
����������
�������

Citation: Liu, H.; Tu, J.; Li, C.

Distributed Support Vector Ordinal

Regression over Networks. Entropy

2022, 24, 1567. https://doi.org/

10.3390/e24111567

Academic Editors: Minyu Feng,

Liang-Jian Deng and Feng Chen

Received: 12 September 2022

Accepted: 28 October 2022

Published: 31 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Distributed Support Vector Ordinal Regression over Networks

Huan Liu , Jiankai Tu and Chunguang Li *

College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
* Correspondence: cgli@zju.edu.cn

Abstract: Ordinal regression methods are widely used to predict the ordered labels of data, among
which support vector ordinal regression (SVOR) methods are popular because of their good gen-
eralization. In many realistic circumstances, data are collected by a distributed network. In order
to protect privacy or due to some practical constraints, data cannot be transmitted to a center for
processing. However, as far as we know, existing SVOR methods are all centralized. In the above
situations, centralized methods are inapplicable, and distributed methods are more suitable choices.
In this paper, we propose a distributed SVOR (dSVOR) algorithm. First, we formulate a constrained
optimization problem for SVOR in distributed circumstances. Since there are some difficulties in
solving the problem with classical methods, we used the random approximation method and the
hinge loss function to transform the problem into a convex optimization problem with constraints.
Then, we propose subgradient-based algorithm dSVOR to solve it. To illustrate the effectiveness, we
theoretically analyze the consensus and convergence of the proposed method, and conduct exper-
iments on both synthetic data and a real-world example. The experimental results show that the
proposed dSVOR could achieve close performance to that of the corresponding centralized method,
which needs all the data to be collected together.

Keywords: ordinal regression; support vector machine; support vector ordinal regression;
distributed algorithm; subgradient method

1. Introduction

Many real-world data labels have natural orders that are usually called ordinal labels.
For example, fault severity in industrial processes is usually divided into {harmless, slight,
medium, severe}. Ordinal regression, which aims at predicting ordinal labels for given
patterns, has attracted a great deal of research in many fields, such as disease severity
assessment [1], satisfaction evaluation [2], wind-speed prediction [3], age estimation [4],
credit-rating prediction [5], and fault severity diagnosis [6]. Although classical classification
and regression methods can be applied to the ordinal regression problem [7,8], they require
additional prior information about the distances between labels. Otherwise, they often
perform unsatisfactorily since they cannot fully use ordering information [9,10].

To tackle the aforementioned problems of classical classification and regression meth-
ods, many ordinal regression methods were proposed [10]. Among them, the most popular
type of approaches are threshold models, which assume that a continuous latent variable
underlies the ordinal response [10]. In threshold models, the order of the labels is repre-
sented by a set of ordered thresholds. These ordered thresholds define a series of intervals,
and the data label depends on the interval the corresponding latent variable falls into.
Among the threshold models, support vector ordinal regression (SVOR) [11,12] is widely
used because of good generalization performance. A representative work is the support
vector ordinal regression with implicit constraints (SVORIM) proposed in [11,12]. This
determines each threshold by taking all the samples into consideration, where the threshold
inequality constraints can be satisfied without explicit constraints.

Most of the existing ordinal regression methods have been developed in a centralized
framework. However, in practice, data used for ordinal regression may be distributed in

Entropy 2022, 24, 1567. https://doi.org/10.3390/e24111567 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24111567
https://doi.org/10.3390/e24111567
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0001-5035-0330
https://orcid.org/0000-0002-5082-7300
https://orcid.org/0000-0003-3147-1553
https://doi.org/10.3390/e24111567
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24111567?type=check_update&version=1

Entropy 2022, 24, 1567 2 of 20

a network [13]. Each node of the network collects and stores part of the data, and it is
not enough for a single node to train a model with good performance. For instance, in
industrial processes, sensors are often used in factories to monitor the operating status of
equipment and diagnose fault severity. Due to the rarity of faults, a single sensor can only
collect very few data, and the faults encountered by each factory may also be different. To
train a proper model, we need to use as many data as possible. However, in some realistic
scenarios, it is difficult for data to be transmitted to a central node for various reasons [13].
For example, factories may not want to leak data regarding their equipment in order to
protect privacy. Moreover, if the data are collected by image sensors or video sensors, it
may be difficult for a single machine to store and process such a large amount of data. In
such situations, centralized methods are inapplicable, and distributed methods are more
suitable choices.

In this paper, we propose a distributed support vector ordinal regression algorithm
based on the SVORIM method to deal with more complex nonlinear problems in distributed
ordinal regression. First, we formulate a constrained optimization problem for SVORIM in
the distributed scenarios. Classical methods usually solve the problem by transforming
it into the dual problem. In distributed circumstances where the original data cannot be
transmitted to others, it is difficult for classical methods to calculate the kernel function
values and optimize the dual variables because they require data from different nodes. Thus,
we adopted a random approximation method and the hinge loss function to transform
the optimization problem to overcome the above difficulties. Increasing the number of
random approximation dimensions can improve the approximation accuracy, but brings
redundancy. In order to find an appropriate number of approximation dimensions, we
further added a sparse regularization term of the approximation dimension number to the
objective function. Through the above steps, we transformed the original problem into a
convex optimization problem with consensus constraints. Then, to solve the problem, we
propose a subgradient-based algorithm called distributed SVOR (dSVOR) where each node
only uses its own data and the parameter estimates exchanged from its neighbors. To verify
the effectiveness of dSVOR, we theoretically analyze its consensus and convergence, and
conducted some experiments on synthetic data and a real-world example. The experimental
results show that the proposed distributed algorithm under additional constraints could
achieve close performance to that of the corresponding centralized method, which needs
all the data to be collected to a central node.

The main contributions of this paper are summarized as follows.

1. Existing work on distributed ordinal regression [14] uses a linear model; therefore, it
cannot deal with the problems of linearly inseparable data. We extended the SVOR
method to distributed scenarios to solve distributed ordinal regression problems with
linearly inseparable data.

2. We developed a decentralized implementation of SVOR, and propose a dSVOR
algorithm. In the proposed algorithm, the kernel feature map is approximated by
random feature maps to avoid transmitting the original data, and sparse regularization
is added to avoid excessively high approximation dimensions.

3. The consensus and convergence of the proposed algorithm are theoretically analyzed.

The rest of this paper is organized as follows. In Section 2, we introduce related works.
The ordinal regression problem and the SVORIM method are introduced in Section 3 as
preliminary knowledge. In Section 4, we formulate the distributed support vector ordinal
regression problem, propose the dSVOR algorithm, and perform theoretical analysis of
the proposed algorithm. Experiments were conducted to evaluate the effectiveness of the
proposed algorithm and they are presented in Section 5. Lastly, in Section 6, we draw
some conclusions.

2. Related Works

Ordinal Regression Methods. Many ordinal regression methods have been proposed
to solve ordinal regression problems. The ordered logit model [15,16] makes assumptions

Entropy 2022, 24, 1567 3 of 20

about the distribution of the prediction error of the latent variable, and uses the cumulative
distribution function to build the label cumulative probability function. The support
vector ordinal regression (SVOR) [11,12] maximizes margins between two adjacent labels.
Variants of SVOR with nonparallel hyperplanes were discussed in [17,18]. There are also
ordinal regression methods that solve ordinal regression problems by solving a series
of binary classification subproblems. In [4,19], extended labels were extracted from the
original ordinal labels to learn a binary classifier (such as support vector machine [19] or
logistic regression [4]); then, a ranking rule was constructed from the binary classifier to
predict ordinal labels. In [20], the authors used the stick-breaking process to construct a
series of binary classification subproblems to guarantee that the cumulative probabilities
were monotonically decreasing. However, the above ordinal regression methods are all
centralized and are infeasible in distributed scenarios.

Distributed methods. Distributed methods were extensively studied in many fields,
such as distributed estimation [21,22], distributed optimization [23,24], distributed cluster-
ing [25], distributed Kalman filter [26], and distributed anomaly detection [27]. However,
as far as we know, there are few works investigating distributed ordinal regression [14].
In [14], the authors proposed a distributed generalized ordered logit model, which is a
linear model and therefore cannot handle complex problems.

3. Preliminaries
3.1. Ordinal Regression Problem

The classification problem aims at classifying the K-dimensional input vector x ∈
X ⊆ RK into one of Q discrete categories y ∈ Y = {C1, C2, . . . , CQ}. The ordinal regression
problem is a type of classification problem in which the data labels have a natural order
C1 ≺ C2 ≺ · · · ≺ CQ, where ≺ is an order relation [10]. The purpose of ordinal regression is
to find a mapping function f : X → Y to predict the ordinal labels for new patterns given
a training set of N samples D = {(xi, yi), i = 1, . . . , N}.

3.2. Support Vector Ordinal Regression with Implicit Constraints

Let φ(x) denote the feature vector in a high-dimensional reproducing kernel Hilbert
space (RKHS) of input vector x. The inner product in the RKHS is defined by the reproduc-
ing kernel function: K(x, x′) = φ(x) · φ(x′).

Support vector machines construct a discriminant hyperplane in the RKHS by maxi-
mizing the distance between support vectors and the discriminant hyperplane. The dis-
criminant hyperplane is defined by an optimal direction w and a single optimal threshold
b. It divides the feature space into two regions for two classes.

The support vector ordinal regression constructs Q− 1 parallel discriminant hyper-
planes for Q ordinal labels where these hyperplanes are defined by optimal direction w
and Q− 1 thresholds {bq}q=1,...,Q−1. The ordinal information in the labels is represented by
threshold inequalities b1 ≤ b2 ≤ · · · ≤ bQ−1. For convenience, vector b = [b1 b1 · · · bQ−1]

T

was used to denote these thresholds.
In [11,12], the SVORIM method determined a threshold bq by utilizing the samples of

all the labels. For threshold bq, each sample belonging to Cp, ∀p ≤ q should have a function
value less than bq − 1; otherwise, ξ

q
pi = w · φ(xp

i)− (bq − 1) is the empirical error of xp
i for

bq. Similarly, each sample belonging to Cp, ∀p > q should have a function value greater
than bq + 1; otherwise, ξ

∗q
pi = (bq + 1)−w · φ(xp

i) is the empirical error of xp
i for bq.

As proved in [11,12], this approach has the property that the threshold inequalities
can be automatically satisfied after convergence without explicitly including the corre-
sponding constraints. This method is called support vector ordinal regression with implicit
constraints and is formulated as follows:

Entropy 2022, 24, 1567 4 of 20

min
w,b,ξ,ξ∗

1
2
‖w‖2 + C

Q−1

∑
q=1

q

∑
p=1

Np

∑
i=1

ξ
q
pi + C

Q−1

∑
q=1

Q

∑
p=q+1

Np

∑
i=1

ξ
∗q
pi

s.t. w · φ(xp
i)− bq ≤ −1 + ξ

q
pi, ξ

q
pi ≥ 0, ∀i, q and p = 1, . . . , q

w · φ(xp
i)− bq ≥ +1− ξ

∗q
pi , ξ

∗q
pi ≥ 0, ∀i, q and p = q + 1, . . . , Q,

(1)

where C is a predefined positive constant. The above problem can be solved by solving
the dual problem, which can be derived with standard Lagrangian techniques. Let β

q
pi ≥ 0,

γ
q
pi ≥ 0, β

∗q
pi ≥ 0, and γ

∗q
pi ≥ 0 be the Lagrangian multipliers for the constraints in the above

equation. The dual problem is the following maximization problem [11,12].

max
β,β∗

− 1
2 ∑

p,i
∑
p′ ,i′

(
p−1

∑
q=1

β
∗q
pi −

Q−1

∑
q=p

β
q
pi)(

p′−1

∑
q=1

β
∗q
p′i′ −

Q−1

∑
q=p′

β
q
p′i′)K(xp

i , xp′

i′)

+ ∑
p,i
(

p−1

∑
q=1

β
∗q
pi +

Q−1

∑
q=p

β
q
pi)

s.t.
q

∑
p=1

Np

∑
i=1

β
q
pi =

Q

∑
p=q+1

Np

∑
i=1

β
∗q
pi , ∀q

0 ≤ β
q
pi ≤ C, ∀i, q and p ≤ q

0 ≤ β
∗q
pi ≤ C, ∀i, q and p > q.

(2)

For a new pattern x, SVORIM calculates the function value w · φ(x) and then decides
its category according to the interval the function value falls into, where the intervals are
defined by thresholds {bq}q=1,...,Q−1.

4. Distributed Support Vector Ordinal Regression Algorithm
4.1. Network and Data Model

In this paper, we consider a network consisting of M nodes. We could use a graph
G = (M, E) to represent this network. It consisted of a set of nodesM = {1, 2, . . . , M}
and a set of edges E . Each edge (m, n) ∈ E connected a pair of distinct nodes. We used
Nm = {n|(m, n) ∈ E} to represent the set of neighbors of node m ∈ M.

Data used for ordinal regression are distributedly collected and stored by the M nodes
of this network. The i-th sample of node m is represented as (xm,i, ym,i), where xm,i ∈ X
and ym,i ∈ Y . More specifically, at node m, the total number of samples is Nm, the number
of samples that belong to Cq is Nq

m, and the i-th sample of Cq is denoted as (xq
m,i, yq

m,i).
Figure 1 shows a schematic of a distributed network. In distributed networks, due

to limited storage, computation and communication resources and the need for privacy
protection, node m can only transmit some parameters θm instead of the original data
to its neighbor nodes in Nm, and perform local computation using only its own data
{(xm,i, ym,i)}1≤i≤Nm and the parameters exchanged from its neighbors. Each node should
eventually obtain a model consensus with that obtained by other nodes, and the perfor-
mance of the model should be close to that of the model trained using all the data.

Entropy 2022, 24, 1567 5 of 20

Figure 1. Schematic of a distributed network. Node m only transmits its parameters θm with nodes
in Nm.

4.2. Problem Formulation

In centralized SVOR, the objective is to find an optimal direction w and a vector b.
If the data from all the nodes of the distributed network can be collected together, then
parameters θ = {w, b} can be obtained by solving Problem (1).

In distributed situations, data are not allowed to be transmitted to a central node. Each
node can only use its own data and some parameters from its neighbors. In this case, each
node m has a local estimate θm of θ. With a connected network, we imposed constraints
θm = θn, ∀(m, n) ∈ E to ensure the consensus of {θm}m=1,...,M. Then, the corresponding
optimization problem in distributed scenarios can be written as follows:

min
1
2

M

∑
m=1
‖wm‖2 + C

M

∑
m=1

Q−1

∑
q=1

q

∑
p=1

Np
m

∑
i=1

ξ
q
m,pi + C

M

∑
m=1

Q−1

∑
q=1

Q

∑
p=q+1

Np
m

∑
i=1

ξ
∗q
m,pi

s.t. wm · φ(xp
m,i)− bm,q ≤ −1 + ξ

q
m,pi, ξ

q
m,pi ≥ 0,

∀m, i, q and p = 1, . . . , q

wm · φ(xp
m,i)− bm,q ≥ +1− ξ

∗q
m,pi, ξ

∗q
m,pi ≥ 0,

∀m, i, q and p = q + 1, . . . , Q

wm = wn, bm = bn, ∀(m, n) ∈ E ,

(3)

where ξ
q
m,pi is the empirical error of xp

m,i for bm,q when p = 1, . . . , q and ξ
∗q
m,pi is the empirical

error of xp
m,i for bm,q when p = q + 1, . . . , Q. With the help of the consensus constraints, this

problem is equivalent to Problem (1).

4.3. Problem Transformation

In classical solutions, a primal problem is solved by solving the corresponding dual
problem. Applying such methods to Distributed Problem (3) is confronted with two major
difficulties:

1. For nonlinear kernel functions, the dimension of the RKHS is unknown, and we can
only calculate the inner product of φ(xm,i) and φ(xn,j) rather than them. Because the
data are distributed in various nodes of the network, the kernel function K(xm,i, xn,j)
requiring data from different nodes is difficult to calculate without transmitting the
original data.

2. The dual variables of samples should satisfy constraints in (2). In the distributed
scenarios, the dual variables of the first constraint in (2) are usually from different
nodes. Since each node is only allowed to exchange information with its neighbors, it
is difficult to optimize these dual variables.

Entropy 2022, 24, 1567 6 of 20

To overcome the first difficulty, we use a random approximate function [28] z : RK →
RD, where D > K, to map the data to a D-dimensional space instead of RKHS. In this study,
for Gaussian kernel function

K(x, x′) = exp
(
−‖x− x′‖2

σ2

)
, (4)

we adopted z(x) = [zω1(x), . . . , zωD (x)]T , where each dimension zωi (x) was

zωi (x) =

√
2
D

cos(ωT
i x + ψi), (5)

where ψi is drawn uniformly from [0, 2π], and ωi is drawn from the Fourier transform of
Gaussian kernel function

p(ω) = (2π)−
K
2 exp

(
−σ2‖ω‖2

2

)
. (6)

As proved in [28], if dimensional number D is large enough, z(x)Tz(x′) can approximate
K(x, x′) well, and z(x) can approximate φ(x) well. According to Cover’s theorem [29], a
complex pattern-classification problem nonlinearly cast in a high-dimensional space is
more likely to be linearly separable than it is in a low-dimensional space. Therefore, to
ensure good performance, we should set a relatively large D. For other shift-invariant
kernels such as Laplacian and Cauchy, the authors in [28] provided corresponding finite-
dimensional random approximate functions. For additive homogeneous kernels, such as
Hellinger’s, χ2, intersection and Jensen-Shannon, the authors in [30] also provided efficient
finite-dimensional approximate mapping functions. For a linear kernel function, random
approximation is not necessary, so we defined z(x) = φ(x) = x.

With the random approximation, mapping function φ(x) in (3) is replaced by z(x).
The calculation of z(x) only requires one data point from a single node instead of a pair of
data from different nodes like the kernel function, so the first difficulty is solved.

After the random approximation is performed, the data are mapped into a D-dimensional
feature space instead of the RKHS with unknown dimension. Thus, we could directly solve
the primal problem instead of the dual problem, which automatically tackles the second
difficulty.

With the use of hinge loss function L(x) = max(1− x, 0) [31], the problem can be
rewritten as follows:

min
1
2

M

∑
m=1
‖wm‖2 + C

M

∑
m=1

Q−1

∑
q=1

q

∑
p=1

Np
m

∑
i=1

L(bm,q −wm · z(xp
m,i))

+ C
M

∑
m=1

Q−1

∑
q=1

Q

∑
p=q+1

Np
m

∑
i=1

L(wm · z(xp
m,i)− bm,q)

s.t. wm = wn, bm = bn, ∀(m, n) ∈ E .

(7)

4.4. Sparse Regularization

In the above steps, a D-dimensional random approximate function z(x) is used to
approximate the unknown mapping function φ(x). In general, a large D can lead to small
approximation error and good classification performance. However, an overlarge D may
cause redundancy, which wastes storage space, and brings high computational complexity
and high communication costs. There is a trade-off between the above two aspects, so we
added a sparse regularization term. The regularization term pushes some dimensions of
wm to 0, which means that these dimensions are redundant and can be discarded. When
some dimensions of wm converge to 0, these dimensions do not need to be calculated,
stored and transmitted.

Entropy 2022, 24, 1567 7 of 20

The l0-norm is typically used to measure sparsity. However, it is nonconvex, and
l0-norm-based problems are NP-hard. In practice, we can use the l1-norm as a convex
approximation of the l0-norm. Introducing the l1-norm into the objective function in (7),
we obtain

min
M

∑
m=1

[
(1− α)

1
2
‖wm‖2 + α‖wm‖1

]

+ C
M

∑
m=1

Q−1

∑
q=1

q

∑
p=1

Np
m

∑
i=1

L(bm,q −wm · z(xp
m,i))

+ C
M

∑
m=1

Q−1

∑
q=1

Q

∑
p=q+1

Np
m

∑
i=1

L(wm · z(xp
m,i)− bm,q)

s.t. wm = wn, bm = bn, ∀(m, n) ∈ E ,

(8)

where α ∈ [0, 1] controls the proportion of the l1-norm sparsity regularization term in the
entire regularization term. A larger α can lead to a sparser solution of wm. Therefore, since
we set a relatively large D to ensure good performance, we could set a relatively large α to
reduce redundancy.

We could view this problem from another perspective. If the last two terms in (8) are
regarded to be the objective function, the first two terms combined together can be seen
as a similar penalty to the elastic net penalty in [32], where α measures the weight of the
l1-norm penalty term.

After the above steps, we transformed Problem (3) into a convex optimization problem
with consensus constraints (8).

4.5. Distributed SVOR Algorithm

In this subsection, we propose the dSVOR algorithm to solve Problem (8). First, we
used the following notation for convenience

Jm(θm) = (1− α)
1
2
‖wm‖2 + α‖wm‖1 + C

Q−1

∑
q=1

q

∑
p=1

Np
m

∑
i=1

L(bm,q −wm · z(xp
m,i))

+ C
Q−1

∑
q=1

Q

∑
p=q+1

Np
m

∑
i=1

L(wm · z(xp
m,i)− bm,q),

(9)

which is a convex function. The calculation of Jm(θm) does not need the data and estimated
parameters from other nodes. Then, Problem (8) can be rewritten as follows:

min J =
M

∑
m=1

Jm(θm)

s.t. θm = θn, ∀(m, n) ∈ E .

(10)

To deal with consensus constraints θm = θn, ∀(m, n) ∈ E , we adopted the penalty func-
tion method. The penalty function used in this paper is ‖θm − θn‖2, and the corresponding
positive penalty coefficient is λmn. Then, the optimization problem becomes

min
M

∑
m=1

Jm(θm) + ∑
(m,n)∈E

λmn‖θm − θn‖2 (11)

The larger the λmn is, the closer the solutions of Problems (11) and (10) are.

Entropy 2022, 24, 1567 8 of 20

We then applied the subgradient method to optimize Problem (11). For the hinge loss
function L(x) = max(1− x, 0), we adopted the following subgradient:

L′(x) =

{
− 1, x < 1

0, x ≥ 1
, (12)

and for the l1-norm, we adopted

sgn(x) =

1, x > 0

− 1, x < 0

0, x = 0

. (13)

At step k + 1, the iterative equation is

θk+1
m = θk

m − ηk∇θm Jm(θ
k
m)− 2ηk ∑

n∈Nm

λmn(θ
k
m − θk

n), (14)

where ηk is the step size in step k + 1, which is positive. The specific subgradients are

∇wm Jm(θ
k
m) = (1− α)wk

m + αsgn(wk
m)

− C
Q−1

∑
q=1

q

∑
p=1

Np
m

∑
i=1

L′(bk
m,q −wk

m · z(xp
m,i))z(xp

m,i)

+ C
Q−1

∑
q=1

Q

∑
p=q+1

Np
m

∑
i=1

L′(wk
m · z(xp

m,i)− bk
m,q)z(xp

m,i),

(15)

∇bm,q Jm(θ
k
m) = C

q

∑
p=1

Np
m

∑
i=1

L′(bk
m,q −wk

m · z(xp
m,i))

− C
Q

∑
p=q+1

Np
m

∑
i=1

L′(wk
m · z(xp

m,i)− bk
m,q).

(16)

In the subgradient method, in order to converge to the optimal solution, step size ηk should
satisfy [33]

+∞

∑
k=0

ηk = +∞, and
+∞

∑
k=0

(ηk)2 < +∞. (17)

We can rearrange Iterative Equation (14) as follows.

θk+1
m = (1− 2ηk ∑

n∈Nm

λmn)θ
k
m + ∑

n∈Nm

2ηkλmnθk
n − ηk∇θm Jm(θ

k
m). (18)

If we use the following notations for convenience

cmn = 2ηkλmn, cmm = 1− ∑
n∈Nm

2ηkλmn, (19)

the iterative equation can be rewritten as

θk+1
m = ∑

n∈Nm∪{m}
cmnθk

n − ηk∇θm Jm(θ
k
m). (20)

It can be divided into two steps, i.e., a combination step and an adaption step:

φk
m = ∑

n∈Nm∪{m}
cmnθk

n, (21)

Entropy 2022, 24, 1567 9 of 20

θk+1
m = φk

m − ηk∇θm Jm(θ
k
m). (22)

In Combination Step (21), node m combines the parameters estimated by its neighbors
and itself to obtain an intermediate estimate φk

m, where the combination coefficient of node
m and its neighbor n is denoted as cmn. In Adaption Step (22), node m uses the subgradient
calculated by using only its own data to update θm.

Combination coefficients {cmn}∀(m,n)∈E represent a cooperation rule among nodes.
Equation (19) was not used to define {cmn} because λmn was not defined in advance. In
distributed algorithms, combination coefficients are generally determined by a certain
cooperative protocol. In this study, we used the Metropolis rule [34]:

cmn =

1
max(|Nm|, |Nn|)

, n ∈ Nm

1− ∑
n∈Nm

cmn, m = n

0, otherwise

, (23)

where |Nm| denotes the degree of node m, and

C1 = 1, 1TC = 1T , (24)

where C is an M×M matrix whose entries are defined by (23).
Equation (19) shows that λmn = cmn

2ηk . Step size ηk satisfies (17), where the latter implies

that limk→∞ ηk = 0. As k→ ∞, step size ηk → 0 and penalty coefficient λmn → ∞, which
renders the solutions of Problems (11) and (10) nearly equal.

The whole processes of dSVOR are summarized in Algorithm 1.

Algorithm 1 Distributed SVOR algorithm
Initialization: initialize hinge loss function weight C, sparsity regularization weight α,

random approximate dimension D, and total iteration number T. Each node m initializes
θm = {wm, bm}.

for k = 1 : T
for m = 1 : M

Communication Step: communicate parameters θm with neighbors n ∈ Nm.
end for
for m = 1 : M

Combination Step: compute intermediate estimate φk
m via (21).

Computation Step: Compute the subgradients∇wm Jm(θk
m),∇bm,q Jm(θk

m) via (15) and (16);
Adaption Step: update θk+1

m via (22).
end for

end for

Remark 1. In the above problems, φ(·) is a nonlinear mapping function that maps input x into a
RKHS for classification, and input x is the original data or extracted features. In general, function
φ(·) can also be regarded to be a generalized feature mapping function that extracts features of x,
and maps x into a feature space for classification. Thus, it can also use an artificial neural network
with learnable parameters. However, that may destroy the convexity of the problem, so that it is no
longer guaranteed to converge to the global optimum.

4.6. Theoretical Analysis

In this subsection, we theoretically analyze the consensus and convergence of dSVOR.
We first introduce a reasonable assumption that is needed in analysis. According

to [34], when the graph is not bipartite, this assumption can be guaranteed.

Entropy 2022, 24, 1567 10 of 20

Assumption 1. Spectral radius ρ(C− 1
M 11T) < 1, where C is the combination coefficient matrix

set as in Equation (23).

Then, we give two theorems about consensus and convergence each.

Theorem 1 (Consensus). If Assumption 1 holds, and step size ηk satisfies Condition (17), then
limk→∞ ‖θk

m − θ̄k‖ = 0, ∀m, where θ̄k = 1
M ∑M

m=1 θk
m.

Theorem 2 (Convergence). If Assumption 1 holds, and step size ηk satisfies Condition (17), then
limk→∞ ∑M

m=1 Jm(θk
m) = J∗, where J∗ = min J.

For the proof, see Appendices A and B for details.

5. Experiments

In this section, we carry out experiments on synthetic data and a real-world example
to demonstrate the performance of the proposed dSVOR algorithm.

We implemented the following algorithms for comparison:

1. proposed dSVOR algorithm (dSVOR);
2. centralized SVOR (cSVOR), which relies on all the data available in a central node;
3. distributed SVOR with a noncooperative strategy (ncSVOR). In ncSVOR, each node

uses only its own data to train a model without any information exchanged with
other nodes.

All the algorithms were implemented using the PyTorch framework [35].
There are three points to emphasize:

1. The centralized method needs data in a central node. For comparison, we artificially
collected all the data distributed in the nodes of the network together to render it
applicable, which is impractical in reality.

2. In cSVOR [11,12], problems were solved by the SMO algorithm instead of subgradient-
based algorithms, so we only display its final results.

3. The distributed algorithms were subject to additional constraints, so a distributed
algorithm is generally satisfactory if it can achieve comparable performance to the
corresponding centralized algorithm.

In this study, we used the prediction accuracy (ACC) and mean absolute error (MAE)
on the testing set as the performance evaluation metrics. ACC is a commonly used metric
in classification problems, but it does not consider the ordered information of the labels.
MAE is the mean absolute deviation of the predicted rank from the true one, which is
commonly used in ordinal regression. Using a function O(·) to denote the position of a
certain label in the ordinal scale, i.e., O(Cq) = q, q = 1, . . . , Q, we have

MAE =
1
N

N

∑
i=1
|O(yi)−O(ŷi)| ∈ [0, Q− 1]. (25)

The performance of distributed algorithms (dSVOR and ncSVOR) is defined as the mean
performance of models obtained by each node. The distributed algorithms ran on a
randomly generated connected network that consisted of 20 nodes. For fair comparison, on
a certain dataset, all implemented algorithms used the same parameters. All the results
were obtained by averaging the results of 10 independent experiments.

5.1. Synthetic Data

In this subsection, we evaluate the performance of all algorithms on two synthetic
datasets. On the first dataset, samples could be separated by a set of parallel straight
lines if ignoring noises, and samples of the second dataset could be separated by a set
of concentric circles. Figure 2a,b show some samples of these two datasets from one of
the 10 independent experiments. Both datasets had 1200 samples: 1000 were used as the

Entropy 2022, 24, 1567 11 of 20

training set, and the others were the testing set. The training samples were randomly
assigned to 20 nodes to simulate the situation where the data were collected and stored by
these nodes in a distributed manner.

−2 −1 0 1 2

−2

−1

0

1

2
label 1
label 2
label 3
label 4

(a)

−4 −2 0 2 4

−4

−2

0

2

4

label 1
label 2
label 3
label 4

(b)

Figure 2. Data visualization of the (a) first and (b) second synthetic datasets.

These two synthetic datasets were generated with the following methods. For the
first dataset, we generated 1200 samples with uniform distribution from a rectangular area
x1min ≤ x1 ≤ x1max, x2min ≤ x2 ≤ x2max. We then used three straight lines {x1 = bi}i=1,2,3
to divide this area into 4 parts for 4 classes. The data labels were determined by their
locations. Then, Gaussian noise with 0 mean and σ1 standard deviation was added to each
dimension of input vector x = [x1 x2]

T . After that, these samples were rotated around the
origin with β. Without loss of generality, in the experiments, these parameters were set as
follows:

x1min = −2, x1max = 2, x2min = −1, x2max = 1,

b1 = −1, b2 = 0, b3 = 1, σ1 = 0.5, β =
π

8
.

For the second dataset, we generated 1200 samples with uniform distribution from a
circle x2

1 + x2
2 < R2, which could be divided into four parts by three concentric circles

{x2
1 + x2

2 = R2
i }i=1,2,3. The data labels were determined by their locations. Then, Gaussian

noise with 0 mean and σ2 standard deviation was added to each dimension of input vector
x = [x1 x2]

T . Without loss of generality, the parameters were set to be R = 4, R1 = 1,
R2 = 2, R3 = 3, σ2 = 0.2.

On the first dataset, we used a linear kernel function. In all methods, positive constant
C was set to be 1000/N, where N is the number of samples of all nodes. Because the
feature space was only 2-dimensional, the sparse regularization term in our method was
not necessary. Thus, we set the coefficient of sparse regularization term α = 0. In the
distributed algorithm, we used the following diminishing step size:

ηk =
η0

1 + τk
, (26)

which satisfied Condition (17). In (26), parameter η0 determines the initial step size, and τ
determines the decreasing rate of the diminishing step size. We empirically set η0 = 0.1
and τ = 0.01 in the following experiments.

Figure 3a,b show the ACC and MAE curves of different algorithms on the first synthetic
dataset. As time increased, the MAE of our dSVOR algorithm decreased, and the ACC
increased significantly. After about 500 iterations, the dSVOR algorithm converged to a

Entropy 2022, 24, 1567 12 of 20

value that was almost the same as that of cSVOR, while the result of ncSVOR was still some
distance away from them. This means that it was not enough for a single node to train a
model with good performance using its own data. The proposed dSVOR algorithm, which
uses the local data of each node and the parameter estimates from neighbor nodes, could
achieve a similar performance to that of the corresponding centralized method.

��� ��� ��� ���

����������

����

����

����

����

����
�
		

��
�
��
�
���
�

(a)

��� ��� ��� ���

����������

����

����

����

����

����

����

����

�
	

����
����
�����

(b)

Figure 3. (a) ACC and (b) MAE curves of different algorithms on the first synthetic dataset.

Figure 4 gives the parameters of each node estimated by different algorithms. In
the ncSVOR algorithm, the estimated parameters obtained by different nodes were quite
different. Thus, the model obtained by each node with its own data was quite different
from the model trained using all the data. In contrast, the estimated parameters of different
nodes in dSVOR were almost the same as the parameters in cSVOR. This illustrates the
consensus of the proposed dSVOR algorithm. Because we used a linear kernel function
here, optimal direction w in the centralized method had an explicit expression that allowed
for us to compare it with the estimates of the distributed algorithms. In the following
experiments using nonlinear kernel functions, we do not give the results about consensus.

� � � � � � � 	
 �� �� �� �� �� �� �� �� �	 �
 ��
����
����
����
����
����
����
����
����

w
i

���� ���� �����

� � � � � � � 	
 �� �� �� �� �� �� �� �� �	 �
 ��
�����

����
����
����
���
���
���
���

b i

Figure 4. Final estimated parameters of different methods.

On the second dataset, we used a Gaussian kernel function. The kernel size was set
to be σ = 1

K after Z-score normalization, where K is the dimension of input space. In all
methods, positive constant C was set to be 1000/N. As analyzed before, in our method, we
set a relatively large D and a relatively large a, D = 200, α = 0.9. α was not set to 1 because

Entropy 2022, 24, 1567 13 of 20

we wanted to use the strong convexity of the l2-norm regularization term to increase the
convexity of the objective function, which is theoretically beneficial to the optimization of
the problem. The learning rate parameters were still set to be η0 = 0.1 and τ = 0.01.

Figure 5a,b show the ACC and MAE curves of different algorithms on the second
synthetic dataset. The proposed dSVOR algorithm was able to obtain almost the same
result as that of the centralized method, while ncSVOR could not.

��� ��� ��� ���

����������

���

���

���

���

���

��	

��

�
��

����
����
�����

(a)

��� ��� ��� ���

����������

���

���

���

���

���

�
	

����
����
�����

(b)

Figure 5. (a) ACC and (b) MAE curves of different algorithms on the second synthetic dataset.

We also conducted experiments under different hyperparameters D and α to show the
parameter sensitivity of dSVOR. Figure 6 gives the MAEs of dSVOR for different D when
α was fixed as 0.9. As D increased, the performance of dSVOR gradually improved and
was eventually almost the same as that of the centralized method. With a relatively large
approximation dimension D ≥ 100, dSVOR could always obtain a similar MAE to that of
cSVOR. However, as mentioned before, an overlarge D may cause redundancy. So, when
using a large D to ensure good performance, it is better to use the sparse regularization
term to reduce the redundancy. Figure 7a,b gives the MAEs of dSVOR and the proportions
of dimensions of wm that were equal to 0 for different α when D is fixed as 200. The MAE
was stable under different α, but the sparsity of wm was greatly affected by α. A small α led
to a dense wm, which caused a lot of redundancy. A large α could bring a sparse wm, where
the dimensions that converged to 0 could no longer be stored, calculated, and transmitted
after converging to 0, thus saving storage, computation, and communication resources.

�� �� �� ��� ��� ���
D

����

����

����

����

����

����

�
�
�

��	

���	

Figure 6. MAEs of dSVOR on the second synthetic dataset for different D when α is fixed as 0.9.

Entropy 2022, 24, 1567 14 of 20

��� ��� ��� ��� ��� ���
α

����

����

����

����

����

����

�
	

����
����

(a)

��� ��� ��� ��� ��� ���
α

���

���

���

���

���

���

�
	

	�
��	

�

(b)

Figure 7. Results of dSVOR on the second synthetic dataset for different α when D is fixed as 200.
(a) MAEs; (b) proportions of dimensions of wm that are equal to 0.

5.2. A Real-World Example

We now take the distributed fault severity diagnosis of rolling element bearings as a
real-world example to illustrate the effectiveness of dSVOR.

Rolling element bearings are widely used in factory equipments. The fault severity
diagnosis of bearings is a crucial task to ensure reliability in industrial processes. In recent
years, data-driven methods have been widely used to identify faults and their severity [36].
To achieve good performance, these data-driven methods usually require a lot of data.
However, due to the rarity of faults, a single sensor can only collect very few fault data,
and the faults encountered by each factory may also be different. Thus, data from many
sensors in many factories are needed to train a proper model. Sometimes, factories may
not want to leak the data about their equipments, so it is not allowed to transmit the
data to others. The centralized methods which need all the data available in a central
node become inapplicable. The distributed methods become a better choice. Taking into
account the ordinal information in the fault severity, it is suitable to apply the proposed
dSVOR algorithm.

In this study, we used the rolling element bearings data provided by the Case Western
Reserve University (CWRU) [37] for experiments. CWRU data were the vibration signals
of drive end and fan end bearings collected by sensors at 12,000 and 48,000 samples/s
under four different loads of 0–3 hp. There are three types of faults: outer race (OR), inner
race (IR), and ball (B) faults, and each type has at most four severity levels (fault width:
0.18, 0.36, 0.53, 0.71 mm). In the experiments, we used drive end bearing data collected at
12,000 samples/s, and performed 4-level fault severity diagnosis in a total of 12 situations
(3 different fault types and 4 different loads).

We adopted the feature based on permutation entropy (PE) proposed in [38] as the
input x. For one datum, we intercepted a sequence of length 2400 from vibration signal
data. This sequence was decomposed into a series of intrinsic mode functions (IMFs)
by ensemble empirical mode decomposition (EEMD) with 100 ensembles and 0.2 noise
amplitude to catch information on multiple time scales. Then, the PE values of the first
5 IMFs are calculated as the input feature of this piece of data.

For each fault severity level, we randomly took 300 training samples and 200 testing
samples, and the samples in the testing set were different from those in the training set.
For 4-level fault level diagnosis, there were a total of 1200 training samples and 800 testing
samples. These training samples were randomly assigned to 20 nodes to simulate the
situation where the data were collected and stored by these nodes in a distributed manner.

In the experiments, we used a Gaussian kernel function with kernel size σ = 1
K after

Z-score normalization. In all methods, positive constant C was set to be 10,000/N. In our
method, we still set a relatively large hyperparameter D and α, D = 200, α = 0.9. The other
parameters used the same settings as before, i.e., η0 = 0.1 and τ = 0.01.

Entropy 2022, 24, 1567 15 of 20

Table 1 shows the experimental results where the value was the mean ± standard
deviation of 10 independent experiments. The performance of ncSVOR was worse than that
of cSVOR because each node only had part of the training samples that were not enough
to represent the entire training set to train a proper model. Compared to ncSVOR, the
proposed dSVOR algorithm could achieve similar results to those of cSVOR. In dSVOR,
each node can only use the data of its own and exchange some estimated parameters with
neighbor nodes. It was satisfactory to be able to achieve performance close to that of the
centralized method that uses all the data from all nodes.

Table 1. ACCs and MAEs of different algorithms in a real-world example (mean ± std).

Fault Type Load cSVOR ncSVOR dSVOR
ACC MAE ACC MAE ACC MAE

OR

0 0.9585± 0.0057 0.0415± 0.0057 0.7977± 0.0211 0.2069± 0.0230 0.9553± 0.0064 0.0447± 0.0064
1 0.9317± 0.0147 0.0683± 0.0147 0.7376± 0.0228 0.2726± 0.0264 0.9278± 0.0136 0.0727± 0.0138
2 0.9547± 0.0091 0.0457± 0.0096 0.7901± 0.0136 0.2172± 0.0153 0.9517± 0.0094 0.0492± 0.0099
3 0.9253± 0.0099 0.0747± 0.0099 0.7599± 0.0158 0.2489± 0.0173 0.9243± 0.0095 0.0758± 0.0096

IR

0 0.8853± 0.0133 0.1149± 0.0133 0.7472± 0.0087 0.2589± 0.0091 0.8844± 0.0120 0.1157± 0.0120
1 0.8624± 0.0112 0.1376± 0.0112 0.7288± 0.0103 0.2781± 0.0110 0.8556± 0.0137 0.1444± 0.0137
2 0.8435± 0.0109 0.1565± 0.0109 0.7071± 0.0116 0.3000± 0.0133 0.8391± 0.0113 0.1611± 0.0113
3 0.8726± 0.0095 0.1291± 0.0091 0.7238± 0.0110 0.2918± 0.0122 0.8632± 0.0094 0.1392± 0.0091

B

0 0.7768± 0.0110 0.2586± 0.0129 0.5440± 0.0184 0.5975± 0.0311 0.7594± 0.0221 0.2771± 0.0245
1 0.7836± 0.0105 0.2419± 0.0099 0.5770± 0.0124 0.5284± 0.0195 0.7710± 0.0067 0.2540± 0.0106
2 0.8256± 0.0088 0.1886± 0.0088 0.5820± 0.0156 0.5341± 0.0264 0.8177± 0.0147 0.1980± 0.0150
3 0.8627± 0.0167 0.1541± 0.0193 0.6345± 0.0138 0.4648± 0.0253 0.8485± 0.0169 0.1710± 0.0204

Taking the dataset of the IR fault type and 0 hp load as examples, we also show the
results of dSVOR under different hyperparameters D and α in Figures 8 and 9. Figure 8
shows that, with a relatively large random approximation dimension D ≥ 100, dSVOR
could obtain a similar MAE to that of cSVOR, which illustrates the effectiveness of the
random approximation. Figure 9 shows that a relatively large α can lead to a sparse wm
without affecting the MAE performance, thus effectively reducing redundancy.

�� �� �� ��� ��� ���
D

����

����

����

����

����

����

����

����

	
�
�

��
�
��
�

Figure 8. MAEs of dSVOR on the CWRU dataset of IR fault type and 0 hp load for different D when
α is fixed as 0.9.

Entropy 2022, 24, 1567 16 of 20

��� ��� ��� ��� ��� ���
α

����

����

����

����

����

����

����

����

�
	

����
����

(a)

��� ��� ��� ��� ��� ���
α

���

���

���

���

���

���

�
	

	�
��	

�

(b)

Figure 9. The results of dSVOR on the CWRU dataset of IR fault type and 0 hp load for different α

when D is fixed as 200 (a) the MAEs (b) the proportions of dimensions of wm that are equal to 0.

6. Conclusions

When data are distributedly collected and stored by multiple nodes, and are difficult
to transmit to a central node, existing centralized ordinal regression methods become
inapplicable. To this end, in order to handle the ordinal regression problem in distribution
scenarios, we extended the SVORIM to a distributed version, and derived a distributed
SVOR (dSVOR) algorithm. In dSVOR, each node combines the parameters estimated by its
neighbors and performs local calculations using only its own data. After convergence, each
node can obtain a model whose performance is close to that obtained by the centralized
method relying on all the data available in a central node. Theoretically, we analyzed
the consensus and the convergence of dSVOR. Practically, we carried out experiments on
synthetic data and a real-world example to illustrate its effectiveness.

In our future work, we intend to consider how to automatically determine the proper
parameters in dSVOR, e.g., introducing multi-kernel learning to automatically find suitable
parameters of random approximate. We also aim to design adaptive strategies for adjusting
combination coefficients.

Author Contributions: Conceptualization, H.L. and C.L.; methodology, H.L. and C.L.; formal analy-
sis, H.L., J.T. and C.L.; writing—original draft preparation, H.L.; writing—review and editing, H.L.,
J.T. and C.L. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (grant No.
U20A20158), the Key-Area Research and Development Program of Guangdong Province (grant No.
2021B0101410004), and the National Program for Special Support of Eminent Professionals.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: the authors declare no conflict of interest.

Appendix A. Proof of Theorem 1

Proof. For convenience, we use the following notation:

θk = [θk
1, . . . , θk

M]T , Gk
θ = [∇θ1 J1(θ

k
1), . . . ,∇θM JM(θk

M)]T . (A1)

Then, Iterative Equation (20) can be written as follows.

θk+1 = Cθk − ηkGk
θ. (A2)

Entropy 2022, 24, 1567 17 of 20

Considering θ̄k = 1
M 1Tθk, the proof of limk→∞ ‖θk

m − θ̄k‖ = 0, ∀m can be done by
proving limk→∞ ‖θk − 1

M 11Tθk‖ = 0. We first construct

θk+1 − 1
M

11Tθk+1 = (I − 1
M

11T)θk+1 = (I − 1
M

11T)(Cθk − ηkGk
θ)

= (C− 1
M

11T)θk − (I − 1
M

11T)ηkGk
θ.

(A3)

Notice that
C

1
M

11T =
1
M

11T =
1
M

11T 1
M

11T . (A4)

We have

θk+1 − 1
M

11Tθk+1 = (C− 1
M

11T)θk − (I − 1
M

11T)ηkGk
θ

− C
1
M

11Tθk +
1
M

11T 1
M

11Tθk

= (C− 1
M

11T)(θk − 1
M

11Tθk)− (I − 1
M

11T)ηkGk
θ.

(A5)

For convenience, we use notation ∆θk = θk − 1
M 11Tθk, then

∆θk+1 = (C− 1
M

11T)∆θk − (I − 1
M

11T)ηkGk
θ. (A6)

We then prove limk→∞ ‖∆θk‖ = 0.
Taking the l2-norm on both sides of the above equation, we have

‖∆θk+1‖ ≤ ‖C− 1
M

11T‖‖∆θk‖+ ηk‖I − 1
M

11T‖‖Gk
θ‖ = ρ‖∆θk‖+ ηkc‖Gk

θ‖, (A7)

where c = ‖I− 1
M 11T‖ is a positive constant, and ρ denotes the spectral norm of C− 1

M 11T ,
which < 1 according to Assumption 1.

Since Jm(θm) is Lipschitz continuous, Gk
θ is bounded, so there exists a positive constant

L satisfying ‖Gk
θ‖ ≤ L. Thus,

‖∆θk+1‖ ≤ ρ‖∆θk‖+ ηkcL. (A8)

Now we prove that limk→∞ ‖∆θk‖ = 0. To achieve this, we constructed an auxiliary
variable uk that satisfied

uk+1 = ρuk + ηkcL, (A9)

and u0 = ‖∆θ0‖ ≥ 0. If uk ≥ ‖∆θk‖ ≥ 0, then

uk+1 = ρuk + ηkcL ≥ ρ‖∆θk‖+ ηkcL ≥ ‖∆θk+1‖. (A10)

So uk ≥ ‖∆θk‖ ≥ 0 for all k ≥ 0. With ρ < 1 and limk→∞ ηk = 0, we have limk→∞ uk = 0.
Then

0 ≤ lim
k→∞
‖∆θk‖ ≤ lim

k→∞
uk = 0. (A11)

So we have
lim
k→∞
‖θk − 1

M
11Tθk‖ = lim

k→∞
‖∆θk‖ = 0. (A12)

The proof of Theorem 1 is completed.

Entropy 2022, 24, 1567 18 of 20

Appendix B. Proof of Theorem 2

Proof. From Equation (20), we can obtain

M

∑
m=1

θk+1
m =

M

∑
m=1

∑
n∈Nm∪{m}

cmnθk
n −

M

∑
m=1

ηk∇θm Jm(θ
k
m)

=
M

∑
m=1

θk
m −

M

∑
m=1

ηk∇θm Jm(θ
k
m).

(A13)

From Theorem 1, we have limk→∞ ‖θk
m − θ̄k‖ = 0. So, for a sufficiently large k = k1, the

above equation can be written as follows:

θ̄k1+1 = θ̄k1 − ηk1

M

M

∑
m=1
∇θm Jm(θ̄

k1), (A14)

where ∇θm Jm(θ̄k1) denotes the subgradient of Jm(θm) with respect to θm when θm = θ̄k1 .
Supposing θ∗ = arg min J, we have

‖θ̄k1+1 − θ∗‖2 = ‖θ̄k1 − ηk1

M

M

∑
m=1
∇θm Jm(θ̄

k1)− θ∗‖2

= ‖θ̄k1 − θ∗‖2 + ‖ηk1

M

M

∑
m=1
∇θm Jm(θ̄

k1)‖2

− 2
ηk1

M

M

∑
m=1
∇θm Jm(θ̄

k1)T(θ̄k1 − θ∗).

(A15)

Since Jm(θm) is Lipschitz continuous for all m, there exists a positive constant L satisfying
‖ 1

M ∑M
m=1∇θm Jm(θm)‖2 ≤ L2. Thus,

‖θ̄k1+1 − θ∗‖2 ≤ ‖θ̄k1 − θ∗‖2 + (ηk1)2L2 − 2
ηk1

M

M

∑
m=1
∇θm Jm(θ̄

k1)T(θ̄k1 − θ∗). (A16)

Because Jm(θm) is convex, we have

∇θm Jm(θ̄
k1)T(θ̄k1 − θ∗) ≥ Jm(θ̄

k1)− Jm(θ
∗). (A17)

Then

‖θ̄k1+1 − θ∗‖2 ≤ ‖θ̄k1 − θ∗‖2 + (ηk1)2L2 − 2
ηk1

M

M

∑
m=1

(Jm(θ̄
k1)− Jm(θ

∗))

= ‖θ̄k1 − θ∗‖2 + (ηk1)2L2 − 2
ηk1

M
(J(θ̄k1)− J∗).

(A18)

If limk→∞ ∑M
m=1 Jm(θk

m) 6= J∗, ∃ε > 0, k2 > 0, ∀k ≥ k2, J(θ̄k2) − J∗ > ε. Let k3 =
max{k1, k2}. Then

‖θ̄k3+1 − θ∗‖2 < ‖θ̄k3 − θ∗‖2 + (ηk3)2L2 − 2
ηk3

M
ε. (A19)

Taking the summation of both sides of the above equation over k = k3, . . . , k3 + k∗,
we obtain

‖θ̄k3+k∗ − θ∗‖2 < ‖θ̄k3 − θ∗‖2 +
k3+k∗

∑
k=k3

(ηk)2L2 −
k3+k∗

∑
k=k3

2
ηk

M
ε. (A20)

Entropy 2022, 24, 1567 19 of 20

Since ‖θ̄k3+k∗ − θ∗‖2 ≥ 0, we have

‖θ̄k3 − θ∗‖2 +
k3+k∗

∑
k=k3

(ηk)2L2 >
k3+k∗

∑
k=k3

2
ηk

M
ε. (A21)

Thus,

‖θ̄k3 − θ∗‖2 + L2 ∑k3+k∗
k=k3

(ηk)2

2
M ∑k3+k∗

k=k3
ηk

> ε. (A22)

Since ∑+∞
k=0 ηk = +∞ and ∑+∞

k=0(η
k)2 < +∞,

lim
k∗→∞

‖θ̄k3 − θ∗‖2 + L2 ∑k3+k∗
k=k3

(ηk)2

2
M ∑k3+k∗

k=k3
ηk

= 0, (A23)

which conflicts with Equation (A22). Thus,

lim
k→∞

M

∑
m=1

Jm(θ
k
m) = J∗. (A24)

The proof of Theorem 2 is completed.

References
1. Doyle, O.M.; Westman, E.; Marqu, A.F.; Mecocci, P.; Vellas, B.; Tsolaki, M.; Kłoszewska, I.; Soininen, H.; Lovestone, S.; Williams,

S.C.; et al. Predicting progression of alzheimer’s disease using ordinal regression. PLoS ONE 2014, 9, e105542. [CrossRef]
2. Allen, J.; Eboli, L.; Mazzulla, G.; Ortúzar, J.D. Effect of critical incidents on public transport satisfaction and loyalty: An Ordinal

Probit SEM-MIMIC approach. Transportation 2020, 47, 827–863. [CrossRef]
3. Gutiérrez, P.A.; Salcedo-Sanz, S.; Hervás-Martínez, C.; Carro-Calvo, L.; Sánchez-Monedero, J.; Prieto, L. Ordinal and nominal

classification of wind speed from synoptic pressurepatterns. Eng. Appl. Artif. Intell. 2013, 26, 1008–1015. [CrossRef]
4. Cao, W.; Mirjalili, V.; Raschka, S. Rank consistent ordinal regression for neural networks with application to age estimation.

Pattern Recognit. Lett. 2020, 140, 325–331. [CrossRef]
5. Hirk, R.; Hornik, K.; Vana, L. Multivariate ordinal regression models: An analysis of corporate credit ratings. Stat. Method. Appl.

2019, 28, 507–539. [CrossRef]
6. Zhao, X.; Zuo, M.J.; Liu, Z.; Hoseini, M.R. Diagnosis of artificially created surface damage levels of planet gear teeth using ordinal

ranking. Measurement 2013, 46, 132–144. [CrossRef]
7. Kotsiantis, S.B.; Pintelas, P.E. A cost sensitive technique for ordinal classification problems. In Proceedings of the 3rd Hellenic

Conference on Artificial Intelligence, Samos, Greece, 5–8 May 2004; pp. 220–229.
8. Tu, H.-H.; Lin, H.-T. One-sided support vector regression for multiclass cost-sensitive classification. In Proceedings of the 27th

International Conference on Machine Learning, Haifa, Israel, 21–24 June 2010; pp. 49–56.
9. Harrington, E.F. Online ranking/collaborative filtering using the perceptron algorithm. In Proceedings of the 20th International

Conference on Machine Learning, Washington, DC, USA, 21–24 August 2003; pp. 250–257.
10. Gutiérrez, P.A.; Perez-Ortiz, M.; Sanchez-Monedero, J.; Fernez-Navarro, F.; Hervas-Martinez, C. Ordinal regression methods:

Survey and experimental study. IEEE Trans. Knowl. Data Eng. 2015, 28, 127–146. [CrossRef]
11. Chu, W.; Keerthi, S.S. New approaches to support vector ordinal regression. In Proceedings of the 22nd International Conference

on Machine Learning, Bonn, Germany, 7–11 August 2005; pp. 145–152.
12. Chu, W.; Keerthi, S.S. Support vector ordinal regression. Neural Comput. 2007, 19, 792–815. [CrossRef]
13. Li, T.; Sahu, A.K.; Talwalkar, A.; Smith, V. Federated learning: Challenges, methods, and future directions. IEEE Signal Process.

Mag. 2020, 37, 50–60. [CrossRef]
14. Liu, H.; Tu, J.; Li, C. Distributed Ordinal Regression Over Networks. IEEE Access 2021, 9, 62493–62504. [CrossRef]
15. McCullagh, P. Regression models for ordinal data. J. Royal Stat. Soc. Ser. B Methodol. 1980, 42, 109–142. [CrossRef]
16. Williams, R. Understanding and interpreting generalized ordered logit models. J. Math. Sociol. 2016, 40, 7–20. [CrossRef]
17. Wang, H.; Shi, Y.; Niu, L.; Tian, Y. Nonparallel Support Vector Ordinal Regression. IEEE Trans. Cybern. 2017, 47, 3306–3317.

[CrossRef]
18. Jiang, H.; Yang, Z.; Li, Z. Non-parallel hyperplanes ordinal regression machine. Knowl.-Based Syst. 2021, 216, 106593. [CrossRef]
19. Li, L.; Lin, H.-T. Ordinal regression by extended binary classification. Adv. Neural Inf. Process. Syst. 2006, 19, 865–872.

http://doi.org/10.1371/journal.pone.0105542
http://dx.doi.org/10.1007/s11116-018-9921-4
http://dx.doi.org/10.1016/j.engappai.2012.10.018
http://dx.doi.org/10.1016/j.patrec.2020.11.008
http://dx.doi.org/10.1007/s10260-018-00437-7
http://dx.doi.org/10.1016/j.measurement.2012.05.031
http://dx.doi.org/10.1109/TKDE.2015.2457911
http://dx.doi.org/10.1162/neco.2007.19.3.792
http://dx.doi.org/10.1109/MSP.2020.2975749
http://dx.doi.org/10.1109/ACCESS.2021.3074629
http://dx.doi.org/10.1111/j.2517-6161.1980.tb01109.x
http://dx.doi.org/10.1080/0022250X.2015.1112384
http://dx.doi.org/10.1109/TCYB.2017.2682852
http://dx.doi.org/10.1016/j.knosys.2020.106593

Entropy 2022, 24, 1567 20 of 20

20. Liu, X.; Fan, F.; Kong, L.; Diao, Z.; Xie, W.; Lu, J.; You, J. Unimodal regularized neuron stick-breaking for ordinal classification.
Neurocomputing 2020, 388, 34–44. [CrossRef]

21. Cattivelli, F.S.; Sayed, A.H. Diffusion LMS strategies for distributed estimation. IEEE Trans. Signal Process. 2009, 58, 1035–1048.
[CrossRef]

22. Li, C.; Shen, P.; Liu, Y.; Zhang, Z. Diffusion information theoretic learning for distributed estimation over network. IEEE Trans.
Signal Process. 2013, 61, 4011–4024. [CrossRef]

23. Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J. Distributed optimization and statistical learning via the alternating direction
method of multipliers. Found. Trends Mach. Learn. 2011, 3, 1–122. [CrossRef]

24. Yang, T.; Yi, X.; Wu, J.; Yuan, Y.; Wu, D.; Meng, Z.; Hong, Y.; Wang, H.; Lin, Z.; Johansson, K.H. A survey of distributed
optimization. Annu. Rev. Control 2019, 47, 278–305. [CrossRef]

25. Shen, P.; Li, C. Distributed information theoretic clustering. IEEE Trans. Signal Process. 2014, 62, 3442–3453. [CrossRef]
26. Olfati-Saber, R. Distributed Kalman filtering for sensor networks. In Proceedings of the 46th Conference on Decision and Control,

New Orleans, LA, USA, 12–14 December 2007; pp. 5492–5498.
27. Miao, X.; Liu, Y.; Zhao, H.; Li, C. Distributed online one-class support vector machine for anomaly detection over networks. IEEE

Trans. Cybern. 2018, 49, 1475–1488. [CrossRef]
28. Rahimi, A.; Recht, B. Random features for large-scale kernel machines. Adv. Neural Inf. Process. Syst. 2007, 20, 1177–1184.
29. Cover, T.M. Geometrical and Statistical Properties of Systems of Linear Inequalities with Applications in Pattern Recognition.

IEEE Trans. Electron. Comput. 1965, 14, 326–334. [CrossRef]
30. Vedaldi, A.; Zisserman, A. Efficient additive kernels via explicit feature maps. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34,

480–492. [CrossRef]
31. Scholkopf, B.; Smola, A.J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond; MIT Press:

Cambridge, MA, USA, 2002.
32. Zou, H.; Hastie, T. Regularization and variable selection via the elastic net. J. Royal Stat. Soc. Ser. B 2005, 67, 301–320. [CrossRef]
33. Bertsekas, D. Convex Optimization Algorithms; Athena Scientific: Belmont, MA, USA, 2015.
34. Xiao, L.; Boyd, S. Fast linear iterations for distributed averaging. Syst. Control Lett. 2004, 53, 65–78. [CrossRef]
35. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. Pytorch:

An imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 2019, 32, 8024–8035.
36. Cerrada, M.; Sánchez, R.V.; Li, C.; Pacheco, F.; Cabrera, D.; de Oliveira, J.V.; Vásquez, R.E. A review on data-driven fault severity

assessment in rolling bearings. Mech. Syst. Signal Process. 2018, 99, 169–196. [CrossRef]
37. Smith, W.A.; Randall, R.B. Rolling element bearing diagnostics using the Case Western Reserve University data: A benchmark

study. Mech. Syst. Signal Process. 2015, 64, 100–131. [CrossRef]
38. Zhang, X.; Liang, Y.; Zhou, J. A novel bearing fault diagnosis model integrated permutation entropy, ensemble empirical mode

decomposition and optimized SVM. Measurement 2015, 69, 164–179. [CrossRef]

http://dx.doi.org/10.1016/j.neucom.2020.01.025
http://dx.doi.org/10.1109/TSP.2009.2033729
http://dx.doi.org/10.1109/TSP.2013.2265221
http://dx.doi.org/10.1561/2200000016
http://dx.doi.org/10.1016/j.arcontrol.2019.05.006
http://dx.doi.org/10.1109/TSP.2014.2327010
http://dx.doi.org/10.1109/TCYB.2018.2804940
http://dx.doi.org/10.1109/PGEC.1965.264137
http://dx.doi.org/10.1109/TPAMI.2011.153
http://dx.doi.org/10.1111/j.1467-9868.2005.00503.x
http://dx.doi.org/10.1016/j.sysconle.2004.02.022
http://dx.doi.org/10.1016/j.ymssp.2017.06.012
http://dx.doi.org/10.1016/j.ymssp.2015.04.021
http://dx.doi.org/10.1016/j.measurement.2015.03.017

	Introduction
	Related Works
	Preliminaries
	Ordinal Regression Problem
	Support Vector Ordinal Regression with Implicit Constraints

	Distributed Support Vector Ordinal Regression Algorithm
	Network and Data Model
	Problem Formulation
	Problem Transformation
	Sparse Regularization
	Distributed SVOR Algorithm
	Theoretical Analysis

	Experiments
	Synthetic Data
	A Real-World Example

	Conclusions
	Appendix A
	Appendix B
	References

