
Citation: Du, M.; Wu, F. Grid-Based

Clustering Using Boundary

Detection. Entropy 2022, 24, 1606.

https://doi.org/10.3390/e24111606

Academic Editors: Francisco J.

Gallegos-Funes and Alberto J.

Rosales Silva

Received: 14 September 2022

Accepted: 2 November 2022

Published: 4 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Grid-Based Clustering Using Boundary Detection
Mingjing Du * and Fuyu Wu

School of Computer Science and Technology, Jiangsu Normal University, Xuzhou 221116, China
* Correspondence: dumj@jsnu.edu.cn

Abstract: Clustering can be divided into five categories: partitioning, hierarchical, model-based,
density-based, and grid-based algorithms. Among them, grid-based clustering is highly efficient
in handling spatial data. However, the traditional grid-based clustering algorithms still face many
problems: (1) Parameter tuning: density thresholds are difficult to adjust; (2) Data challenge: clusters
with overlapping regions and varying densities are not well handled. We propose a new grid-
based clustering algorithm named GCBD that can solve the above problems. Firstly, the density
estimation of nodes is defined using the standard grid structure. Secondly, GCBD uses an iterative
boundary detection strategy to distinguish core nodes from boundary nodes. Finally, two clustering
strategies are combined to group core nodes and assign boundary nodes. Experiments on 18 datasets
demonstrate that the proposed algorithm outperforms 6 grid-based competitors.

Keywords: grid-based clustering; density-based clustering; boundary detection

1. Introduction

Clustering is the process of grouping similar objects together [1]. As a fundamental
data mining task, it can be used either independently or as a preprocessing step before
other data mining tasks. Clustering plays an important role in many scientific fields [2],
including earth sciences [3,4], biology [5–7], and economics [8,9].

Generally, clustering can be divided into five categories: partitioning [10,11], hier-
archical [12,13], model-based [14,15], density-based [16–18], and grid-based algorithms.
Partitioned clustering is designed to discover clusters in the data by optimizing a given ob-
jective function. Hierarchical clustering deals with the clustering problem by constructing
a tree diagram. Model-based clustering uses a probabilistic methodology to optimize the
match between some mathematical models and the data. Density-based and grid-based
solutions are two closely related categories that attempt to explore the data space at a high
level of granularity.

In recent decades, many grid-based clustering algorithms have been developed. In
these algorithms, the data space is partitioned into a finite number of cells to form a
grid structure. Clusters correspond to regions that are the connected cells with more
density. As most grid-based clustering algorithms rely on calculations of cell density, these
algorithms may be considered density-based. Even some grid-based clustering algorithms
are developed by improving density-based clustering. Among density-based clustering
algorithms, DBSCAN [19] and DPC [20] algorithms are the most widely used and have the
most variants.

The computation cost of grid-based clustering is determined by the number of grid
cells, independent of dataset size. Generally, grid-based clustering is more efficient than
other clustering algorithms for large-scale spatial data since the number of cells is signifi-
cantly smaller than the number of data points. Although grid-based clustering algorithms
greatly improve computational efficiency, they still face some of the following problems.

• They are sensitive to the parameter of density threshold, which may be difficult
to obtain.

Entropy 2022, 24, 1606. https://doi.org/10.3390/e24111606 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24111606
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-7701-9004
https://doi.org/10.3390/e24111606
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24111606?type=check_update&version=2


Entropy 2022, 24, 1606 2 of 19

• They may not be sufficient to achieve desired clustering results for data with vary-
ing densities.

• They are not able to handle boundary regions between some adjacent clusters well.

We aim at alleviating the above-mentioned issues and propose a grid-based clustering
using boundary detection, named GCBD. Firstly, the density estimation of nodes is defined
using the standard grid structure. Secondly, GCBD uses an iterative boundary detection
strategy to distinguish core nodes from boundary nodes. Finally, DBSCAN and DPC
clustering strategies are combined to group core nodes and assign boundary nodes.

The rest of this paper is organized as follows. We survey the related work in Section 2.
Our proposed GCBD algorithm is presented in Section 3. Section 4 presents the experimen-
tal results. Conclusions and suggestions for future work are given in Section 5.

2. Related Work
2.1. Grid-Based Clustering

In this subsection, we discuss some classical grid-based clustering algorithms. To our
knowledge, Schikuta [21] introduces the first grid-based hierarchical clustering algorithm
called GRIDCLUS. In GRIDCLUS, data points are designated to blocks in the grid structure
such that their topological distributions are maintained. GRIDCLUS calculates the density
for each block. The blocks are clustered iteratively in order of descending density to
form a nested sequence of nonempty, disjoint clusters. Schikuta and Erhart [22] further
propose the BANG algorithm to improve the inefficiency of GRIDCLUS in terms of grid
structure size and neighbor search. Wang et al. [23] propose a statistical information
grid-based clustering method (STING) to cluster spatial data. In contrast to GRIDCLUS
and BANG, STING divides the spatial area into rectangular cells and uses a hierarchical
grid structure for storing the cells. Using the hierarchical grid structure may generate
rougher cluster boundaries, which reduces clustering quality. As a solution to the problem,
Sheikholeslami et al. [24] propose WaveCluster, a grid-based and density-based clustering
approach utilizing wavelet transforms. In this algorithm, wavelet transforms are applied to
the spatial data feature space to detect arbitrary shape clusters at different scales.

A significant issue with grid-based algorithms is their scalability in higher dimensional
data since the time complexity grows as the number of grids increases. To address the
challenge, Agrawal et al. [25] invent the algorithm CLIQUE (clustering in quest). CLIQUE
seeks dense rectangular cells in all subspaces with high density by applying a bottom-up
scheme. Clusters are generated as the connected areas of dense cells. OptiGrid (optimal
grid clustering) [26] significantly modifies CLIQUE. OptiGrid constructs the best cutting
hyperplanes through a set of projections to obtain optimal grid-partitioning. The above
algorithm is very sensitive to the density threshold and it is difficult to adjust this parameter.

In the grid-based clustering, variants of the DBSCAN algorithm [19] are the most
closely related to our algorithm. Wu et al. [27] propose a density- and grid-based (DGB)
clustering algorithm inspired by grid partitioning and DBSCAN. The DGB algorithm only
needs to calculate distances between grid nodes instead of distances between data points.
Therefore, the algorithm processes spatial data more efficiently. Like DBSCAN, however,
the algorithm cannot recognize clusters with varying densities. Uncu et al. [28] propose a
three-step clustering algorithm (called GRIDBSCAN) to address the issue. The first step
ensures homogeneous density in each grid by selecting appropriate grids. In the second
step, cells that have similar densities are merged. Lastly, the DBSCAN algorithm is executed.
However, these algorithms are not able to handle boundary regions between some adjacent
clusters well. The main difference between the two algorithms and ours is the way they
divide core and boundary nodes (or cells). The two algorithms apply a fixed, global density
threshold to classify core and boundary nodes (or cells). In contrast, our algorithm uses an
iterative boundary detection strategy to divide core and boundary nodes.



Entropy 2022, 24, 1606 3 of 19

2.2. Density-Based Clustering

This subsection discusses several density-based clustering algorithms that are most
relevant to our algorithm.

DBSCAN [19] is one of the most important density-based techniques. In DBSCAN,
clusters are assumed to be connected to high-density regions separated by low-density
regions. In DBSCAN, the core points are points in the dense part of a cluster. The boundary
points in DBSCAN are defined as points that are part of a cluster but are not surrounded by
a dense neighborhood. The primary difference between DBSCAN and our algorithm is that
DBSCAN is a density-based clustering while our algorithm is a grid-based clustering. Our
algorithm is similar to DBSCAN as it utilizes the notions of reachability and connectivity to
find the maximally connected components of nodes. Despite this, they differ in their defi-
nitions of connectivity. DBSCAN defines connectivity between points and then generates
clustering for points (including core points and boundary points) according to connectivity.
However, our algorithm defines the connectivity between core nodes and then generates
cluster cores for the core nodes based on their connectivity.

Rodriguez and Laio [20] propose density peaks clustering (DPC), a density-based
algorithm. The algorithm assumes that cluster centers are surrounded by neighbors with
lower local densities and that they are at a relatively large distance from any points with a
higher local density. Our algorithm and DPC are similar in how the nodes (or points) are
assigned. However, they are quite different. Unlike DPC’s assignment mechanism, where
each non-centered point is assigned to the same cluster as its nearest neighbor with higher
density, our assignment mechanism is a multilevel-based approach, where each boundary
node is assigned to the same cluster as the node with the highest density among its nearest
neighbors in the inner layers.

3. Related Concepts
3.1. DBSCAN Algorithm

DBSCAN [19] is one of the most widely used density-based clustering algorithms. It
can identify arbitrary-shaped clusters and clusters with noise (i.e., outliers). In DBCSAN,
there are two key parameters:

• ε (or eps): It is a distance threshold. Two points are considered to be neighbors if the
distance between them is less than or equal to eps.

• k (or minPts): It specifies the minimum number of neighbors within a given radius.

Based on these two parameters, DBSCAN makes several definitions:

• Core point: A point is a core point if there are at least minPts number of points
(including the point itself) in its surrounding area with radius eps.

• Reachable: A point xq is directly reachable from xp if point xq is within distance eps
from core point xp.

• Density-connected: Two points xp and xq are density-connected if xp is directly or
transitively reachable from xq or xq is directly or transitively reachable from xp.

• Boundary point: A point is a boundary point if it is reachable from a core point and
there are less than minPts number of points within its surrounding area.

• Noise point (or outlier): A point is a noise point (or outlier) if it is not a core point
and not reachable from any core points.

• Cluster: A cluster w.r.t. eps and minPts is a non-empty maximal subset of the data set
such that every pair of points in the cluster is density-connected.

To explain the notions of core point, boundary point, and noise point, we provide an
example in Figure 1. Red points are core points because there are at least 4 points within
their surrounding area with a radius of eps. This area is shown with the circles in the
figure. The green points are boundary points because they are reachable from a core point
and have less than 4 points within their neighborhood. Reachable means being in the
surrounding area of a core point. The points x2 and x3 have two points (including the point



Entropy 2022, 24, 1606 4 of 19

itself) within their neighborhood (i.e., the surrounding area with a radius of eps). Finally,
x4 is a noise point because it is not a core point and cannot be reached from a core point.

Figure 1. Example of some notions in DBSCAN.

3.2. DPC Algorithm

Rodriguez and Laio [20] present density peaks clustering (DPC), an algorithm that
combines density-based clustering algorithms with centroid-based clustering algorithms.
This algorithm has its basis on the assumptions that cluster centers are surrounded by
neighbors with lower local densities and that they are far away from points of higher
densities. There are two important quantities to describe each point xi: its local density
ρi and its distance from the nearest larger density point δi. The local density ρi of xi is
calculated as

ρi = ∑
xj∈X

χ(d(xi, xj)− dc), χ(z) =
{

1, z < 0
0, z ≥ 0

(1)

where d(xi, xj) is the distance between points xi and xj, and the “cutoff distance” dc is a
user-specified parameter.

For point xi with the highest density, DPC defines δi = max(d(xi, xj)). For the other
points, δi is the minimum distance between point xi and another point xj whose ρj is higher
than ρi. Its formula is as follows:

δi = min
xj :ρj>ρi

(d(xi, xj)) (2)

where xj ∈ X. X denotes the whole data set.
Based on DPC’s center assumption, density peaks with large ρ-δ are manually selected

as centers by observing through a decision graph (i.e., a ρ-δ plot). Subsequently, each
non-center point is allocated to the same cluster as its nearest point with higher density.

4. Proposed Algorithm

In this section, we describe our proposed clustering algorithm in detail and analyze its
computational complexity.

4.1. Standard Grid Structure

As with most grid-based clustering algorithms, the first step in GCBD is to create a grid
structure that divides the data space into a finite number of cells. To simplify subsequent
calculations, we create a standard grid structure.

Let X = {x1, x2, . . . , xn} is a dataset consisting of n data points, where each data point
has m features, i.e., xi = {xi1, xi2, . . . , xim}. xj and xj denote the maximum and minimum
values of the j-th feature, respectively. Assume that each dimension should be divided into



Entropy 2022, 24, 1606 5 of 19

l equal intervals. Features in the original dataset are scaled to fall between 1 and l+1 by
using the scaling function Φ(·).

Φ(xij) =

(
l ·

xij − xj

xj − xj

)
+ 1 (3)

Let A = A1 × A2 × · · · × Am is the transformed feature space, where A1, A2, · · · , Am
are the domains of the features (dimensions) of A. We define the notion of a standard
grid structure.

Definition 1 (Standard grid structure). A grid structure is called a standard grid structure, if
the transformed feature space is divided into l intervals of equal length after each transformed feature
is scaled by Equation (3).

Let v = {v1, v2, · · · , vm} is a node in the standard grid structure. We will obtain the
following property.

Property 1. The nodes in the standard grid structure are only located with integer coordinates, i.e.,
for each vj, 1 ≤ j ≤ m, vj ∈ {1, 2, · · · , l+1}.

To explain some notions in the standard grid structure, Figure 2 provides an exam-
ple in a two-dimensional space. Green-shaded rectangles are cells in the standard grid
structure. Red intersection points in the standard grid are called nodes. Blue points are
transformed data.

cell node

transformed data

Figure 2. Example of some notions in GCBD.

4.2. Density Estimation

In density-based clustering, the densities of data points are computed. The traditional
grid-based clustering calculates the densities of cells. In the proposed algorithm, we focus
on the nodes’ density.

At the t-th iteration, we define V(t) as the set of active nodes and X(t) as the set of
active points. To estimate the densities of nodes, we calculate the similarity between nodes



Entropy 2022, 24, 1606 6 of 19

and data points. In j-th dimension, a local scaling function of the node v ∈ V(t) and the
data point xi ∈ X(t) is given by

f (t)j (vj) = max(1−
∣∣Φ(xij)− vj

∣∣, 0) (4)

where vj is the coordinate of the grid node v ∈ V(t) in the j-th dimension and xij is the
coordinate of the data point xi ∈ X(t) in the j-th dimension.

Using f , the node’s density value at t-th iteration is given by

ρ
(t)
v = ∏m

j=1 f (t)j (vj) (5)

It is worth noting that each data point only affects the densities of the vertices (nodes)
of the cell in which it is located. There may be a large number of nodes with a density value
of 0 in the standard grid. To reduce the computational efficiency, we use a sparse tensor to
preserve the density of non-zero nodes.

4.3. Boundary Detection

Inspired by border-peeling clustering [29], we use an iterative boundary detection
strategy to divide the core and boundary nodes. The GCBD algorithm will classify a portion
of the nodes of V(t) as boundary nodes and assign an inactive status to them during every
boundary detection iteration.

The inactive nodes of V(t) are defined using a specific cut-off value, as follows:

V(t)
U = {v|ρ(t)v ≤ τ(t)} (6)

As with [16], a percentile is used to indirectly provide a series of cut-off values. The
inactive nodes are defined as nodes whose density values fall below the 10-th percentile.

The inactive data points of X(t) are given by

x(t)U = {x|distC(Φ(x), v) ≤ 1, v ∈ V(t)
U } (7)

where distC is the Chebyshev distance.
At the next iteration, the active nodes are given by

V(t+1) = V(t) \ V(t)
U . (8)

Similarly, the active nodes at the next iteration are given by

X(t+1) = X(t) \X(t)
U . (9)

At the end of all iterations, the set of activated nodes and the set of active data points
are V(T+1) and X(T+1), where T is the number of iterations.

Definition 2 (Core node). A node v is called a core node if it belongs to the set V(T+1), i.e.,
if v ∈ V(T+1).

Definition 3 (Core point). A point x is called a core point if it belongs to the set X(T+1), i.e.,
if x ∈ X(T+1).

Definition 4 (Boundary node). A node v is called a boundary node if it belongs to the set V(T)
B ,

where V(T)
B = V(1)

U ∪ V(2)
U ∪ · · · ∪ V(T)

U , i.e., if v ∈ V(1)
U ∪ V(2)

U ∪ · · · ∪ V(T)
U .

Definition 5 (Boundary point). A point x is called a boundary point if it belongs to the set x(T)B ,

where x(T)B = x(1)U ∪ x(2)U ∪ · · · ∪ x(T)U , i.e., if x ∈ V(1)
U ∪ V(2)

U ∪ · · · ∪ V(T)
U .



Entropy 2022, 24, 1606 7 of 19

4.4. Connection Strategy

Next, we introduce the merging and assignment steps for nodes.

4.4.1. Merging Step

Inspired by DBSCAN [19], we devise a merging step to classify the core nodes. We
define the following notions.

Definition 6 (Reachable). Two core nodes vp and vq are reachable if distC(vp, vq) = 1.

Definition 7 (Connected). Two core nodes vp and vq are connected if they are directly or transi-
tively reachable.

Definition 8 (Cluster core). A Cluster core Ĉ is a non-empty maximal subset of V(T+1) such that
every pair of nodes in Ĉ is connected.

4.4.2. Assignment Step

Inspired by DPC [20], we devise an assignment step to assign boundary nodes to
clusters. For each node vp ∈ V(t)

U , we find a node vq ∈ V(t+1) with the highest den-
sity among its nearest neighbors. We associate vp to vq and form the resulting clusters
C = {C1, C2, · · · , Ck}.

4.4.3. Mapping of Points to Clusters

All points are clustered into the same group with their nearest nodes. To improve
computational efficiency, we use the “round” function to find the matching node for the
point, instead of using the distance function to calculate distances between the point and
all nodes.

4.5. Algorithm Description and Complexity Analysis

The proposed algorithm is summarized in Algorithm 1.

Algorithm 1: GCBD algorithm

Input: A set of points, X = {x1, · · · , xn}
The number of intervals, l
The number of iterations, T

Output: The clustering result, C = {C1, C2, · · · , Ck}
1 Create a standard grid structure based on Definition 1.
2 Calculate the initial node density for each node according to Equation (5).
3 Categorize nodes as core nodes or boundary nodes based on an iterative boundary

detection strategy.
4 Merge core nodes based on Definition 8.
5 Assign boundary nodes (see Section 4.4.2).
6 Map points to clusters (see Section 4.4.3).

We analyze the time complexity of GCBD. Assume that the number of points, the
number of dimensions, and the number of intervals in each dimension are denoted by n,
m, and l, respectively. The number of all nodes is g, and the number of sparse nodes is g′.
The number of iterations is T. A standard grid structure can be constructed in O(n) time.
The time complexity of calculating the initial node density is O(gn). In the worst case, the
time complexity of the third step is O(T(g′2 + g′n)) = O(g′2 + g′n), where T is a small
constant representing the number of iterations. The merging step and assignment step can
be completed in O(g′ log(g′)) time. The time complexity of the last step is O(n).The time
complexity of GCBD is approximated to be O(g′n) if g′ � n, O(g′2) otherwise.

We also give the time complexity of some existing algorithms. The time complexity of
DGB [27] is O(g2), where g is the number of nodes. The time complexity of WaveCluster [24]



Entropy 2022, 24, 1606 8 of 19

is O(c) ≈ O(g), where c is the number of cells. The time complexity of CLIQUE [25] is the
number of O(c2) ≈ O(g2). The time complexity of BANG [22] is O(n log (n)), where n is
the number of points. The time complexity of GRIDBSCAN [28] is O(c log (c)). The time
complexity of OpiGrid [26] is O(n log (n)).

5. Experiments

In the following, the performance of the proposed clustering is studied in comparison
to several grid-based clustering algorithms on various datasets.

5.1. Experiment Setup

We compare the performance of GCBD with 6 grid-based clustering algorithms, in-
cluding DGB [27], WaveCluster [24], CLIQUE [25], BANG [22], GRIDBSCAN [28] and
OpiGrid [26]. According to the following parameter settings, we search for the best clus-
tering result. GCBD, DGB, WaveCluster, CLIQUE, and OpiGrid all require a parameter l
describing the number of intervals. Its range is between [5, 50]. In GCBD, the parameter
T indicates the number of iterations. This parameter value lies in the range [2, 12]. DGB
and WaveCluster have one parameter ε. We set ε ranging from 0.01 to 0.1 with step 0.01.
In WaveCluster and BANG, the parameter h indicates the number of levels. Its value falls
between [1, 5]. CLIQUE, BANG, and GRIDBSCAN all require a parameter c which indicates
the density threshold. Its range is between [0, 5]. GRIDBSCAN has one parameter p. We set
p ranging from 0.01 to 0.1 with step 0.01.

We evaluate performance using 12 synthetic datasets, and six real-world datasets.
The synthetic datasets include Mickey, Gu, Jain, ThreeD, DiffD, Moons, Shape3, Handl,
Yinyang, T4, T7, and SF. The real-world datasets include ORL, Dermatology, Control, Dig,
Optdigits, and Satimage. These datasets come from benchmark clustering datasets (https:
//github.com/milaan9/Clustering-Datasets, accessed on 1 November 2022) UCI machine
learning repository (http://archive.ics.uci.edu/ml/index.php, accessed on 1 November
2022). Table 1 provides detailed information about these datasets.

Table 1. Datasets used in experiments.

Names #Instances #Features #Classes

Mickey 1200 2 3
Gu 1050 2 2
Jain 373 2 2

ThreeD 1300 2 3
DiffD 863 2 4

Moons 1000 2 2
Shape3 2250 2 3
Handl 715 2 3

Yinyang 3200 2 5
T4 7326 2 6
T7 9208 2 9
SF 16,384 2 4

ORL 100 10,307 10
Dermatology 366 34 6

Control 600 60 6
Dig 1797 64 10

Optdigits 5620 64 10
Satimage 6435 36 6

Due to available class labels for the selected data sets, we employ external evaluation
measures including Adjusted Mutual Information (AMI) [30], Fowlkes-Mallows index
(FMI) [31], and F1 score [32]. The three measures range from [0, 1], with 1 denoting perfect
results and 0 denoting the worst ones.

https://github.com/milaan9/Clustering-Datasets
https://github.com/milaan9/Clustering-Datasets
http://archive.ics.uci.edu/ml/index.php


Entropy 2022, 24, 1606 9 of 19

5.2. Results on Synthetic Datasets

In Figures 3–14, we present Mickey, Gu, Jain, ThreeD, DiffD, Moons, Shape3, Handl,
Yinyang, T4, T7, and SF as examples to illustrate the superiority of our algorithm. Each
cluster is indicated by a different color solid dot. And black dots with hollow shapes
indicate noisy data.

In Figures 3 and 4, the first two rows correspond to the clustering results of Mickey
and Gu, two unbalanced data sets. The Mickey dataset is perfectly clustered by DGB,
CLIQUE, BANG, and our algorithm. Compared to the Mickey dataset, the two spherical
clusters on the Gu dataset are closer together, which makes clustering more challenging.
Our algorithm is the only one that can cluster this dataset perfectly.

Figures 5–7 show clustering results for three datasets with different densities (Jain,
ThreeD, and DiffD). A perfect clustering of the Jain dataset is achieved by DGB and our
algorithm. On the ThreeD dataset, the results of GCBD and DGB are nearly perfectly right.
On the DiffD dataset, only our algorithm can find the correct number of clusters. Some
algorithms (DGB and WaveCluster) incorrectly classify low-density clusters as noise, and
others (CLIQUE and Bang) merge two adjacent high-density clusters into one class.

Figures 8–10 show clustering results for three datasets that have clusters with overlap-
ping regions (Moons, Shape3 and Handl). On these three datasets, only our algorithm can
discover the overall structure of the clusters. Almost all comparison algorithms produce
false merges between adjacent clusters.

Figures 11–14 correspond to the clustering results of four datasets with various shapes
(Yinyang, T4, T7, and SF). The Yinyang dataset is perfectly clustered by DGB and our
algorithm. On T4, T7, and SF, our algorithm outperforms the others.

(a) Ground turth (b) GCBD (c) DGB (d) WaveCluster

(e) CLIQUE (f) BANG (g) GRIDBSCAN (h) OptiGrid

Figure 3. Clustering results on Mickey. (a) True structure of the Mickey dataset: It consists of three
spherical clusters with different sizes. (b) Result of GCBD: It can yield the optimal structure of clusters.
(c) Result of DGB: It can yield the optimal structure of clusters. (d) Result of WaveCluster: Two
clusters are wrongly marked as outliers. (e) Result of CLIQUE: It can yield the optimal structure of
clusters. (f) Result of BANG: It can yield the optimal structure of clusters. (g) Result of GRIDBSCAN:
It yields over-partitioning. (h) Result of OptiGrid: A few points are erroneously clustered.



Entropy 2022, 24, 1606 10 of 19

5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6
4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

(a) Ground turth (b) GCBD (c) DGB (d) WaveCluster

(e) CLIQUE (f) BANG (g) GRIDBSCAN (h) OptiGrid

Figure 4. Clustering results on Gu. (a) True structure of the Gu dataset: It consists of two Gaus-
sian clusters with different sizes. (b) Result of GCBD: It can yield the optimal structure of clusters.
(c) Result of DGB: Very few points are erroneously clustered. (d) Result of WaveCluster: A few
points are wrongly marked as outliers. (e) Result of CLIQUE: Two clusters are mistakenly merged
into one. (f) Result of BANG: Two clusters are mistakenly merged into one. (g) Result of GRIDB-
SCAN: Two clusters are mistakenly merged into one. (h) Result of OptiGrid: Very few points are
erroneously clustered.

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

(a) Ground turth (b) GCBD (c) DGB

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

(d) WaveCluster

(e) CLIQUE (f) BANG (g) GRIDBSCAN (h) OptiGrid

Figure 5. Clustering results on Jain. (a) True structure of the Jain dataset: It consists of two crescent-
shaped clusters with different densities. (b) Result of GCBD: It can yield the optimal structure of
clusters. (c) Result of DGB: It can yield the optimal structure of clusters. (d) Result of WaveCluster:
Points in the cluster below are wrongly marked as outliers. (e) Result of CLIQUE: It divides the upper
cluster into several small sub-clusters. (f) Result of BANG: It yields over-partitioning. (g) Result of
GRIDBSCAN: It yields over-partitioning. (h) Result of OptiGrid: Two clusters are divided incorrectly
into several small sub-clusters.



Entropy 2022, 24, 1606 11 of 19

(a) Ground turth (b) GCBD (c) DGB (d) WaveCluster

(e) CLIQUE (f) BANG (g) GRIDBSCAN (h) OptiGrid

Figure 6. Clustering results on ThreeD. (a) True structure of the ThreeD dataset: It consists of three
clusters with different densities. (b) Result of GCBD: It can correctly find the general shapes of each
cluster. (c) Result of DGB: A few points are wrongly marked as outliers. (d) Result of WaveCluster:
Two clusters are wrongly marked as outliers. (e) Result of CLIQUE: Very few points are erroneously
clustered. (f) Result of BANG: A mass of points are erroneously clustered. (g) Result of GRIDBSCAN:
It yields over-partitioning. (h) Result of OptiGrid: All clusters are divided incorrectly into several
small sub-clusters.

(a) Ground turth (b) GCBD (c) DGB (d) WaveCluster

(e) CLIQUE (f) BANG (g) GRIDBSCAN (h) OptiGrid

Figure 7. Clustering results on DiffD. (a) True structure of the DiffD dataset: It consists of four
Gaussian clusters with different sizes. (b) Result of GCBD: It can correctly find the general shapes of
each cluster. (c) Result of DGB: Points in the cluster upper are wrongly marked as outliers. (d) Result
of WaveCluster: A mass of points are wrongly marked as outliers. (e) Result of CLIQUE: Two clusters
are mistakenly merged into one. (f) Result of BANG: Two clusters are mistakenly merged into one.
(g) Result of GRIDBSCAN: It yields over-partitioning. (h) Result of OptiGrid: Two clusters are
divided incorrectly several small sub-clusters.



Entropy 2022, 24, 1606 12 of 19

(a) Ground turth (b) GCBD (c) DGB (d) WaveCluster

(e) CLIQUE (f) BANG (g) GRIDBSCAN (h) OptiGrid

Figure 8. Clustering results on Moons. (a) True structure of the Moons dataset: It consists of two
crescent-shaped clusters with different densities. (b) Result of GCBD: It can correctly find the general
shapes of each cluster. (c) Result of DGB: Two clusters are mistakenly merged into one. (d) Result of
WaveCluster: Points in the cluster upper are wrongly marked as outliers. (e) Result of CLIQUE: Two
clusters are mistakenly merged into one. (f) Result of BANG: It yields over-partitioning. (g) Result of
GRIDBSCAN: It yields over-partitioning. (h) Result of OptiGrid: Two clusters are divided incorrectly
into several small sub-clusters.

(a) Ground turth (b) GCBD (c) DGB (d) WaveCluster

(e) CLIQUE (f) BANG (g) GRIDBSCAN (h) OptiGrid

Figure 9. Clustering results on Shape3. (a) True structure of the Shape3 dataset: It consists of three
clusters with different densities. (b) Result of GCBD: It can correctly find the general shapes of each
cluster. (c) Result of DGB: Two clusters are mistakenly merged into one. (d) Result of WaveCluster:
One cluster is wrongly marked as an outlier. (e) Result of CLIQUE: Two clusters are mistakenly
merged into one. (f) Result of BANG: Two clusters are mistakenly merged into one. (g) Result of
GRIDBSCAN: It yields over-partitioning. (h) Result of OptiGrid: Two clusters are divided incorrectly
into several small sub-clusters.



Entropy 2022, 24, 1606 13 of 19

(a) Ground turth (b) GCBD (c) DGB (d) WaveCluster

(e) CLIQUE (f) BANG (g) GRIDBSCAN (h) OptiGrid

Figure 10. Clustering results on Handl. (a) True structure of the Handl dataset: It consists of three
clusters with different densities. (b) Result of GCBD: It can correctly find the general shapes of each
cluster. (c) Result of DGB: A few points are wrongly marked as outliers. (d) Result of WaveCluster:
A mass of points are wrongly marked as outliers. (e) Result of CLIQUE: One cluster is divided
incorrectly into several small sub-clusters. (f) Result of BANG: Three clusters are mistakenly merged
into one. (g) Result of GRIDBSCAN: It yields over-partitioning. (h) Result of OptiGrid: Two clusters
are mistakenly merged into one.

(a) Ground turth (b) GCBD (c) DGB (d) WaveCluster

(e) CLIQUE (f) BANG (g) GRIDBSCAN (h) OptiGrid

Figure 11. Clustering results on Yinyang. (a) True structure of the Yinyang dataset: Its composition
is like a yin-yang diagram. (b) Result of GCBD: It can yield the optimal structure of clusters.
(c) Result of DGB: It can yield the optimal structure of clusters. (d) Result of WaveCluster: A few
points are wrongly marked as outliers. (e) Result of CLIQUE: Very few points are erroneously
clustered. (f) Result of BANG: Very few points are erroneously clustered. (g) Result of GRIDBSCAN:
It yields over-partitioning. (h) Result of OptiGrid: Three clusters are divided incorrectly into several
small sub-clusters.



Entropy 2022, 24, 1606 14 of 19

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

(a) Ground turth (b) GCBD (c) DGB (d) WaveCluster

(e) CLIQUE (f) BANG (g) GRIDBSCAN (h) OptiGrid

Figure 12. Clustering results on T4. (a) True structure of the T4 dataset: It consists of six intertwined
or nested clusters. (b) Result of GCBD: It can yield the optimal structure of clusters. (c) Result of DGB:
Two clusters are mistakenly merged into one. (d) Result of WaveCluster: A few points are wrongly
marked as outliers. (e) Result of CLIQUE: Two clusters are mistakenly merged into one. (f) Result
of BANG: Three clusters are mistakenly merged into one. (g) Result of GRIDBSCAN: It yields over-
partitioning. (h) Result of OptiGrid: Six clusters are divided incorrectly several small sub-clusters.

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

(a) Ground turth (b) GCBD (c) DGB (d) WaveCluster

(e) CLIQUE (f) BANG (g) GRIDBSCAN (h) OptiGrid

Figure 13. Clustering results on T7. (a) True structure of the T7 dataset: It consists of nine
intertwined or nested clusters. (b) Result of GCBD: It can correctly find the general shapes of each
cluster. (c) Result of DGB: Seven clusters are mistakenly merged into one. (d) Result of WaveCluster:
Three clusters are mistakenly merged into one. (e) Result of CLIQUE: Seven clusters are mistakenly
merged into one. (f) Result of BANG: Three clusters are mistakenly merged into one. (g) Result of
GRIDBSCAN: It yields over-partitioning. (h) Result of OptiGrid: Five clusters are divided incorrectly
several small sub-clusters.



Entropy 2022, 24, 1606 15 of 19

(a) Ground turth (b) GCBD (c) DGB (d) WaveCluster

(e) CLIQUE (f) BANG (g) GRIDBSCAN (h) OptiGrid

Figure 14. Clustering results on SF. (a) True structure of the SF dataset: These clusters look like
smiling faces. (b) Result of GCBD: It can correctly find the general shapes of each cluster. (c) Result
of DGB: Two clusters are mistakenly merged into one. (d) Result of WaveCluster: Two clusters
are wrongly marked as outliers. (e) Result of CLIQUE: All clusters are mistakenly merged into
one. (f) Result of BANG: All clusters are mistakenly merged into one. (g) Result of GRIDBSCAN:
It yields over-partitioning. (h) Result of OptiGrid: Three clusters are divided incorrectly several
small sub-clusters.

Table 2 shows the quantitative results from these datasets. On all datasets, GCBD
outperforms other algorithms in terms of all metrics. Experimental results show that our
algorithm can identify clusters with different sizes, varying densities, overlapping regions,
and arbitrary shapes.

5.3. Results on Real-World Datasets

We evaluate the clustering quality of all algorithms on 6 real-world datasets. The
datasets are preprocessed the same way as in [33]. Table 3 illustrates that GCBD outper-
forms all comparison algorithms on most real-world datasets. For the high-dimensional
dataset ORL, our algorithm improves F1 by an average of 0.30 compared to the others.
Compared with DGB, WaveCluster, CLIQUE, BANG, GRIDBSCAN, and OptiGrid, GCBD
has significantly better AMI and FMI. On the Dermatology dataset, our algorithm improves
AMI and FMI by an average of 0.23 and 0.30 compared to the others. GCBD improves F1 by
an average of 0.51 over WaveCluster, GRIDBSCAN, and OptiGrid. Furthermore, its F1 is far
superior to DGB, CLIQUE, and BANG. On the Control dataset, GCBD has better AMI, FMI,
and F1 than other algorithms. In particular, the improvement of F1 is more significant. On
the Dig dataset, GCBD outperforms all comparison algorithms. On the Optdigits dataset,
our algorithm has better AMI, FMI, and F1 than the others. Specifically, the F1 score of
GCBD improves by an average of 0.36 over other algorithms. On the Satimage dataset,
GCBD still achieves better clustering results. It improves the clustering AMI, FMI, and
F1 by an average of 0.25, 0.30, and 0.32 compared to other algorithms. In summary, our
algorithm improves AMI, FMI, and F1 by an average of 0.23, 0.27, and 0.29 over the others.



Entropy 2022, 24, 1606 16 of 19

Table 2. Performance comparison for 7 clustering algorithms on 12 synthetic datasets.

Algorithm AMI FMI F1 Clu# Parameter AMI FMI F1 Clu# Parameter

Mickey(3 classes) Gu(2 classes)
GCBD 1.000 1.000 1.000 3 l = 13; T = 2 1.000 1.000 1.000 2 l = 29; T = 4
DGB 1.000 1.000 1.000 3 l = 8; ε = 0.1 0.816 0.985 0.985 2 l = 15; ε = 0.05
WaveCluster 0.666 0.911 0.907 1 l = 5; ε = 0.01; h = 4 0.399 0.850 0.840 4 l = 10; ε = 0.1; h = 1
CLIQUE 1.000 1.000 1.000 3 l = 30; c = 0 −0.010 0.943 0.942 10 l = 18; c = 4
BANG 1.000 1.000 1.000 3 h = 10; c = 4 0.501 0.922 0.919 49 h = 12; c = 5
GRIDBSCAN 0.014 0.090 0.019 1091 p = 0.01; c = 1 0.017 0.835 0.831 137 p = 0.02; c = 2
OptiGrid 0.932 0.981 0.981 5 l = 5 0.944 0.998 0.998 2 l = 50

Jain(2 classes) ThreeD(3 classes)
GCBD 1.000 1.000 1.000 2 l = 26; T = 9 0.980 0.996 0.996 3 l = 42; T = 4
DGB 1.000 1.000 1.000 2 l = 18; ε = 0.1 0.961 0.994 0.994 3 l = 25; ε = 0.05
WaveCluster 0.586 0.887 0.884 1 l = 5; ε = 0.01; h = 4 0.595 0.852 0.845 1 l = 5; ε = 0.01; h = 4
CLIQUE 0.840 0.971 0.971 5 l = 18; c = 0 0.959 0.994 0.994 7 l = 25; c = 0
BANG 0.547 0.850 0.839 42 h = 12; c = 0 0.859 0.985 0.985 28 h = 12; c = 5
GRIDBSCAN 0.000 0.000 373 p = 0.08; c = 1 0.283 0.836 0.834 281 p = 0.03; c = 1
OptiGrid 0.410 0.507 0.453 6 l = 50 0.528 0.550 0.503 5 l = 4

DiffD(4 classes) Moons(2 classes)
GCBD 0.993 0.997 0.997 4 l = 44; T = 8 0.894 0.972 0.972 2 l = 30; T = 8
DGB 0.981 0.993 0.993 3 l = 18; ε = 0.05 0.026 0.699 0.661 3 l = 18; ε = 0.1
WaveCluster 0.510 0.607 0.602 35 l = 15; ε = 0.01; h = 1 0.252 0.510 0.508 26 l = 40; ε = 0.05; h = 3
CLIQUE 0.636 0.716 0.682 19 l = 25; c = 1 0.012 0.705 0.665 2 l = 18; c = 3
BANG 0.862 0.971 0.971 43 h = 12; c = 0 0.205 0.077 0.012 512 h = 15; c = 4
GRIDBSCAN 0.131 0.407 0.364 539 p = 0.1; c = 1 0.000 0.055 0.012 924 p = 0.01; c = 1
OptiGrid 0.617 0.516 0.453 9 l = 3 0.464 0.402 0.285 13 l = 8

Shape3(3 classes) Handl(3 classes)
GCBD 0.957 0.984 0.984 3 l = 40; T = 9 0.960 0.988 0.988 3 l = 29 = 31; T = 11
DGB 0.724 0.795 0.778 14 l = 50; ε = 0.05 0.914 0.978 0.978 4 l = 30; ε = 0.1
WaveCluster 0.447 0.519 0.519 16 l = 25; ε = 0.1; h = 2 0.392 0.571 0.568 10 l = 20; ε = 0.01; h = 2
CLIQUE 0.683 0.789 0.776 39 l = 50; c = 0 0.750 0.924 0.924 31 l = 30; c = 0
BANG 0.753 0.799 0.780 8 h = 12; c = 0 0.650 0.845 0.845 35 h = 12; c = 4
GRIDBSCAN 0.181 0.513 0.425 1538 p = 0.05; c = 1 0.166 0.655 0.655 240 p = 0.05; c = 1
OptiGrid 0.558 0.483 0.417 12 l = 4 0.491 0.705 0.700 4 l = 8

Yinyang(5 classes) T4(6 classes)
GCBD 1.000 1.000 1.000 5 l = 41; T = 2 1.000 1.000 1.000 6 l = 44; T = 3
DGB 1.000 1.000 1.000 5 l = 30; ε = 0.05 0.955 0.943 0.941 5 l = 40; ε = 0.05
WaveCluster 0.672 0.701 0.688 6 l = 15; ε = 0.01; h = 1 0.695 0.662 0.662 5 l = 12; ε = 0.1; h = 1
CLIQUE 0.999 1.000 1.000 6 l = 30; c = 4 0.955 0.943 0.941 6 l = 50; c = 0
BANG 0.997 0.999 0.999 8 h = 12; c = 4 0.932 0.963 0.963 110 h = 15; c = 4
GRIDBSCAN 0.530 0.864 0.859 1311 p = 0.03; c = 1 0.002 0.100 0.081 5619 p = 0.01; c = 1
OptiGrid 0.568 0.464 0.387 10 l = 1 0.734 0.565 0.512 14 l = 1

T7(9 classes) SF(4 classes)
GCBD 0.997 0.999 0.999 9 l = 49; T = 5 0.955 0.986 0.986 4 l = 38; T = 12
DGB 0.598 0.542 0.454 4 l = 50; ε = 0.1 0.064 0.524 0.458 11 l = 50; ε = 0.1
WaveCluster 0.623 0.612 0.610 5 l = 15; ε = 0.05; h = 1 0.431 0.475 0.475 39 l = 50; ε = 0.1; h = 3
CLIQUE 0.527 0.532 0.441 2 l = 50; c = 2 0.022 0.552 0.469 14 l = 50; c = 4
BANG 0.949 0.934 0.933 62 h = 15; c = 4 0.641 0.752 0.723 347 h = 15; c = 0
GRIDBSCAN 0.002 0.066 0.041 7839 p = 0.01; c = 1 0.000 0.022 0.003 3940 p = 0.01; c = 1
OptiGrid 0.611 0.405 0.380 12 l = 5 0.555 0.509 0.469 10 l = 5



Entropy 2022, 24, 1606 17 of 19

Table 3. Performance comparison for 7 clustering algorithms on 6 real-world datasets.

Algorithm AMI FMI F1 Clu# Parameter AMI FMI F1 Clu# Parameter

ORL(10 classes) Dermatology(6 classes)
GCBD 0.955 0.947 0.946 12 l = 46; T = 6 0.930 0.946 0.946 6 l = 38; T = 11
DGB 0.919 0.892 0.886 16 l = 40; ε = 0.05 0.926 0.896 0.891 5 l = 12; ε = 0.1
WaveCluster 0.493 0.410 0.292 1 l = 8; ε = 0.01; h = 4 0.745 0.747 0.739 3 l = 5; ε = 0.01; h = 3
CLIQUE 0.949 0.936 0.935 12 l = 20; c = 0 0.926 0.896 0.891 5 l = 18; c = 0
BANG 0.900 0.862 0.852 17 h = 12; c = 0 0.871 0.786 0.786 6 h = 12; c = 0
GRIDBSCAN 0.149 0.261 0.174 89 p = 0.02; c = 1 −0.001 0.000 0.000 364 p = 0.01; c = 1
OptiGrid 0.854 0.777 0.753 19 l = 2 0.747 0.609 0.550 15 l = 1

Control(6 classes) Dig(10 classes)
GCBD 0.860 0.773 0.748 4 l = 9; T = 2 0.917 0.905 0.905 10 l = 41; T = 8
DGB 0.860 0.773 0.748 4 l = 8; ε = 0.01 0.899 0.863 0.863 11 l = 50; ε = 0.1
WaveCluster 0.621 0.575 0.497 1 l = 5; ε = 0.01; h = 3 0.664 0.459 0.448 10 l = 15; ε = 0.01; h = 1
CLIQUE 0.860 0.773 0.748 4 l = 40; c = 0 0.903 0.844 0.841 10 l = 40; c = 0
BANG 0.860 0.773 0.748 4 h = 12; c = 0 0.899 0.862 0.862 19 h = 15; c = 0
GRIDBSCAN 0.196 0.384 0.373 409 p = 0.05; c = 1 −0.001 0.015 0.005 1701 p = 0.01; c = 1
OptiGrid 0.592 0.435 0.416 17 l = 3 0.751 0.644 0.638 10 l = 2

Optdigits(10 classes) Satimage(6 classes)
GCBD 0.955 0.963 0.963 10 l = 46; T = 8 0.722 0.772 0.766 5 l = 28; T = 9
DGB 0.922 0.871 0.868 10 l = 30; ε = 0.05 0.658 0.648 0.609 4 l = 30; ε = 0.1
WaveCluster 0.712 0.559 0.557 11 l = 20; ε = 0.01; h = 1 0.460 0.513 0.484 3 l = 10; ε = 0.1; h = 1
CLIQUE 0.859 0.733 0.710 8 l = 40; c = 2 0.613 0.600 0.540 3 l = 40; c = 5
BANG 0.894 0.819 0.813 12 h = 15; c = 0 0.613 0.600 0.540 3 h = 12; c = 0
GRIDBSCAN 0.000 0.021 0.008 5243 p = 0.01; c = 1 0.003 0.034 0.010 5999 p = 0.01; c = 1
OptiGrid 0.796 0.669 0.668 17 l = 5 0.507 0.470 0.470 11 l = 5

5.4. Running Time

This subsection compares the running times of GCBD and 6 competitors (DGB,
WaveCluster, CLIQUE, BANG, GRIDBSCAN, and OptiGrid) on synthetic data sets with
different sizes (n = 1000:1000:10,000). For a fair comparison, the number of intervals (a
parameter common to GCBD, DGB, WaveCluster, CLIQUE, and OpiGrid) is kept at 20. To
determine the running time, we use the average and standard deviation of 50 repeated
experiments. We perform all experiments in the Matlab environment on a PC machine
containing an Intel(R) Core(TM)-i7-9700F CPU and 32 GB RAM.

Figure 15 shows the average and standard deviation of the running times for GCBD,
DGB, WaveCluster, CLIQUE, BANG, GRIDBSCAN, and OptiGrid. It is important to note
that the y-axis is plotted using a base-10 log scale. We see that the BANG is significantly
slower than other algorithms (GCBD, DGB, WaveCluster, CLIQUE, GRIDBSCAN, and Opti-
Grid). GCBD is the second-fastest in more than half of the cases. Scalability comparisons
show our algorithm is competitive.

1000
2000

3000
4000

5000
6000

7000
8000

9000
10,000

Number of data

10-2

100

102

T
im

e 
(s

)

GCBD
DGB
WaveCluster
CLIQUE
BANG
GRIDBSCAN
OptiGrid

Figure 15. Running time comparison.



Entropy 2022, 24, 1606 18 of 19

6. Conclusions

This paper presents a novel grid-based clustering algorithm for clusters with different
sizes, varying densities, overlapping regions, and arbitrary shapes. Specifically, we define
a density estimation of nodes based on a standard grid structure. We use an iterative
boundary detection strategy to distinguish core nodes from boundary nodes. Therefore,
the density threshold does not need to be specified by the user. In addition, the iterative
density estimation and boundary detection can discover the boundary regions between
adjacent clusters well, which facilitates the processing of clusters with varying densities and
overlapping regions. Finally, the adopted connectivity strategy is beneficial for identifying
clusters of arbitrary shapes.

This algorithm is mainly applied only to low-dimensional data. However, in the case
of very high-dimensional data. To embed the data into a proper dimension, dimension
reduction techniques such as Principal Component Analysis (PCA) and Uniform Manifold
Approximation and Projection (UMAP) may be adopted. To be able to better cluster high-
dimensional data, our future work is to introduce the idea of subspaces to alleviate the
problem of the “curse of dimensionality”.

Author Contributions: Conceptualization, M.D.; methodology, M.D.; software, M.D. and F.W.; val-
idation, M.D. and F.W.; formal analysis, M.D.; investigation, M.D. and F.W.; resources, M.D.; data
curation, M.D. and F.W.; writing—original draft preparation, M.D.; writing—review and editing,
M.D.; visualization, M.D. and F.W.; supervision, M.D.; project administration, M.D.; funding acquisi-
tion, M.D. All authors have read and agreed to the published version of the manuscript.

Funding: This work research was funded by the National Natural Science Foundation of China, grant
number 62006104, and the Natural Science Foundation of the Jiangsu Higher Education Institutions,
grant number 20KJB520012.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All datasets used for this study have been deposited in the clustering
benchmarks repository (https://github.com/milaan9/Clustering-Datasets, accessed on 1 November
2022) and UCI Machine learning Repository (http://archive.ics.uci.edu/ml/index.php, accessed on
1 November 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shao, C.; Du, X.; Yu, J.; Chen, J. Cluster-based improved isolation forest. Entropy 2022, 24, 611. [CrossRef] [PubMed]
2. Shalileh, S.; Mirkin, B. Community partitioning over feature-rich networks using an extended k-means method. Entropy 2022, 24,

626. [CrossRef] [PubMed]
3. Malzer, C.; Baum, M. Constraint-based hierarchical cluster selection in automotive radar data. Sensors 2021, 21, 3410. [CrossRef]

[PubMed]
4. Cuzzocrea, A.; Gaber, M.M.; Fadda, E.; Grasso, G.M. An innovative framework for supporting big atmospheric data analytics via

clustering-based spatio-temporal analysis. J. Ambient. Intell. Humaniz. Comput. 2019, 10, 3383–3398. [CrossRef]
5. Prieto Santamaría, L.; García del Valle, E.P.; Lagunes García, G.; Zanin, M.; Rodríguez González, A.; Menasalvas Ruiz, E.;

Pérez Gallardo, Y.; Hernández Chan, G.S. Analysis of new nosological models from disease similarities using clustering. In
Proceedings of the 33rd IEEE International Symposium on Computer-Based Medical Systems (CBMS), Rochester, MN, USA,
28–30 July 2020; pp. 183–188. [CrossRef]

6. Gamino-Sánchez, F.; Hernández-Gutiérrez, I.V.; Rosales-Silva, A.J.; Gallegos-Funes, F.J.; Mújica-Vargas, D.; Ramos-Díaz, E.;
Carvajal-Gámez, B.E.; Kinani, J.M.V. Block-Matching Fuzzy C-Means clustering algorithm for segmentation of color images
degraded with Gaussian noise. Eng. Appl. Artif. Intell. 2018, 73, 31–49. [CrossRef]

7. Vianney Kinani, J.M.; Rosales Silva, A.J.; Gallegos Funes, F.; Mújica Vargas, D.; Ramos Díaz, E.; Arellano, A. Medical imaging
lesion detection based on unified gravitational fuzzy clustering. J. Healthc. Eng. 2017, 2017, 8536206. [CrossRef]

8. Dzuba, S.; Krylov, D. Cluster analysis of financial strategies of companies. Mathematics 2021, 9, 3192. [CrossRef]
9. Guo, H.; Wang, L.; Liu, X.; Pedrycz, W. Information granulation-based fuzzy clustering of time series. IEEE Trans. Cybern. 2021,

51, 6253–6261. [CrossRef]
10. Gatto, B.B.; dos Santos, E.M.; Molinetti, M.A.F.; Fukui, K. Multilinear clustering via tensor Fukunaga-Koontz transform with

Fisher eigenspectrum regularization. Appl. Soft Comput. 2021, 113, 107899. [CrossRef]

https://github.com/milaan9/Clustering-Datasets
http://archive.ics.uci.edu/ml/index.php
http://doi.org/10.3390/e24050611
http://www.ncbi.nlm.nih.gov/pubmed/35626495
http://dx.doi.org/10.3390/e24050626
http://www.ncbi.nlm.nih.gov/pubmed/35626512
http://dx.doi.org/10.3390/s21103410
http://www.ncbi.nlm.nih.gov/pubmed/34068403
http://dx.doi.org/10.1007/s12652-018-0966-1
http://dx.doi.org/10.1109/CBMS49503.2020.00042
http://dx.doi.org/10.1016/j.engappai.2018.04.026
http://dx.doi.org/10.1155/2017/8536206
http://dx.doi.org/10.3390/math9243192
http://dx.doi.org/10.1109/TCYB.2020.2970455
http://dx.doi.org/10.1016/j.asoc.2021.107899


Entropy 2022, 24, 1606 19 of 19

11. Lu, M.; Zhao, X.J.; Zhang, L.; Li, F.Z. Semi-supervised concept factorization for document clustering. Inf. Sci. 2016, 331, 86–98.
[CrossRef]

12. Nedyalkova, M.; Sarbu, C.; Tobiszewski, M.; Simeonov, V. Fuzzy divisive hierarchical clustering of solvents according to their
experimentally and theoretically predicted descriptors. Symmetry 2020, 12, 1763. [CrossRef]

13. Choudhary, A.; Kumar, S.; Gupta, S.; Gong, M.; Mahanti, A. FEHCA: A fault-tolerant energy-efficient hierarchical clustering
algorithm for wireless sensor networks. Energies 2021, 14, 3935. [CrossRef]

14. Yao, P.; Zhu, Q.; Zhao, R. Gaussian mixture model and self-organizing map neural-network-based coverage for target search in
curve-shape area. IEEE Trans. Cybern. 2022, 52, 3971–3983. [CrossRef]

15. Smieja, M.; Hajto, K.; Tabor, J. Efficient mixture model for clustering of sparse high dimensional binary data. Data Min. Knowl.
Discov. 2019, 33, 1583–1624. [CrossRef]

16. Du, M.; Wang, R.; Ji, R.; Wang, X.; Dong, Y. ROBP a robust border-peeling clustering using Cauchy kernel. Inf. Sci. 2021,
571, 375–400. [CrossRef]

17. Sieranoja, S.; Fränti, P. Fast and general density peaks clustering. Pattern Recognit. Lett. 2019, 128, 551–558. [CrossRef]
18. Du, M.; Zhao, J.; Sun, J.; Dong, Y. M3W: Multistep Three-Way Clustering. IEEE Trans. Neural Networks Learn. Syst. 2022.

[CrossRef]
19. Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise.

In Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining (KDD-96), Portland, OR, USA, 2–4
August 1996; pp. 226–231.

20. Rodriguez, A.; Laio, A. Clustering by fast search and find of density peaks. Science 2014, 344, 1492–1496. [CrossRef]
21. Schikuta, E. Grid-clustering: An efficient hierarchical clustering method for very large data sets. In Proceedings of the 13th

International Conference on Pattern Recognition (ICPR), Vienna, Austria, 25–19 August 1996; pp. 101–105. [CrossRef]
22. Schikuta, E.; Erhart, M. The BANG-clustering system: Grid-based data analysis. In Proceedings of the 2nd International

Symposium on Intelligent Data Analysis (IDA), London, UK, 4–6 August 1997; pp. 513–524. [CrossRef]
23. Wang, W.; Yang, J.; Muntz, R. STING: A statistical information grid approach to spatial data mining. In Proceedings of the 23th

International Conference on Very Large Data Bases (VLDB), Athens, Greece, 25–29 August 1997; pp. 186–195. [CrossRef]
24. Sheikholeslami, G.; Chatterjee, S.; Zhang, A. Wavecluster: A multi-resolution clustering approach for very large spatial databases.

In Proceedings of the 24th International Conference on Very Large Data Bases (VLDB), New York, NY, USA, 24–27 August 1998;
pp. 428–439. [CrossRef]

25. Agrawal, R.; Gehrke, J.; Gunopulos, D.; Raghavan, P. Automatic subspace clustering of high dimensional data for data mining
applications. In Proceedings of the 1998 ACM International Conference on Management of Data (SIGMOD), Seattle, WA, USA,
2–4 June 1998; pp. 94–105. [CrossRef]

26. Hinneburg, A.; Keim, D.A. Optimal grid-clustering: Towards breaking the curse of dimensionality in high-dimensional clustering.
In Proceedings of the 25th International Conference on Very Large Data Bases (VLDB), Edinburgh, UK, 7–10 September 1999;
pp. 506–517.

27. Wu, B.; Wilamowski, B.M. A fast density and grid based clustering method for data with arbitrary shapes and noise. IEEE Trans.
Ind. Inform. 2017, 13, 1620–1628. [CrossRef]

28. Uncu, O.; Gruver, W.A.; Kotak, D.B.; Sabaz, D.; Alibhai, Z.; Ng, C. GRIDBSCAN: GRId density-based spatial clustering of
applications with noise. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics (ICSMC), Taipei,
China, 8–11 October 2006; pp. 2976–2981. [CrossRef]

29. Averbuch-Elor, H.; Bar, N.; Cohen-Or, D. Border-peeling clustering. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 1791–1797.
[CrossRef]

30. Nguyen, X.V.; Epps, J.; Bailey, J. Information theoretic measures for clusterings comparison: Variants, properties, normalization
and correction for chance. J. Mach. Learn. Res. 2010, 11, 2837–2854. [CrossRef]

31. Fowlkes, E.B.; Mallows, C.L. A method for comparing two hierarchical clusterings. J. Am. Stat. Assoc. 1983, 78, 576–579.
[CrossRef]

32. Banerjee, A.; Krumpelman, C.; Ghosh, J.; Basu, S.; Mooney, R.J. Model-based overlapping clustering. In Proceedings of the
Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining (SIGKDD), Chicago, IL, USA, 21–24
August 2005; pp. 532–537. [CrossRef]

33. Peng, D.; Gui, Z.; Wang, D.; Ma, Y.; Huang, Z.; Zhou, Y.; Wu, H. Clustering by measuring local direction centrality for data with
heterogeneous density and weak connectivity. Nat. Commun. 2022, 13, 5455. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.ins.2015.10.038
http://dx.doi.org/10.3390/sym12111763
http://dx.doi.org/10.3390/en14133935
http://dx.doi.org/10.1109/TCYB.2020.3019255
http://dx.doi.org/10.1007/s10618-019-00635-1
http://dx.doi.org/10.1016/j.ins.2021.04.089
http://dx.doi.org/10.1016/j.patrec.2019.10.019
http://dx.doi.org/10.1109/TNNLS.2022.3208418
http://dx.doi.org/10.1126/science.1242072
http://dx.doi.org/10.1109/ICPR.1996.546732
http://dx.doi.org/10.1007/BFb0052867
http://dx.doi.org/10.1109/69.877504
http://dx.doi.org/10.1007/s007780050009
http://dx.doi.org/10.1145/276304.276314
http://dx.doi.org/10.1109/TII.2016.2628747
http://dx.doi.org/10.1109/ICSMC.2006.384571
http://dx.doi.org/10.1109/TPAMI.2019.2924953
http://dx.doi.org/10.5555/1756006.1953024
http://dx.doi.org/10.1080/01621459.1983.10478008
http://dx.doi.org/10.1145/1081870.1081932
http://dx.doi.org/10.1038/s41467-022-33136-9
http://www.ncbi.nlm.nih.gov/pubmed/36114209

	Introduction
	Related Work
	Grid-Based Clustering
	Density-Based Clustering

	Related Concepts
	DBSCAN Algorithm
	DPC Algorithm

	Proposed Algorithm
	Standard Grid Structure
	Density Estimation
	Boundary Detection
	Connection Strategy
	Merging Step
	Assignment Step
	Mapping of Points to Clusters

	Algorithm Description and Complexity Analysis

	Experiments
	Experiment Setup
	Results on Synthetic Datasets
	Results on Real-World Datasets
	Running Time

	Conclusions
	References

