
����������
�������

Citation: Kang, Q.; Yang, Q.; Yang, J.;

Gan, Q.; Li, R. Synchronization in

Finite-Time of Delayed Fractional-

Order Fully Complex-Valued

Dynamical Networks via Non-

Separation Method. Entropy 2022, 24,

1460. https://doi.org/

10.3390/e24101460

Academic Editors: José A. Tenreiro

Machado, Julio Rebelo, Helena Reis

and Carla M. A. Pinto

Received: 2 September 2022

Accepted: 8 October 2022

Published: 13 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Synchronization in Finite-Time of Delayed Fractional-Order
Fully Complex-Valued Dynamical Networks via
Non-Separation Method

Qiaokun Kang , Qingxi Yang, Jing Yang, Qintao Gan * and Ruihong Li

Shijiazhuang Campus, Army Engineering University, Shijiazhuang 050003, China
* Correspondence: ganqintao@sina.com

Abstract: The finite-time synchronization (FNTS) problem for a class of delayed fractional-order fully
complex-valued dynamic networks (FFCDNs) with internal delay and non-delayed and delayed
couplings is studied by directly constructing Lyapunov functions instead of decomposing the original
complex-valued networks into two real-valued networks. Firstly, a mixed delay fractional-order
mathematical model is established for the first time as fully complex-valued, where the outer coupling
matrices of the model are not restricted to be identical, symmetric, or irreducible. Secondly, to
overcome the limitation of the use range of a single controller, two delay-dependent controllers
are designed based on the complex-valued quadratic norm and the norm composed of its real and
imaginary parts’ absolute values, respectively, to improve the synchronization control efficiency.
Besides, the relationships between the fractional order of the system, the fractional-order power law,
and the settling time (ST) are analyzed. Finally, the feasibility and effectiveness of the control method
designed in this paper are verified by numerical simulation.

Keywords: finite-time synchronization; fractional-order complex networks; fully complex-valued
dynamical networks; delay

1. Introduction

In recent years, as a characteristic collective behavior of complex networks, the syn-
chronization problem of complex networks has received more and more attention from
different fields because of its outstanding potential applications and outstanding achieve-
ments in nature, social, and technological fields [1–4]. The complexity of the system can
be expressed by entropy. The more complex the system, the higher the entropy is. In
the process of controlling the system to achieve synchronization, the entropy value will
also decrease. In practice, it is usually hoped to realize faster synchronization or even
finite-time synchronization for complex networks [5]. Many academics and researchers
have been interested in the FNTS of complex networks, and there have been numerous
good achievements in this area [6–14].

Compared with integer-order differential equations, fractional calculus is more suitable
for describing the memory and genetic characteristics of various materials and dynamic
processes [15–18]. The advantage of the Caputo fractional derivative is that the initial
conditions of fractional differential equations with Caputo derivatives are similar to those
of integral differential equations. Therefore, introducing fractional order into complex
networks has theoretical and practical significance. The research on FNTS problems of
fractional-order complex networks (FCNs) has become the focus and research hotspot of
engineers, technicians, and scientists. For example, in [19], the FNTS for a class of FCNs
was investigated by using the hybrid feedback control technique. In [20], the FNTS of FCNs
with a strongly connected topology was studied. The FNTS problem between different
dimensional fractional-order complex dynamical networks was investigated in [21]. In [22],
the FNTS of FCNs was studied via intermittent control. In the above literature about the
FNTS of FCNs, the models were all assumed to be real-valued (RV) models.
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However, compared with RV dynamic networks, because dynamic systems in complex
spaces can develop in different directions, CV dynamic networks allow the transmitted sig-
nals to obtain more comprehensive versatility and anti-attack performance [23]. Therefore,
it is fascinating to introduce complex values into complex dynamical networks because
of their practical applications in engineering technology fields [24]. By decomposing
the CV systems into two RV subsystems, the synchronization or stability problems for
fractional-order CV complex networks were extensively investigated in [25–32], respec-
tively. Although the separation technique is practical, the dimension of two RV systems
is double that of the originals, significantly increasing the complexity and triviality of
theoretical analysis and mathematical derivation. As a result, the accuracy and simplicity
of the theoretical results are low by the separation technique. Furthermore, due to the high
difficulty of the model, it is not easy to transform the CV system into two RV systems in a
realistic operational procedure. Hence, in [33], unlike the traditional separation method,
the FNTS problem for fractional-order CV dynamical networks was investigated by in-
troducing signum functions for complex numbers and complex-valued vectors. Similarly,
in [34], Xu et al. discussed FNTS for fractional-order complex-valued coupled systems
based on the complex variable function instead of the separation approach. However,
the coupling strengths and inner and outer coupling matrices of the mathematical model
considered in [33,34] were RV, although the state variables and system function were CV.
Integrating fully CV coupling strengths and couplings into synchronization studies for
complex networks is more realistic and requires more extensive analysis. To overcome this
bottleneck, Zheng et al. [35] designed the power law control strategies for CV networks by
introducing the signum function in the complex domain and studied the FNTS for a class
of fully CV neural networks In [36], based on the introduced CV vector signum function,
the complex value control strategy was directly designed for the fully CV integer-order
complex networks. The FNTS and fixed-time synchronization problems of the integer-order
fully CV network were studied.

On the other hand, it is well known that delay is a common phenomenon in the real
world [37–39]. Time delay widely exists in complex network systems such as medicine
circulation systems, population dynamics models, disease infection models, neural network
models, communication networks, power networks, economic systems, etc. In complex
networks, there exist internal delay and coupling delay, which will show finite speed and
propagation, as well as the impact of traffic congestion on node behavior, respectively [40].
The existence of time delay will increase the difficulty of analysis. When the controlled
object has internal delay in the control system, the control difficulty of the system will
increase. Besides, time delay systems have a richer dynamic behavior, which is more
widely used for secure communication. Therefore, it is meaningful to study dynamic
networks with internal delay and coupling delay. However, the FNTS results of the fully
CV dynamical networks mentioned above do not demonstrate internal delay and coupling
delay. Introducing internal delay and coupling delay into complex dynamics networks
needs further analysis. Regretfully, as far as we know, there are few or no results on FNTS
of FFCDNs with internal delay, as well as linearly non-delayed and delayed couplings.
Our current research is motivated by this condition. To better illustrate the contribution of
our study, we compared our paper with other similar papers published in the last three
years. The differences are shown in Table 1, where fixed-time synchronization and adaptive
synchronization are abbreviated as FXTS and ADS, respectively. The signum Xmeans the
object is included in the paper. The signum 5 means the object is not included in the paper.
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Table 1. Comparisons with other similar papers.

Ref. Fractional Order Number Field Non-Separation Method Internal Delays Coupling Delays Types of Synchronization

[32] X CV 5 5 5 FNTS
[33] X CV X 5 5 FNTS
[35] X fully CV X 5 5 FNTS
[36] 5 fully CV X 5 5 FNTS/FXTS
[41] 5 fully CV X X 5 FNTS
[42] 5 fully CV X X 5 FNTS/FXTS
[43] X CV X X 5 ADS
[44] 5 CV X 5 5 FNTS
[45] 5 RV 5 X 5 FXTS
[46] 5 RV 5 X X FNTS
This paper X fully CV X X X FNTS

Through comparison, it can be found that it is difficult and challenging to comprehen-
sively study a class of fully fractional-order CV dynamic networks with internal delay, no
delay, and time delay coupling. The main contribution of this research may be described
as follows:

(1) The complex dynamical networks studied in this paper are novel. The state
variables, system function, coupling strengths, inner coupling matrices, and outer coupling
matrices in the considered dynamical networks are all CV. In addition, the mathematical
model is the fractional-order case, which is more consistent with practical applications.

(2) Lyapunov functions are constructed based on the quadratic norm and the new norm
composed of the absolute value norm by introducing the signum function. The fractional-
order complex-valued networks do not need to be separated into real and imaginary parts,
which reduces conservatism, complexity, and trivialness.

(3) In order to overcome the limitation of a single controller, two kinds of different
controllers (based on the quadratic norm and 1-norm for a complex vector, respectively) are
deployed in realizing FNTS, and a series of straightforward and flexible synchronization
criteria is acquired.

(4) Compared with the separation method, which needs to apply controllers to the
multiple separate systems, the control strategy in this paper is simpler and more efficient,
can effectively reduce the cost, and has high practical application value.

The following is the structure of the paper. In Section 2, the preliminaries and the
model description are given; in Section 3, two different controllers are proposed to ensure
FNTS for the addressed delayed FFCDNs; numerical simulations are presented in Section 4
to illustrate the validity and practicality of the proposed theoretical solutions; the conclusion
is given in Section 5.

Notations: Throughout this study, R and C represent the real field and complex field,
respectively. R+ denotes the positive real field. Cn symbolizes the n-dimensional complex
space. For any v = p + iq ∈ C, v̄ = p − iq denotes the conjugate of v, |v|1 = |p|+ |q|,
|v|2 =

√
v̄v, where i meets i =

√
−1, and p, q ∈ R are the real and imaginary parts of v,

respectively, that is Re(v) = p and Im(v) = q. [v] = sign(Re(v)) + i sign(Im(v)) is said
to be the signum function of v. For any v = (v1, v2, · · · , vn) ∈ Cn, v = Re(v) + i Im(v),
vH denotes its conjugate transposition, ‖v‖1 = ‖Re(v)‖1 + i ‖Im(v)‖1, ‖v‖2 =

√
vHv, and

[v] =
(
sign(Re(v1)) + i sign(Im(v1)), · · · , sign(Re(vn)) + i sign(Im(vn)

)T. Cm×n denotes
the set of all m× n-dimensional complex matrices. IN denotes the n-dimensional column
vector with each element equal to 1, and EN represents the n-dimensional diagonal identity
matrix. The notation Cn([t0,+∞),C) denotes the family of all continuous n-differential
functions from [t0,+∞) into C.

2. Preliminaries and Model Description

In this work, we selected the α-order Caputo derivative to depict the dynamic behavior
of delayed FFCDNs.
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Definition 1 ([47]). For an integrable function f (t) : [t0,+∞) → C, its α-order fractional
integral is defined as

t0 Iα
t =

1
Γ(α)

∫ t

t0

(t− s)α−1 f (s)ds, t ≥ t0,

where Γ(·) is the Gamma function and α > 0.

Definition 2 ([48]). For f ∈ Ch([t0,+∞),C), its α-order Caputo derivative is defined as

C
t0

Dα
t f (t) =

1
Γ(h− α)

∫ t

t0

f (h)(s)
(t− s)α

ds, t ≥ t0,

where h is a positive integer such that h− 1 < α < h. Especially, if 0 < α < 1, then

C
t0

Dα
t f (t) =

1
Γ(1− α)

∫ t

t0

f ′(s)
(t− s)α

ds.

Remark 1. Because of the super singularity of the Riemann–Liouville fractional derivative, it is
limited in the application of engineering and physical modeling. The weak singularity of the Caputo
fractional derivative operator solves the initial value problem in the definition of Riemann–Liouville
fractional calculus. It is widely used in the modeling process in practical applications. Therefore, the
Caputo fractional derivative was selected in this paper.

Definition 3 ([33]). For any real numbers m, q > 0, the integral∫ 1

0
xm−1(1− x)q−1dx,

is called the Beta function, denoted by Γ̃(m, q). It is easy to see that

Γ̃(m, q) =
Γ(m)Γ(q)
Γ(m + q)

.

The delayed FFCDNs can be described as follows:

C
t0

Dα
t xi(t) = f (xi(t), xi(t− τ1)) + c1 ∑N

j=1 aijG1xj(t) + c2 ∑N
j=1 bijG2xj(t− τ2), i = 1, 2, · · · , N, (1)

where 0 < α < 1, α ∈ (0, 1), xi(t) = (xi1(t), xi2(t), · · · , xin(t))T ∈ Cn represents the
state vector of the ith node at time t, f : Cn × Cn → Cn is a nonlinear vector func-
tion, cl ∈ C (l = 1, 2) is the coupling strength, Gl = diag(δ(l)1 , δ

(l)
2 , · · · , δ

(l)
n ) ∈ Cn×n

(l = 1, 2) is the inner matrix linking the coupled variables, τ1 is the internal delay oc-
curring inside the dynamical node, τ2 represents the coupling delay, and A = (aij)N×N
and B = (bij)N×N represent the topological structure of FFCDNs without and with time
delays, respectively. The initial conditions associated with Equation (1) are given as
xi(s) = ϕi(s) ∈ C([−τ, 0],Cn), i = 1, 2, 3 . . . N, where C([−τ, 0],Cn) represents the set
of all n-dimensional continuous differentiable functions defined on the interval [−τ, 0] and
τ = max{τ1, τ2}.

The topological structure of delayed FFCDNs should match the following criteria: if
node i and node j (i 6= j) have a link, then aij, bij 6= 0 ∈ C; else aij = bij = 0 (i 6= j), and the
diagonal elements are

aii = −
N

∑
j=1,j 6=i

aij, bii = −
N

∑
j=1,j 6=i

bij, i = 1, 2, · · · , N.

Definition 4. The set S =
{
(xT

1 (t), xT
2 (t), · · · , xT

N(t))
T ∈ Cn×N : xi(t) = xj(t) = s(t) ∈ Cn

for all i, j = 1, 2, · · · , N
}

is known as the synchronization manifold of system (1), and s(t) is
known as the synchronous state of (1).
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It follows from (1) and the definitions of A and B that

C
t0

Dα
t s(t) = f (s(t), s(t− τ1)). (2)

Define the error states as ei(t) = xi(t)− s(t) with i = 1, 2, · · · , N. It is clear that

C
t0

Dα
t ei(t) = g(ei(t), ei(t− τ1)) + c1

N

∑
j=1

aijG1ej(t) + c2

N

∑
j=1

bijG2ej(t− τ2) + ui(t), (3)

where i = 1, 2, · · · , N, g(ei(t), ei(t− τ1)) = f (xi(t), xi(t− τ1))− f (s(t), s(t− τ1)), and ui(t)
is a controller that will be created later.

The following assumptions, definitions, and lemmas are required to reach our major
conclusions.

Assumption 1. For the vector-valued function f : Cn × Cn → Cn, there exist ηp, ζp > 0
(p = 1, 2), such that

‖ f (x(t), x(t− τ1))− f (s(t), s(t− τ1))‖p

≤ηp‖x(t)− s(t)‖p + ζp‖x(t− τ1)− s(t− τ1)‖p

for any x(t), s(t) ∈ Cn and t ≥ 0, where ‖ · ‖1 denotes the 1-norm and ‖ · ‖2 denotes the Euclidean
norm.

Remark 2. Assumption 1 is a reasonable requirement for the synchronization of complex networks.
This assumption is not very strict, but relatively broad. Many classical chaotic systems with
or without time delay satisfy this assumption, such as the Lorenz system, Chen system, and Li
system [49].

Definition 5. System (1) is considered to achieve FNTS if there exists the ST T(e(t0)), which is
dependent on the initial synchronization error, such that limt→T(e(t0))

‖ei(t)‖p = 0 and ei(t) ≡ 0
for t > T(e(t0)), i = 1, 2, · · · , N, where p = 1, 2, e(t0) = (eT

1 (t0), eT
2 (t0), · · · , eT

N(t0))
T.

Lemma 1 ([50]). If λ(t) ∈ Cn is differentiable, for t ≥ t0 and 0 < α < 1, the following inequality
holds:

C
t0

Dα
t λH(t)λ(t) ≤ λH(t)C

t0
Dα

t λ(t) +
(C

t0
Dα

t λH(t)
)
λ(t).

Lemma 2 ([36]). For any u ∈ C, µ(t), Λ(t) ∈ Cn, the following statements are true for α ∈ (0, 1).

(1) u + ū = 2Re(u) ≤ |u|2 ≤ |u|1.
(2) µH(t)[Λ(t)] + [Λ(t)]Hµ(t) ≤ 2‖µ(t)‖1.
(3) ΛH(t)[Λ(t)] + [Λ(t)]HΛ(t) = 2‖Λ(t)‖1 ≥ 2‖Λ(t)‖2.
(4) C

t0
Dα

t
(
ΛH(t)[Λ(t)] + [Λ(t)]HΛ(t)

)
≤ [Λ(t)]HC

t0
Dα

t Λ(t) +
(C

t0
Dα

t ΛH(t)
)
[Λ(t)].

Lemma 3 ([36]). For any µ, Λ ∈ C, the following inequality is true:

uΛ[Λ] + uΛ[Λ] ≤ 2
(
Re(µ) + |Im(µ)|

)
|Λ|1.

Lemma 4 ([51]). Assume that λi ≥ 0 for i = 1, 2, · · · , n, p > 1, 0 < q < 1, then the following
inequalities hold:

n

∑
i=1

λ
q
i ≥

( n

∑
i=1

λi

)q
,

n

∑
i=1

λ
p
i ≥ n1−p

( n

∑
i=1

λi

)p
.

Lemma 5 ([33]). Suppose that there exist positive constants γ ∈ (0, α) and λ supposing that

C
t0

Dα
t V(t) ≤ −λVγ(t), V(t) ∈ R+, (4)
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then lim
t→T∗

V(t) = 0 and V(t) ≡ 0 for all t ≥ T∗, in which

T∗ = t0 +
( α

λ
Vα−γ(t0)B(α, 1− γ)

)1/α
. (5)

3. Main Results

The FNTS problems for a class of FFCDNs with internal delay and linearly non-
delayed and delayed couplings were explored by designing two different controllers. The
following are the key results.

Theorem 1. Based on Assumption 1, the control law is constructed as follows:

ui(t) =− diei(t)− β[ei(t)]‖ei(t)‖
γ
2 −

1
2

2

∑
r=1

ε
(r)
i ei(t− τr), (6)

where di, β, ε
(1)
i , ε

(2)
i > 0, 0 < γ < 2α− 1, i = 1, 2, · · · , N, satisfying

2η2EN + c1δ
(1)
k A + c1δ

(1)
k AH − 2D ≤ 0,

ζ2EN −Π(1) ≤ 0,
c2δ

(2)
k B−Π(2) ≤ 0,

c2δ
(2)
k BH −Π(2) ≤ 0,

(7)

where D = diag(d1, d2, · · · , dN), Π(r) = diag(ε(r)1 , ε
(r)
2 , · · · , ε

(r)
N ), (r = 1, 2), for all k =

1, 2, · · · , n. Then, the controlled FFCDNs (3) is said to achieve FNTS, and the ST is estimated as

T ≤ T1 = t0 +
(α‖e(t0)‖

2(α−γ̃)
2

2αβ
Γ̃(α, 1− γ̃)

)1/α
, (8)

where γ̃ = (1 + γ)/2.

Proof. Define the Lyapunov function:

V1(t) =
1
2

N

∑
i=1

eH
i (t)ei(t). (9)

Computing the fractional-order derivative of V1(t) along the solutions of (3), it follows
from Lemma 1 that

C
t0

Dα
t V1(t) ≤

1
2

N

∑
i=1

(
eH

i (t)g(ei(t), ei(t− τ1)) + gH(ei(t), ei(t− τ1))ei(t)
)

+
1
2

N

∑
i=1

N

∑
j=1

(
eH

i (t)c1aijG1ej(t) + eH
j (t)c1aijGH

1 ei(t)
)

+
1
2

N

∑
i=1

N

∑
j=1

(
eH

i (t)c2bijG2ej(t− τ2) + eH
j (t− τ2)c2bijGH

2 ei(t)
)

− 1
2

2

∑
r=1

N

∑
i=1

ε
(r)
i (eH

i (t)ei(t− τr) + eH
i (t− τr)ei(t))

− β

2

N

∑
i=1

(
[ei(t)]Hei(t) + eH

i (t)[ei(t)]
)
‖ei(t)‖

γ
2 −

N

∑
i=1

dieH
i (t)ei(t).

(10)

On the basis of Assumption 1 and Lemma 2, we have
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1
2

N

∑
i=1

(
eH

i (t)g(ei(t), ei(t− τ1)) + gH(ei(t), ei(t− τ1))ei(t)
)

=
1
4

N

∑
i=1

(
eH

i (t)g(ei(t), ei(t− τ1)) + gH(ei(t), ei(t− τ1))ei(t)

+
N

∑
i=1

(
gH(ei(t), ei(t− τ1))ei(t) + eH

i (t)g(ei(t), ei(t− τ1))
)

≤1
2

N

∑
i=1

(
‖eH

i (t)‖2‖g(ei(t), ei(t− τ1))‖2 + ‖gH(ei(t), ei(t− τ1))‖2‖ei(t)‖2
)

≤η2

N

∑
i=1

n

∑
k=1

eik(t)eik(t) +
ζ2

2

N

∑
i=1

n

∑
k=1

(
eik(t)eik(t− τ1) + eik(t− τ1)eik(t)

)
=η2

n

∑
k=1

eH
k (t)ek(t) +

ζ2

2

n

∑
k=1

(
eH

k (t)ek(t− τ1) + eH
k (t− τ1)ek(t)

)
.

(11)

From Lemma 2, we also have

1
2

N

∑
i=1

N

∑
j=1

(
eH

i (t)c1aijG1ej(t) + eH
j (t)c1aijGH

1 ei(t)
)

=
1
2

N

∑
i=1

N

∑
j=1

n

∑
k=1

(
eik(t)c1aijδ

(1)
k ejk(t) + ejk(t)c1aijδ

(1)
k eik(t)

)
=

1
2

n

∑
k=1

eH
k (t)

(
c1δ

(1)
k A + c1δ

(1)
k AH)ek(t),

(12)

and

1
2

N

∑
i=1

N

∑
j=1

(
eH

i (t)c2bijG2ej(t− τ2) + eH
j (t− τ2)c2bijGH

2 ei(t)
)

=
1
2

N

∑
i=1

N

∑
j=1

n

∑
k=1

(
eik(t)c2bijδ

(2)
k ejk(t− τ2) + ejk(t− τ2)c2bijδ

(2)
k eik(t)

)
=

1
2

n

∑
k=1

(
eH

k (t)
(
c2δ

(2)
k B

)
ek(t− τ2) + eH

k (t− τ2)
(
c2δ

(2)
k BH)ek(t)

)
.

(13)

Furthermore, according to Lemmas 2 and 4, we can obtain:

− β

2

N

∑
i=1

(
[ei(t)]Hei(t) + eH

i (t)[ei(t)]
)
‖ei(t)‖

γ
2 ≤ −β

( N

∑
i=1
‖ei(t)‖2

2

)(1+γ)/2
. (14)

Substituting (11)–(14) into (10), we can obtain

C
t0

Dα
t V1(t) ≤

1
2

n

∑
k=1

eH
k (t)

(
2η2EN + c1δ

(1)
k A + c1δ

(1)
k AH − 2D

)
ek(t)− β

( N

∑
i=1
‖ei(t)‖2

2

)(1+γ)/2

+
1
2

n

∑
k=1

(
eH

k (t)(ζ2EN −Π(1))ek(t− τ1) + eH
k (t− τ1)(ζ2EN −Π(1))ek(t)

)
+

1
2

n

∑
k=1

(
eH

k (t)
(
c2δ

(2)
k B−Π(2))ek(t− τ2) + eH

k (t− τ2)
(
c2δ

(2)
k BH −Π(2))ek(t)

)
≤− β

( N

∑
i=1
‖ei(t)‖2

2

)(1+γ)/2
.

(15)
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Based on Lemma 5, the FFCDNs (3) under the controller (6) could achieve synchro-
nization within time T1. The proof is accomplished.

Remark 3. Each part of the controller (6) has a unique contribution for FNTS of delayed FFCDNs.
The delayed nonlinear dynamics and coupled configuration are compensated by the terms −diei(t),
−ε

(1)
i ei(t − τ1), and −ε

(2)
i ei(t − τ2); the term −β[ei(t)]‖ei(t)‖

γ
2 plays a key role in realizing

FNTS. In addition, designing the delay-independent controllers, which are easy to implement and
can achieve a better synchronization control effect, will be the authors’ future investigative direction.

Remark 4. In Theorem 1, the FNTS problem for a class of FFCDNs with linearly non-delayed and
delayed couplings is deliberated based on the quadratic norm. On the other hand, the limitation
conditions 0 < γ < 2α− 1 and 0 < α < 1 are quite restrictive and may not be more realistic.
Consequently, we next provide the results for FNTS in terms of a novel norm composed of the
absolute values of each part.

Theorem 2. Based on Assumption 1, the control law is constructed as

ui(t) =− diei(t)− β[ei(t)]‖ei(t)‖
γ
1 −

1
2

2

∑
r=1

ε
(r)
i [ei(t)]eH

i (t− τr)[ei(t− τr)], (16)

where di, β, ε
(1)
i , ε

(2)
i > 0, 0 < γ < α, i = 1, 2, · · · , N, satisfying

η1EN + Ξ(k) − D ≤ 0,
ζ1EN −Π(1) ≤ 0,
Ω(k) −Π(2) ≤ 0,

(17)

in which D = diag(d1, d2, · · · , dN), Π(r) = diag(ε(r)1 , ε
(r)
2 , · · · , ε

(r)
N ), (r = 1, 2), Ξ(k) =

(λ
(k)
ij )N×N , Ω(k) = (ω

(k)
ij )N×N , and

λ
(k)
ij =

{
Re(c1aiiδ

(1)
k ) + |Im(c1aiiδ

(1)
k )|, i = j,

|c1aijδ
(1)
k |1, i 6= j,

ω
(k)
ij = |Re(c2bijδ

(2)
k )|+ |Im(c2bijδ

(2)
k )|,

for all k = 1, 2, · · · , n. Then, the controlled FFCDNs (3) could achieve synchronization, and the ST
is estimated as

T ≤ T2 = t0 +
( α

β
‖e(t0)‖α−γ

1 Γ̃(α, 1− γ)
)1/α

. (18)

Proof. Define the Lyapunov function:

V2(t) =
1
2

N

∑
i=1

(
eH

i (t)[ei(t)] + [ei(t)]Hei(t)
)
=

N

∑
i=1
‖ei(t)‖1. (19)

Computing the fractional-order derivative of V2(t) along the solutions of (3), it follows
from Lemma 2 that
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C
t0

Dα
t V2(t) ≤

1
2

N

∑
i=1

(
[ei(t)]Hg(ei(t), ei(t− τ1)) + gH(ei(t), ei(t− τ1))[ei(t)]

)
+

1
2

N

∑
i=1

N

∑
j=1

(
[ei(t)]Hc1aijG1ej(t) + eH

j (t)c1aijGH
1 [ei(t)]

)
+

1
2

N

∑
i=1

N

∑
j=1

(
[ei(t)]Hc2bijG2ej(t− τ2) + eH

j (t− τ2)c2bijGH
2 [ei(t)]

)
− 1

2

N

∑
i=1

di
(
[ei(t)]Hei(t) + eH

i (t)[ei(t)]
)
− β

N

∑
i=1

[ei(t)]H[ei(t)]‖ei(t)‖
γ
1

− 1
2

2

∑
r=1

N

∑
i=1

ε
(r)
i
(
[ei(t− τr)]

Hei(t− τr) + eH
i (t− τr)[ei(t− τr)]

)
.

(20)

On the basis of Assumption 1 and Lemma 2, we have

1
2

N

∑
i=1

(
[ei(t)]Hg(ei(t), ei(t− τ1)) + gH(ei(t), ei(t− τ1))[ei(t)]

)
=

1
2

N

∑
i=1

n

∑
k=1

(
[eik(t)]gk(ei(t), ei(t− τ1)) + gk(ei(t), ei(t− τ1))[eik(t)]

)
=

N

∑
i=1

n

∑
k=1

(
sign(Re(eik(t)))Re

(
gk(ei(t), ei(t− τ1))

)
+ sign(Im(eik(t)))Im

(
gk(ei(t), ei(t− τ1))

))
≤

N

∑
i=1
‖g(ei(t), ei(t− τ1))‖1 ≤ η1

N

∑
i=1
‖ei(t)‖1 + ζ1

N

∑
i=1
‖ei(t− τ1)‖1

=η1

n

∑
k=1

IT
Nek(t) + ζ1

n

∑
k=1

IT
Nek(t− τ1),

(21)

where ek(t) =
(
|e1k(t)|1, |e2k(t)|1, · · · , |eNk(t)|1

)T and ek(t− τ1) =
(
|e1k(t− τ1)|1, |e2k(t−

τ1)|1, · · · , |eNk(t− τ1)|1
)T.

According to Lemmas 2 and 3, we also have

1
2

N

∑
i=1

N

∑
j=1

(
[ei(t)]Hc1aijG1ej(t) + eH

j (t)c1aijGH
1 [ei(t)]

)
=

1
2

N

∑
i=1

N

∑
j=1

n

∑
k=1

(
[eik(t)]c1aijδ

(1)
k ejk(t) + ejk(t)c1aijδ

(1)
k [eik(t)]

)
=

1
2

N

∑
i=1

n

∑
k=1

(
[eik(t)]c1aiiδ

(1)
k ejk(t) + ejk(t)c1aiiδ

(1)
k [eik(t)]

)
+

1
2

N

∑
i=1

N

∑
j=1,j 6=i

n

∑
k=1

(
[eik(t)]c1aijδ

(1)
k ejk(t) + ejk(t)c1aijδ

(1)
k [eik(t)]

)
≤

N

∑
i=1

n

∑
k=1

(
Re(c1aiiδ

(1)
k ) + |Im(c1aiiδ

(1)
k )|

)
|ejk(t)|1 +

N

∑
i=1

N

∑
j=1,j 6=i

n

∑
k=1
|c1aijδ

(1)
k |1|ejk(t)|1

=
N

∑
i=1

N

∑
j=1

n

∑
k=1

λ
(k)
ij |ejk(t)|1 =

n

∑
k=1

IT
NΞ(k)ek(t),

(22)

and
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1
2

N

∑
i=1

N

∑
j=1

(
[ei(t)]Hc2bijG2ej(t− τ2) + eH

j (t− τ2)c2bijGH
2 [ei(t)]

)
=

1
2

N

∑
i=1

N

∑
j=1

n

∑
k=1

(
[eik(t)]c2bijδ

(2)
k ejk(t− τ2) + ejk(t− τ2)c2baijδ

(2)
k [eik(t)]

)
≤

N

∑
i=1

N

∑
j=1

n

∑
k=1

(
|Re(c2bijδ

(2)
k )|+ |Im(c2bijδ

(2)
k )|

)
|ejk(t− τ2)|1

=
N

∑
i=1

N

∑
j=1

n

∑
k=1
|c2bijδ

(2)
k ||ejk(t− τ2)|1

=
N

∑
i=1

N

∑
j=1

n

∑
k=1

ω
(k)
ij |ejk(t− τ2)|1 =

n

∑
k=1

IT
NΩ(k)ek(t− τ2).

(23)

In addition, according to Lemmas 2 and 4, we can obtain

− β
N

∑
i=1

[ei(t)]H[ei(t)]‖ei(t)‖
γ
1 = −β

N

∑
i=1
‖[ei(t)]‖1‖ei(t)‖

γ
1 ≤ −β

N

∑
i=1
‖ei(t)‖

γ
1 ≤ −β

( N

∑
i=1
‖ei(t)‖1

)γ
. (24)

On account of Lemma 2, it has

−1
2

N

∑
i=1

di
(
[ei(t)]Hei(t) + eH

i (t)[ei(t)]
)
= −

n

∑
k=1

IT
N Dek(t), (25)

and

− 1
2

2

∑
r=1

N

∑
i=1

ε
(r)
i
(
[ei(t− τr)]

Hei(t− τr) + eH
i (t− τr)[ei(t− τr)]

)
= −

2

∑
r=1

n

∑
k=1

IT
NΠ(r)ek(t− τr). (26)

Substituting (21)–(26) into (20), we derive

C
t0

Dα
t V2(t) ≤

n

∑
k=1

IT
N
(
η1EN + Ξ(k) − D

)
ek(t) +

n

∑
k=1

IT
N
(
ζ1EN −Π(1))ek(t− τ1)

+
n

∑
k=1

IT
N
(
Ω(k) −Π(2))ek(t− τ2)− β

( N

∑
i=1
‖ei(t)‖1

)γ

≤− β
( N

∑
i=1
‖ei(t)‖1

)γ
.

(27)

From Lemma 5, the FFCDN (3) under the controller (16) could achieve FNTS within
time T2. Theorem 2’s proof is now finished.

Remark 5. The positive constants di, β, ε
(1)
i , ε

(2)
i , i = 1, 2, · · · , N in Theorems 1 and 2 can be

flexibly selected within the range of satisfying the conditions (7) and (17). When we selected
parameters within the required range, we tried to ensure that the system can show a chaotic state,
so as to increase the complexity and reliability of the numerical simulation and make the complex
dynamical networks closer to reality.

Remark 6. In the article, the FNTS issue for a class of FFCDNs with linearly non-delayed and
delayed couplings is deliberated based on the quadratic norm and the absolute norm. From the
limitation conditions 0 < γ < 2α− 1 and 0 < α < 1 in Theorem 1, we have 1

2 < α < 1. However,
in Theorem 2, only 0 < γ < α and 0 < α < 1 are required. The FNTS conditions in Theorem 2 are
less conservative. The STs T1 and T2 are related to the initial value of the system. In the process in
practical applications, when the system is given a specific initial value, both controllers can be used.
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Select the controller under which the ST is shorter, so as to obtain a more accurate ST estimation.
Therefore, under different conditions, we can select different controllers according to the actual need
to achieve better effective FNTS.

Remark 7. It can been seen from inequalities (8) and (18) that the fractional-order of the system
α and fractional-order power law β affect the upper bound of synchronous convergence time. In
particular, T1 and T2 will monotonically increase with the increase of α or the decrease of β, which
means that the FNTS effect is better when the fractional-order is small or the fractional-order power
law is large.

Remark 8. The advantages of our primary results on FNTS of FFCDNs may be stated in three
aspects when compared with existing approaches:

(1) There have been studies on fractional-order CV complex networks in recent years. However,
in [33,34], the coupling strengths, inner coupling matrices, and outer coupling matrices were not
considered as RV. In addition, for delayed fractional-order complex networks being fully CV in [36],
internal delay and non-delayed and delayed couplings were not integrated into the model. Note that
in this paper, the state variables, system function, coupling strengths, inner coupling matrices, and
outer coupling matrices of directed complex dynamical networks (1) are all set as CV, which are
different from the undirected complex networks without considering the internal delay and coupling
delay proposed in [33,36]. The model in this paper is more practical and has a certain research value.

(2) In addition to the quadratic norm, the controller (6) is designed and the Lyapunov function
is constructed based on the novel norm composed of the absolute values of the real and imaginary
parts of the complex number. The FNTS criteria are obtained, and the ST is estimated. In contrast,
the synchronization conditions obtained by the novel norm have a more comprehensive range of
applications.

(3) In [25–32], the authors decomposed the fractional-order CV neural networks into two RV
systems and obtained the stability criteria of the fractional-order complex-valued neural networks
by studying the RV systems. Instead of the traditional technique of separating the complex-valued
network into two parts, the main results in this paper were acquired by designing two delay-
dependent controllers based on different norms, which effectively avoids the complexity of theoretical
analysis caused by traditional separation methods.

Therefore, our findings are found to be an improvement of the previously published findings.

Remark 9. In the proof of Theorems 1 and 2, we used the inequality technique in Lemmas 1–4.
This means that the value on the left of the inequality in Theorems 1 and 2 may be amplified
to a certain extent, making the result conservative. On the other hand, the obtained results are
independent of both internal delay and coupling delay, which cannot reflect the influences of delays
on the synchronization effects. They are generally more conservative than delay-dependent criteria.
Therefore, our future research will focus on improving Lemma 5 to reduce the conservatism of the
results and obtain a more accurate ST.

Remark 10. The FNTS problem for a class of FFCDNs with internal delay and non-delayed and
delayed couplings is studied by designing two different controllers in this paper. State variables,
the system function, coupling strengths, inner coupling matrices, and outer coupling matrices
in the delayed FFCDNs were all set as CV, which represents a more general situation. It can
be applied to the analysis of dynamical networks with delay characteristics, such as confidential
communication, image encryption, engineering control, urban transportation, communication
engineering, bioengineering, etc.

4. Numerical Simulations

A class of FFCDNs with four nodes including internal delay, no delay and delay
coupling was considered.

C
t0

Dα
t xk(t) = f (xk(t), xk(t− τ1)) + c1

N

∑
j=1

akjG1xj(t) + c2

N

∑
j=1

bkjG2xj(t− τ2) + uk(t), (28)
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where xk(t) = (xk1(t), xk2(t), xk3(t))T, k = 1, 2, 3, 4, c1 = c2 = 0.1+ 0.1i, G1 = G2 = (0.01−
0.01i)E3, f (x(t), x(t − τ1)) = D1x(t) + g11(x(t)) + g12(x(t − τ1)), g11(x) = (0,−x1x3,
x1x2+x1x2

2 )T, g12(x) = (0, (0.1 + 0.1i)x2, 0)T, τ1 = 1.3, τ2 = 1, and

A =


−2− 2i 1 + i 0 1 + i

0 1 + i −1− i 0
1 + i 0 −1− i 0
1 + i 0 0 −1− i

, B =


1− i 0 0 −1 + i

0 2− 2i −1 + i −1 + i
0 0 1− i −1 + i

−1 + i 0 0 1− i

,

D1 =

−35 35 0
−7 28 0
0 0 −3

.

The dynamical behavior of the isolated node can be described by

C
t0

Dα
t s(t) = f (s(t), s(t− τ1)), (29)

where s(t) = (s1(t), s2(t), s3(t))T ∈ C3.
In the following numerical simulation, the initial conditions of the system (28) were

selected as 
xk1(t) = 1 + 0.3k + (1 + 0.4k)i,

xk2(t) = 1k + (2 + 0.1k)i,
xk3(t) = 2 + 0.5k + (1 + 0.2k)i,

(30)

where k = 1, 2, 3, 4, t ∈ [−1.3, 0]. s1(t) = 1.5 + 1.7i, s2(t) = 2.3 + 2.1i, s3(t) = 3 + 3i, and
t ∈ [−1.3, 0] were taken as the initial conditions of the system (29). Figure 1 depicts the
real and imaginary parts’ phase trajectories of the system (29) when α = 0.98. Moreover,
the trajectories of the synchronization errors of the system (28) are also shown in Figure 2
when there is no external control. From Figure 2, we can clearly see that system (28) cannot
achieve synchronization when there is no control input.

(a) (b)

Figure 1. (a) Phase trajectories of the real parts of the system (29). (b) Phase trajectories of the
imaginary parts of the system (29).
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(a) (b)

Figure 2. (a) Real part synchronization errors’ trajectories for system (28) without the controller.
(b) Imaginary part synchronization errors’ trajectories for system (28) without the controller.

First, consider the FNTS of the system (28) with the controller (6). Choose dk = 55.8,
ε
(1)
k = 0.14, ε

(2)
k = 0.005, with k = 1, 2, 3, 4, α = 0.98, γ = 0.6, β = 3. Then, the criteria in

Theorem 1 are met. According to Theorem 1, system (28) can achieve FNTS under the con-
troller (6), and the ST can be estimated as T1 = 1.409. The trajectories of the synchronization
errors for system (28) under the controller (6) are shown in Figure 3. Under the conditions
of 0 < γ < 2α− 1 and β = 3, Figure 4 describes the relationship among the estimated ST
T1, the fractional order of the system α, and the control parameter ε. From Figure 4, we can
see that T1 increases with the increase of α. Besides, the estimated ST T1 is also affected by
the fractional-order power law β. Under the conditions of α = 0.98 and γ = 0.6, Figure 5
shows the relationship between the estimated ST T1 and fractional-order power law β, that
is T1 will increase monotonically with the decrease of β.

(a) (b)

Figure 3. (a) Real part synchronization errors’ trajectories for system (28) under the controller (6).
(b) Imaginary part synchronization errors’ trajectories for system (28) under the controller (6).
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Figure 4. The relationship among the ST T1, parameter α, and parameter γ.

Figure 5. The relationship between the ST T1 and parameter β.

Next, we analyze the FNTS of the system (28) with the controller (16). We chose
dk = 63.1, ε

(1)
k = 0.2, ε

(2)
k = 0.008, with k = 1, 2, 3, 4. Then, condition (17) is satisfied.

According to Theorem 2, system (28) is finite-time synchronized. Select α = 0.98, γ = 0.6,
β = 3; the trajectories for system (28) under the controller (16) are shown in Figure 6, where
the ST can be estimated as T2 = 1.8833. Under the conditions of 0 < γ < α and β = 3,
Figure 7 describes the relationship between the estimated ST T2, the fractional order of the
system α, and the control parameter γ. From Figure 7, we can see that T2 increases with the
increase of α. Besides, the estimated ST T2 is also affected by the fractional-order power law
β. Under the conditions of α = 0.98, γ = 0.6, Figure 8 shows the relationship between the
estimated ST T2 and fractional-order power law β, that is T2 will increase monotonically
with the decrease of β.
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(a) (b)

Figure 6. (a) Real part synchronization errors’ trajectories for system (28) under the controller (16).
(b) Imaginary part synchronization errors’ trajectories for system (28) under the controller (16).

Figure 7. The relationship among the ST T2, parameter α, and parameter γ.

Figure 8. The relationship between the ST T2 and parameter β.

In order to compare the performance of the controllers, the comparison of the settling
times between the controllers (6) and (16) under the same parameters is shown in Table 2.
From Table 2, we can see that under the initial value conditions given in this paper, the
controller (6) performs better than the controller (16) with the same parameters, and the
finite-time estimation is shorter. From Figures 4 and 7 and Table 2, it can be seen that the
ST for FNTS of the system (28) will increase with the increase in α or the decrease in β
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under both controllers. Therefore, for practical applications, the parameters can be selected
according to different actual needs to obtain a better synchronization effect.

Table 2. Comparison of the settling times under different controllers.

Controller (6) Controller (16)

α 0.98 0.98 0.87 0.98 0.98 0.87
β 2 3 3 2 3 3
γ 0.6 0.6 0.58 0.6 0.6 0.58
T 2.1311 1.409 0.9922 2.8484 1.8833 1.4002

Remark 11. To some extent, the estimated ST reflects the network’s synchronization rate. In this
paper, the finite-time stability theory was used to estimate the ST of the system (28). It can be
observed from Figures 3 and 6 that the estimated ST is longer than the actual value. The estimated
ST is conservative to some extent, indicating that there is an estimation error. The reason for the
existence of the estimation error is that when we studied the FNTS criteria of the system (28), we
used the inequality methods such as Lemmas 1–5 to amplify the result of ST estimation. Every
scholar tries to find the minimum value of the ST, but such errors are inevitable. How to improve
Lemma 5 and estimate the ST more accurately will be the focus of our future research.

5. Conclusions

The FNTS problem for a class of FFCDNs with internal delay, as well as non-delayed
and delayed couplings was studied in this research. In this paper, non-separation tech-
nology was used to study the FFCDNs. By designing two delay-dependent controllers
based on different complex norms, some simple and useful synchronization criteria were
obtained to guarantee the proposed dynamical networks could be FNTS. The current re-
search highlights the importance of two parameters, the fractional order of system α and
the fractional-order power law β, which would be the key parts in the prediction of the ST
of FNTS. The research will help us better understand the impact of network structure and,
consequently, find an effective way to improve the network performance.
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