which, however, easily falls into a local optimum. Thus, it hardly
achieves feature extraction or enhancement for other coexisting periodic impulse signals.
The non-iterative method OMED exhibits the worst effect of fault feature-extraction, which
can hardly diagnose faults. In the case of MOEDA, the results of fault feature-extraction are
incomplete since it is an improved version of OMED, which does not consider the condition
of multiple fault coexistence. With the FSR-MCReD method, the simultaneous existence of
multiple faults is considered, and Re, which has good stability for both sporadic impulses
and harmonics, is used as the performance index. Moreover, PSR is integrated for per-
forming deconvolution, so that the subspace signals containing more fault information are
extracted, thus preferably achieving the feature extraction under composite-fault condition.
However, it is noteworthy that the second- and third-order inner ring fault features are lost
during feature extraction since part of the subspace is truncated in PSR.
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5. Conclusions

This paper indicatively introduces the Re’nyi entropy, which can better balance the
fault sensitivity and the stability of the accidental pulse signal, into the fault diagnosis of
an aero-engine. The signal transmission noise and accidental noise are solved by MCReD.
In order to better decouple the complex fault signals and improve the extraction ability of
MCReD under low SNR conditions, the PSR technique is integrated into the MCReD, not a
simple combination. The proposed method has achieved good results in simulation and
experimental verification.

1. In this study, a novel method for extracting the fault-signal features of aeroengine
core components based on maximum CRe deconvolution integrating PSR is proposed.
Through simulation analysis, experimental data, and a bench test, the advantages of
the proposed method over the existing signal feature-extraction methods are verified
regarding the extraction of complex fault-signal features under low SNR and complex
noise interference.

2. The mathematical formulas for Sk, Sr, and the narrow-sense Re proposed in this study
are deduced based on the generalized Re. The three performance indicators can all
be regarded as different expressions for generalized Re. As revealed by a simulation
experiment on the correlations of the three with fault sensitivity and sporadic noise
stability, both Re and Sk are highly sensitive to the faults, and Re is more stable to
sporadic noise.

3. Inspired by CK, a definition of CRe is given, which has a better suppression effect
on the sporadic and harmonic noises. By deriving the solution formula of MCReD, a
non-iterative method for solving the MCReD of the optimal filter is proposed.

4. For the impulse signals with different periods under composite-fault conditions, a
maximum Re-based subspace-filtering method is proposed by integrating the PSR
technique into the MCReD calculation, which utilizes the noise-suppression and
decomposition characteristics of SVD.

5. Through simulation, experimental data validation, and bench test verification, the
method proposed herein is proven to be fairly effective at extracting composite-fault
signal features under low SNR and complex noise conditions.

In this paper, firstly, the maximum correlation Re’nyi entropy deconvolution algo-
rithm is similar to the maximum correlation kurtosis deconvolution algorithm, which is
dependent on prior knowledge. Secondly, the theoretical derivation of the decoupling
characteristics of the phase-space technology needs to be improved, and the selection
method of the screening space of the singular-value decomposition needs to be further
optimized. Finally, some experiments on the application of PSR-MCReD are carried out,
and more experiments need to be completed in the future work.
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Nomenclature

Abbreviation Implication
Sk Kurtosis
Fk Fast kurtogram
FIR Finite impulse response
MED Minimum entropy deconvolution
OMED Optimal minimum entropy deconvolution
MCKD Maximum correlated kurtosis deconvolution
MOMEDA Multipoint optimal minimum entropy deconvolution adjustment
PSR Phase-space reconstruction
SVD Singular-value decomposition
Re Re’nyi entropy,
Sr Skewness
CRe Correlation Re’nyi entropy
CSk Correlation Kurtosis
MCReD Maximum correlation Re’nyi entropy deconvolution
SNR Signal-to-noise ratio
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