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Abstract: Bearing is a key part of rotating machinery. Accurate prediction of bearing life can avoid
serious failures. To address the current problem of low accuracy and poor predictability of bearing life
prediction, a bearing life prediction method based on digital twins is proposed. Firstly, the vibration
signals of rolling bearings are collected, and the time-domain and frequency-domain features of
the actual data set are extracted to construct the feature matrix. Then unsupervised classification
and feature selection are carried out by improving the self-organizing feature mapping method.
Using sensitive features to construct a twin dataset framework and using the integrated learning
CatBoost method to supplement the missing data sets, a complete digital twin dataset is formed.
Secondly, important information is extracted through macro and micro attention mechanisms to
achieve weight amplification. The life prediction of rolling bearing is realized by using fusion features.
Finally, the proposed method is verified by experiments. The experimental results show that this
method can predict the bearing life with a limited amount of measured data, which is superior to
other prediction methods and can provide a new idea for the health prediction and management of
mechanical components.

Keywords: digital twins; prediction of remaining useful life; neural network

1. Introduction

Rolling bearing is a key component in rotating machinery, which has been widely
used in modern industry [1,2]. Accurate remaining useful life estimation of bearings can
significantly improve the reliability of mechanical systems, which can avoid serious failures
and reduce maintenance costs. In recent years, the prediction of bearing remaining useful
life (RUL) based on deep learning has made great progress [3–5].

Among the methods commonly used for bearing life prediction, there are often physi-
cal models and data-based methods. Physical models need to be built taking into account
the influence of the complex surrounding environment and usually exhibit a weak general-
ization capability. Data-driven approaches, however, avoid the need for detailed modeling
of complex environments and have better generalization capabilities by building models
such as statistical extrapolation from historical data, and are one of the most popular
research directions in the field of health prediction recently. Data-based methods often
require manual extraction of features, construction of a health indicator (HI), determination
of the health stage (HS), and determination of the first predicting time (FPT) before the
final life expectancy can be predicted [6–8].

Machine learning, as a typical data-driven approach, constructs approximate models
to approximate the real situation and build predictive models based on real-time, historical,
and relational data. On this basis, Wang et al. proposed a residual service life prediction
method for rolling bearings based on PCA and multi-dimensional feature fusion, aiming
at the low reliability of bearing single feature characterization [9]. The life information of
rolling bearing is characterized from many aspects, and the prediction result of residual life
is more accurate and reliable. Chen et al. aimed at the problem that it is difficult to predict
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the bearing life under the action of a single horizontal stress [10]. A bearing life prediction
method based on the failure physical reliability model is proposed to predict the bearing
degradation data. Jiang et al. proposed a new dual residual attention network [11]. The
hybrid extended convolutional neural network is used to learn useful features from both
time and frequency directions. It provides a reliable prediction for the remaining service
life of the bearing. Ahmad et al. used the adaptive prediction model based on regression to
learn the evolution trend of bearing health indicators [12]. Realize accurate prediction of
the remaining life of the bearing. Xu et al. proposed a hybrid model of expandable service
life based on continuous monitoring and bearing condition classification [13]. The feasible
parameters of bearing state quantification are evaluated, which provides an intuitive
reference for the prediction of the residual life of bearings. Pan et al. proposed a two-
stage prediction method for the remaining service life of bearings [14], which divided the
bearing degradation into the normal stage and the degradation stage. By constructing a
multivariable feedback extreme value learning machine model, the rapid prediction of the
remaining useful life of the bearing is realized.

In recent years, digital twin technology has developed rapidly and has been applied
in a number of practical projects [15–17]. Tao et al. proposed the concept of the digital twin
workshop [18] and explored the application of the five-dimensional model in several fields
in conjunction with practical applications. Xie et al. proposed an adaptive development
environment for automotive systems based on digital twins [19], which overcomes the
problems of long development cycles and poor scalability in the production process. Wei
et al. proposed an optimal deployment strategy using digital twins to fully exploit the
advantages of digital twins and perform tool life prediction in response to the shortcomings
of current manufacturing systems [20]. Xia et al. proposed a fault diagnosis framework
based on digital twins in response to the lack of fault data [21] and pre-trained the con-
ditional data generated by digital twins to achieve accurate fault prediction. Liu et al.
addressed time-varying error prediction and compensation for CNC machine tools [22]
by establishing a heat transfer model for tool spindles and visualizing time-varying error
models. The performance of digital twins in predicting the performance of machine tools
was explored. In addition to this, digital twins have been widely used in some industrial
production [23].

This paper combines digital twin with bearing life prediction and proposes a bearing
residual life prediction method driven by macro and micro attention bi-directional long
short-term memory (MMA-BiLSTM). Signal features are extracted from actual signals, a
feature matrix is constructed, and feature selection is carried out by improving the self-
organizing feature mapping method. The twin dataset framework is constructed by using
sensitive features, and the missing data set is supplemented by the integrated learning
CatBoost method to form a complete digital twin dataset. A new database is built to provide
a qualitative analysis basis for the prediction of bearing residual life. The MMA-BiLSTM
model is used for training to obtain the final residual life prediction results. The main
contributions of this paper are as follows.

(1) An improved self-organizing feature mapping method is proposed, which can
achieve automatic extraction of sensitive features by calculating the corresponding proba-
bility density interval of feature values;

(2) A twin data construction method is proposed to use sensitive data in the original
data as a digital twin framework, and CatBoost is used to learn the remaining features and
generate new digital twins;

(3) An MMA-BiLSTM neural network is proposed to extract important information
through macro and micro attention mechanisms to achieve weight amplification and
improve the accuracy of remaining useful life prediction.

Section 2 introduces the relevant background and theory in detail. The digital twin
method and MMA-BiLASTM network proposed in this paper are given in Section 3. Finally,
the effectiveness of the proposed method in this paper is demonstrated by experiments in
Section 4.
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2. Related Work
2.1. Self-Organizing Mapping

Self-organizing mapping (SOM) is an unsupervised learning method that can be
clustered and visualized in high dimensions. On the basis of unsupervised advantage,
this method can also provide the change of feature weight in the connection layer after
classification. By iteratively updating the feature weight in the network structure, you
can easily observe the change in the feature weight, obtain the sensitive features of the
dataset classification, and provide the classification basis. SOM converts the input data into
discrete low-dimensional data, which is then represented as active points in local areas or
networks. After the initialization step is completed, the following three important learning
processes are competition, collaboration, and adaptation.

In SOM, each neuron of the competition layer is connected according to the input
N-dimensional feature vector (x) and weight (w). The range of w is between (0, 1) and
is initialized with any normalized value. In the learning process, calculate the distance
between the feature vector x and the weight w of all neurons. When the distance is the
smallest, the neuron becomes the optimal solution, which is the process of competition.

The cooperative process is that only the optimal solution of the competitive process
and its neighboring neurons learn from the provided input data. In order to form a map
more sensitively for similar features in the competitive hierarchy, the “optimal” neuron
determines the adjacent neurons according to a fixed function, and the corresponding
weight of this neuron will be updated.

The adaptive process refers to the adaptive activation function, which makes the
optimal neuron and neighboring neurons more sensitive to specific input values, and
also updates the corresponding weights. Through this process, the neurons adjacent to
the optimal neuron will be more adaptive than those far away. The size of adaptation is
controlled by the learning rate, which decreases with the learning time, and plays a role in
reducing the convergence rate of SOM.

The algorithm flow of SOM is as follows:
(1) Initialization weight w; set a large initial neighborhood and set the number of

network cycles;
(2) Give a eigenvector Xk: Xk = {X1k, X2k, X3k · · ·Xnk};
(3) Calculate the distance djk between the feature vector Xk and the output neuron,

when djk takes the minimum value, c is the optimal neuron, i.e., xk −Wc = minj
{

djk

}
;

(4) Update the connection weights wij(t + 1) = wij(t) + η(t)
{

xi − wij(t)
}

of c and its
domain nodes where 0 < η(t) < 1 is a gain function that decreases with time;

(5) Input another feature vector into the network and return to step (3) until all the
feature vectors are traversed;

(6) Return to step (2) by making t = t + 1, until t = T.

2.2. Catboost

The CatBoost algorithm is a model based on the decision tree. It does not need a large
number of samples as the training data and can adapt to the training of small-scale samples
and high-precision diagnosis. The CatBoost algorithm belongs to the Boosting algorithm
family and is a new machine learning algorithm framework based on a gradient boosting
decision tree (GBDT). The GBDT algorithm is an algorithm for regression and classification
proposed by Friedman in 2000 [24], which can avoid the problem of overfitting a single
decision tree due to the internal integration of multiple decision trees and the accumulation
of multiple decision trees. The GBDT algorithm constructs a learner to reduce the loss along
the steepest direction of the gradient at each iteration step to make up for the shortcomings
of the current model.

In CatBoost, the target statistics (TS) method is usually used to process categorical
features target statistic (TS) method refers to replacing category features with calculated val-
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ues. Representing the ith category feature of the kth training sample as xi
k, and representing

the replacement target value as y. The expression of the TS method is:

x̂i
k = E

(
y | xi = xi

k

)
(1)

The commonly used TS value calculation method is the Greedy TS method, which
can be smoothed by using the average of the target variable y of the same category xi

k in
training samples and using a prior probability p, expressed as:

x̂i
k =

∑n
j=1 I I{xi

j=xi
k}
·yi + ap

∑n
j=1 I I{xi

j=xi
k}
+ a

(2)

However, due to the duplication in the use of the training set and test set, this method
will lead to condition deviation and result in overfitting. Based on this situation, CatBoost
uses a method to improve the category feature processing and uses the sorting principle to
solve the problem of condition shift and overfitting. In the Ordered TS, a random sequence
σ is generated to number the data. The training data is selected according to the sorting
principle: Dk =

{
Xj : σ(j) ≺ σ(k)

}
, and the test set uses all the data: Dk = D. Then the

divided data set is used to calculate the Greedy TS value xi
k with a priori probability.

For multi-dimensional feature data sets, the relationship between the actual value of
most features and the prediction is often nonlinear, which brings great difficulties to the
analysis of feature changes. To solve this problem, the feature intersection approach is
proposed, which combines different features to form new cross-features to fit the changing
relationship of data set features. If all features of the dataset are crossed, the exponential
dimension will grow exponentially, thus increasing the computational complexity. Based
on this problem, CatBoost adopts a greedy strategy to deal with it and does not cross
features at the previous node of the gradient lifting tree. Instead, the features divided in
front of the node and the features within the node are considered as two groups of features
to cross, and one pot vector method is used for feature fusion. The acquisition method of
cross-features is expressed by the formula:

ŷ = b + w1 x̂1 + w2 x̂2 + w3 x̂3 (3)

Where x3 represents the sum of features of feature set x1 and x2, and w represents the
weight relationship between feature sets. b is a constant term, which solves the problem of
too many nonlinear fitting relations and cross-features. In the process of gradient promotion,
different data generate different gradient classes. If the training data is repeated a lot, it
will lead to gradient boosting overfitting and skew the prediction results. Based on this
problem, CatBoost uses the Ordered method to sort the data sets, which reduces the error
of gradient fitting. The method to generate the base evaluator is:

ht = arg min
{h∈H}

1
n

n

∑
k=1

(
−gt(xk, yk)− h(xk)

)
(4)

Where ht represents the generated basis evaluator and −gt(xk, yk) represents the
negative gradient value of the loss function in the current gradient model. The problem of
gradient lifting prediction migration is solved by the Ordered method.

CatBoost uses a symmetric tree structure in the decision tree structure. The advantage
of the symmetric tree structure is that it is not easy to overfit, and it is much faster than the
gradient lifting algorithm, such as XGBoost. In addition, the CatBoost algorithm can realize
multiple graphics processing unit (GPU) operations. The distributed learning tree enables
CatBoost to perform parallel computing, thus improving its overall computing speed.
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2.3. BiLSTM

LSTM network is an improvement in recurrent neural network (RNN). The key to the
LSTM network is the cell state. The information in the cell state is updated and deleted
through the forgetting gate, update gate, and output gate. The structure of LSTM is shown
in Figure 1. The following is the representation of the three gates of LSTM:

ft = σ
(

W f × [ht−1, xt] + b f

)
(5)

it = σ(Wi × [ht−1, xt] + bi) (6)

C̃t = tanh(WC × [ht−1, xt] + bC) (7)

Ct = ft × Ct−1 + it × C̃ (8)

ot = σ(Wo × [ht−1, xt] + bo) (9)

ht = ot × tanh(Ct) (10)
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Because the next moment prediction output of unidirectional LSTM is only affected
by the previous multiple time inputs, in many cases, the prediction will be affected by the
previous and subsequent multiple time inputs at the same time. In order to fully extract
the correlation between before and after features and obtain better prediction results. The
BiLSTM network was introduced to calculate the front and back information from two
opposite directions (forward network output is

→
h t, backward network output is

←
ht):

→
h t = LSTM(xt,

→
ht−1) (11)

←
ht = LSTM(xt,

←
ht+1) (12)

Finally, output the comprehensive result of the result stack of the forward network
layer and the backward network layer.

3. Prediction of Bearing RUL Based on Digital Twin

Aiming at the complex working environment of special mechanical equipment, data
collection is difficult, and the amount of data is small. This paper presents a method for
predicting the remaining service life of small sample bearings based on data twin driving.
First of all, feature extraction is carried out on the actual data to form a high-dimensional
feature dataset. Then, an improved self-organizing feature mapping method (ISOFM) is
used to select features, calculate the numerical probability density intervals of features
corresponding to sensitive features, determine the optimal number of sensitive features,
and form a feature framework. The feature framework is combined with existing data to
form an interactive dataset with missing data, and CatBoost integrated learning algorithm is
introduced. The missing eigenvalues are taken as the feature learning objectives of CatBoost,
respectively, and their regression operation characteristics are used to complement the
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interactive dataset, thus forming a complete twin dataset. Finally, the macro and micro
attention mechanisms are combined with BiLSTM to form MMA-BiLSTM. The weight
of MMA-BiLSTM is amplified in the whole time dimension and each time dimension to
realize the residual life prediction of bearings.

3.1. ISOFM

The classical SOM method needs to preset the number of nodes in the output layer.
Therefore, it is necessary to improve this method to make it have the ability to adaptively
select the number of nodes in the output layer. In this paper, a generation-by-generation
node processing method is proposed to remove nonsensitive features in the neighborhood
during SOM’s selection of sensitive features. Both the number of output nodes of SOM can
be adaptively obtained, and the nonsensitive feature removal strategy can also improve
the feature selection efficiency of SOM. The proposed ISOFM method mainly selects nodes
by introducing a learning rate α and a relative removal rate parameter β. Set the Euclid
distance and the threshold value of the feature node weight to improve. The improved
weight update formula is:

←
ht = LSTM(xt,

←
ht+1) (13)

Wj(t + 1) = λ
[
Wj(t) + α(t)

(
Xi −Wj(t)

)]
(14)

λ =



0,
(1−β)[max(dj)−min(dj)]

2

4

(
dj−

m
∑

j=1
dj/J

)2 < 1;

1,
(1−β)[max(dj)−min(dj)]

2

4

(
dj−

m
∑

j=1
dj/J

)2 ≥ 1
(15)

3.2. MMA-BiLSTM

The derivation of BiLSTM based on macro and micro attention mechanisms is as
follows: macro and micro attention mechanisms refer to the operation of the attention
mechanism on the whole time dimension of input data and data on each time dimen-
sion. Specifically, firstly, the data matrix generated by digital twins is processed, and
its macro and micro attention coefficients are calculated using MMA. In the prediction
process, the input dataset of the whole time dimension is Xt =

[
x1, x2, . . . , xt

]
. Where

xt′ =
[
xt′ ,1 xt′ ,2 . . . xt′ ,n

]T represents the input data at time t′, and the macro attention
mechanism processes the data in the whole time dimension through the attention mecha-
nism; the micro attention mechanism is to use the attention mechanism to process input
data xt′ in each time dimension [25].

The formula for calculating macro and micro attention coefficients:

χt′ =
exp(S(xt′ , qM))

∑t
j=1 exp

(
S
(
xj, qM

)) (16)

αt′ ,i =
exp

(
s
(

xt′ ,i, qt′ ,m
))

∑n
j=1 exp

(
s
(

xt′ ,j, qt′ ,m

))
+ ∑m

p=1 exp
(

s
(

ht′−1,p, qt′ ,m

)) (17)

Where αt′ ,i is the attention coefficient of input data in the micro attention mechanism.
χt′ is the macro attention coefficient obtained in the whole time dimension. xt′ is the mean
value of xt′ , xt′ ,j is the j element in the input data xt′ =

[
xt′ ,1 xt′ ,2 . . . xt′ ,n

]T at the time
of t, t is the dimension of the input dataset Xt =

[
x1, x2, . . . , xt

]
, xj is the mean value

of the j vector in the input dataset Xt, and q is the query vector. In the MMA-BiLSTM
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network training process, set the macro level query vector qM and the micro level query
vector qm; the relevant scoring function is calculated as follows:

S
(
xj, qM

)
=

xjqM√
t

(18)

s
(

xt′ ,j, qt′ ,m

)
=

xT
t′ ,jqt′ ,m
√

n + m
(19)

Where n is the dimension of input data xt′ =
[
xt′ ,1 xt′ ,2 . . . xt′ ,n

]T at time t.
According to the corresponding macro and micro attention coefficients, the associated

input data weights and recursive data weights are magnified at multiple levels.

w′t′ ,ix = (1 + χt′)×wt′ ,ix(αt′ + 1) (20)

w′t′ ,ox = (1 + χt′)×wt′ ,ox(αt′ + 1) (21)

w′t′ , f x = (1 + χt′)×wt′ , f x(αt′ + 1) (22)

Wherein, wt′ ,ix represents the weight between the input data of the BiLSTM neural
network and the input gate in the hidden layer, wt′ ,ox represents the weight between
the input data of the BiLSTM neural network and the output gate in the hidden layer,
wt′ , f x represents the weight between the input data of the LSTM neural network and the
forgetting gate in the hidden layer, w′t′ ,ix represents the weight between the input data of
the MMA-BiLSTM neural network and the input gate in the hidden layer, w′t′ ,ox represents
the weight between the input data of MMA-BiLSTM neural network and the output gate in
the hidden layer, and w′t′ , f x represents the weight between the input data of MMA-BiLSTM
neural network and the forgetting gate in the hidden layer.

According to the amplification of input data weight and recursive number weight, the
corresponding calculation results are obtained:

ft′ = σ
(

w′t′ , f [xt′ , ht′−1] + b f

)
(23)

it′ = σ
(

w′t′ ,i[xt′ , ht′−1] + bi

)
(24)

c̃t′ = tanh
(
wt′ ,c[xt′ , ht′−1] + bc

)
(25)

ct′ = ft′ × ct′−1 + it′ × c̃t′ (26)

ot′ = σ
(

w′t′ ,o[xt′ , ht′−1] + bo

)
(27)

ht′ = ot′ × tanh(ct′) (28)
→
h t′ = LSTM(xt′ ,

→
ht′−1) (29)

←
ht′ = LSTM(xt′ ,

←
ht′+1) (30)

Ft′ = g
(

W
t′ ,
→
h y

→
h t′ + W ←

t′ ,hy

←
h t′ + by

)
(31)

Wherein, σ is sigmoid activation function, g is linear activation function, bi is MMA-
BilLSTM hidden layer input gate offset term, b f is MMA-BiLSTM hidden layer forgetting
gate offset term, bc is MMA-BiLSTM hidden layer storage cell unit offset term, bo is MMA-
BiLSTM hidden layer output gate offset term, by is MMA-BiLSTM output layer offset term,
it′ is the input gate output at t′ time, ft′ is the forgetting gate output at t′ time, ct′ is the
storage cell unit output at t′ time, and Ft′ is the output layer output at t′ time.

The bearing vibration data are collected separately as samples, and the data samples
are twin expanded. Finally, different machine learning methods are used to compare the
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prediction accuracy between the original sample and the interactive dataset. The specific
process and structure of the proposed method can be shown in Figure 2. The specific steps
of the proposed method are shown as follows:

(1) Set up a test platform to collect vibration signals of bearings from normal operation
to fault status;

(2) Extraction of time-domain and frequency-domain features of vibration signals from
the original signal;

(3) Use ISOFM to determine the number of sensitive features and select features from
the acquired feature data set, and extract the main features in the feature set that can
determine the signal category;

(4) The probability density distribution models of sensitive features in feature data
sets are constructed, respectively; determine the feature frame and the selection range of its
feature values;

(5) The feature data frame generated is combined with the feature data set extracted
from the initial samples interactively, and the data at the nonsensitive features are repre-
sented by missing values;

(6) The CatBoost regression algorithm is used to fill in the missing values in the
interactive dataset containing missing values. Sorted according to importance, the missing
value is used as the prediction target to fill the characteristic value. During the filling
process, the missing values of other features are filled with the feature mean value;

(7) An interactive dataset with a complete data structure is obtained, i.e., a twin feature
dataset that expresses vibration signal fault information obtained from a small amount of
data. The dataset is normalized to fit the health indicators of the bearing;

(8) Use the first k health indicators of the bearing as network input to predict the
health value at moment k + 1;

(9) Repeat step 8 a certain number of times, and when these output values are less
than 0, the inverse normalization of the sampled points results in RUL.
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4. Experimental Validation
4.1. Experimental Description

The experimental design was carried out according to the research idea shown in
Figure 2, and tests were conducted on a full life-bearing fatigue test machine. The main
structure of the platform is the motor, supporting bearing housing, vibration sensor, hy-
draulic resistor, coupling, and other mechanisms. The experimental setup is shown in
Figure 3. The tests were carried out at different rotational speed conditions, and the test was
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set up with a sampling frequency of 25.6 kHz, a sampling interval of 1 min, and a duration
of 1.28 s per sample. The bearing vibration signal is shown in Figure 4. The experimental
data are described in Table 1.
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Table 1. Description of experimental data.

Dataset 1 Dataset 2 Dataset 3 Dataset 4

Load (kg) 500 1000 1000 1000
Speed (rpm) 1200 2100 2100 2100
Time (min) 154 340 821 1639
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Corresponding to the data sets in Table 1, the signal features for the different operating
conditions were obtained by pre-processing. These include 13 time-domain features and
16 frequency-domain features, which are combined into a feature matrix. The details are as
follows: (1) maximum value, (2) minimum value, (3) median, (4) mean, (5) peak difference,
(6) mean of absolute values, (7) variance, (8) standard deviation, (9) cliffness, (10) skewness,
(11) root mean square, (12) impulse factor, (13) margin factor, (14) amplitude maximum,
(15) amplitude minimum, (16) amplitude median, (17) amplitude mean, (18) amplitude
peak difference, (19) amplitude peak threshold, threshold of 75% of the amplitude peak
difference, (20) amplitude peak, (21) amplitude peak corresponding frequency, (22) fre-
quency center of gravity, (23) mean square frequency (24) frequency variance, (25) frequency
standard deviation, (26) short time power spectral density, (27) spectral entropy, (28) funda-
mental frequency, and (29) resonance peak. The initial feature dataset was processed using
ISOFM. Five groups of sensitive features were finally retained adaptively by the algorithm,
and the feature importance is shown in Figure 5. In the experiment, the learning rate and
removal rate are set to a = 0.1 and b = 0.1, respectively, and the number of iterations of the
algorithm is set to 100.
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Figure 5. Feature importance diagram.

In constructing the digital twin data feature framework, the optimal number of sen-
sitive features is first determined, and the feature framework is formed. The feature
framework is combined with existing data to form an interactive dataset with missing data.
The CatBoost integrated learning algorithm is introduced, and the missing feature values
are used as the feature learning targets for CatBoost, respectively. The interaction dataset is
complemented by using its regression operation properties to form a complete twin dataset.
In this paper, the rolling bearing vibration signals are used as samples, the data samples
are twinned and expanded, and finally, the prediction errors of the original samples are
compared with the interaction dataset.

4.2. Comparison of Digital Twin Data with Initial Data

After generating the digital twin interaction dataset, the initial data and the digital
twin-generated data were used separately for bearing life prediction. The dataset was
validated for prediction by an LSTM network, and the first 80% of the normalized sample
points were used as the training set for predicting the RUL. The current sample points and
true RULs for Dataset 1, Dataset 2, Dataset 3, and Dataset 4 are shown in Table 2. The
average error results obtained from multiple cross-validations of the different data are
placed in Figure 6 for comparison.
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Table 2. Comparison of digital twin data with initial data.

Data Set Current Sample Point Real RUL
Prediction of RUL Errors (%)
Initial Data Twin Data

Dataset 1 123 31 16.12 9.67
Dataset 2 272 68 14.7 10.29
Dataset 3 657 164 9.14 12.19
Dataset 4 1311 328 19.8 15.2
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It can be seen from Figure 6 that the prediction errors for the Dataset 1, Dataset 2,
and Dataset 4 twin data are smaller than the original data. In Dataset 3, the original data
prediction error is smaller, and the two are closer. The experimental results validate the
effectiveness of the twin dataset. The twin dataset produced by constructing new feature
data and fusing it with the initial dataset clearly has better predictive power than the
initial dataset.

4.3. MMA-BiLSTM

To improve the prediction performance of LSTM networks. The macro-microscopic
attention mechanism is combined with BiLSTM to propose MMA-BiLSTM. The method
is compared with BiLSTM, LSTM, and GRU for experiments. The results are presented
in Tables 3–6. where dataset a-b represents the ath dataset and the bth experiment. The
experimental data are in seconds. The number of input units and output units in MMA-
BiLSTM are set to 32 and 1, respectively, and the learning rate is set to 0.01. In this research,
the number of hidden layer units is set to 128. the initialization method of the neural
network uses standard initialization. The MMA-BiLSTN predictions for different data sets
are shown in Figure 7. The mean absolute error (MAE) and root mean square error (RMSE)
were used to evaluate the prediction effect. They are defined as follows.

MAE =
1
m

m

∑
i=1

(
ruli − rul̂i

)2
(32)

RMSE =

√
1
m

m

∑
i=1

(
ruli − rul̂i

)2
(33)

From Tables 3–6, it can be concluded that compared with BiLSTM, LSTM, GRU, and
MMA-BiLSTM has a smaller prediction error. This shows the advantages of data generated
by digital twins. In Figure 8, MAE and RMSE predicted by the MMA-BiLSTM method
are smaller than those predicted by other methods. It shows the suitable performance of
MMA-BiLSTM in RUL prediction.
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Table 3. RUL prediction results and comparison for Dataset 1.

MMA-BiLSTM BiLSTM LSTM GRU

Dataset 1-1 145 164 158 231
Dataset 1-2 143 141 137 164
Dataset 1-3 152 139 156 169
Dataset 1-4 146 153 122 152

MAE 7.50 9.75 13.75 26.0
RMSE 8.21 11.12 18.25 39.55
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Table 4. RUL prediction results and comparison for Dataset 2.

MMA-BiLSTM BiLSTM LSTM GRU

Dataset 2-1 327 357 364 390
Dataset 2-2 365 384 332 367
Dataset 2-3 350 363 359 471
Dataset 2-4 333 308 326 361

MAE 13.75 29.0 16.25 57.25
RMSE 15.35 30.73 17.29 72.16

Table 5. RUL prediction results and comparison for Dataset 3.

MMA-BiLSTM BiLSTM LSTM GRU

Dataset 3-1 820 827 780 941
Dataset 3-2 768 835 773 893
Dataset 3-3 795 758 826 754
Dataset 3-4 832 780 841 807

MAE 22.75 31.0 28.50 68.25
RMSE 30.03 38.75 33.21 77.89

Table 6. RUL prediction results and comparison for Dataset 4.

MMA-BiLSTM BiLSTM LSTM GRU

Dataset 4-1 1712 1679 1726 1738
Dataset 4-2 1691 1648 1694 1704
Dataset 4-3 1652 1712 1689 1670
Dataset 4-4 1678 1707 1746 1695

MAE 44.25 47.5 74.75 62.75
RMSE 49.30 53.93 78.33 67.31Entropy 2022, 24, x FOR PEER REVIEW 16 of 18 
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The prediction performance of the methods proposed in this paper has been improved,
and the predicted values of RUL for bearings in different working conditions are closer
to the actual values than other methods, which can provide an effective way to predict
bearing life.

5. Conclusions

For the bearing life prediction problem, this paper proposes a bearing life prediction
method combining digital twin and MMA-BiLSTM network. Firstly, an extracted sensitive
feature matrix is constructed to build the digital twin framework; the data set is supple-
mented by the integrated learning CatBoost method for missing data to form a complete
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digital twin data set. The MMA-BiLSTM network is proposed for life prediction. Finally,
the accuracy of the proposed approach was verified by building a bearing life prediction
test bench. The method can be further extended and applied to other condition parameters
of gearboxes to provide data closer to the true value for predicting the RUL of machinery.
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