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Abstract: This work is devoted to deriving the entropy of a single photon in a beam of light from
first principles. Based on the quantum processes of light–matter interaction, we find that, if the
light is not in equilibrium, there are two different ways, depending on whether the photon is being
added or being removed from the light, of defining the single-photon entropy of this light. However,
when the light is in equilibrium at temperature T, the two definitions are equivalent and the photon
entropy of this light is hν/T. From first principles, we also re-derive the Jüttner velocity distribution
showing that, even without interatomic collisions, two-level atoms will relax to the state satisfying
the Maxwell–Jüttner velocity distribution when they are moving in blackbody radiation fields.

Keywords: entropy of photon; Jüttner velocity distribution; absorption and emission

1. Introduction

Light plays an important role in non-equilibrium thermodynamics not only in light-
driving processes, but also in some basic processes such as atoms interacting with each other
by exchanging photons. Therefore, proper and accurate evaluation of the entropy of a single
photon in a light beam is crucial for the formulation of the light-related thermodynamics.
Although the entropy of a beam of light with a certain frequency ν is well derived as
S(ν) = kB[(〈nν〉 + 1) ln(〈nν〉 + 1) − 〈nν〉 ln〈nν〉] with 〈nν〉 the average number of pho-
tons [1], there still exist several different definitions of the entropy of a single photon in
a beam of light. The first one is the average entropy, s(ν) = S(ν)/〈nν〉 [2], which is only
a mathematical definition lacking proper physical realization [3]. The second one is the
intrinsic entropy of a single photon [3–5], which is based on the observation that photons
do not interact with each other and each of them thus forms an isolated thermodynamical
system with the intrinsic entropy a constant independent of its frequency and the source
temperature. The third definition cares about the effective entropy of a single photon,
which is defined as the entropy change due to adding or removing a photon from the
light [6–9]. Apart from the three definitions above, there still exists the fourth definition
as s(ν, T) = hν/[T(exp hν/kBT − 1)] based on the classical definition of entropy change
dS = δQ/T [10]. Coexistence of these definitions of single-photon entropy reflects the
complexity involved in the thermodynamics of lights. In this work, we shall limit our
attention only to the third definition, and the term “single-photon entropy”, in this work,
will specially refer to effective single-photon entropy.

Previously, based on the following two equilibrium assumptions, (i) the incoming
light is initially in equilibrium and (ii) photons in the light can quickly equilibrate again
after adding or removing a photon from the light; it can be proven that the single-photon
entropy of this light with the frequency ν at T is s(ν) = hν/T, with h the Planck constant,
and this result has been applied in addressing various problems [8,9,11–17]. For example, it
has been previously applied to evaluate the entropy of a laser beam [14–16] and the entropy
production in the photosynthesis [17].
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However, little work has been completed to derive the single-photon entropy from
first principles without resorting to the above equilibrium assumptions [6,7], which will
obviously restrict its wider applications. Accordingly, several problems regarding the
single-photon entropy still exist. First, in what circumstances is the formula s(ν) = hν/T
accurate or how long will it take for the light to equilibrate? Second, what is the single-
photon entropy if the light is initially not in equilibrium? Third, even for an equilibrium
light, can we derive, from first principles, the photon entropy of this light without assuming
the light will quickly equilibrate again?

In Dirac’s work [18], he introduced the idea of second quantization and gracefully
derived the Einstein coefficient relation from first principles without resorting to the equi-
librium assumptions. Deeply inspired by Dirac’s work, this work closely follows the
first principles to re-derive the single-photon entropy and address the above problems
from first principles. We also extend this way of derivation to re-derive Jüttner veloc-
ity distribution [19] of two-level atoms in blackbody radiation fields. Apart from the
derivation, the result itself is also an obvious example to demonstrate the importance of
light in non-equilibrium thermodynamics and a connection between thermal motion and
thermal radiation.

2. Single-Photon Entropy Evaluated by Examining the Light–Atom Interaction

Consider a beam of light with the frequency ν and the number distribution function of
photons P(n) (or with the state specified by the density operator ρ̂ = ∑n P(n)|n〉〈n|). The
total entropy of this light is obviously given by S = −kBTrρ̂ ln ρ̂ or S = −kB ∑n P(n) ln P(n).
If the light is in equilibrium, then P(n) satisfies the Bose–Einstein distribution, i.e.,
P(n) = e−nhν/kBT/(1− e−hν/kBT), and the temperature of this light can be determined
by P(n) as T = hν/kB ln P(n)/P(n + 1). Here, the light is in equilibrium means that, if this
beam of light interacts with atoms, the number density distribution P(n) of photons in
the light is, on average, constant, and equating the absorption rate to the emission rate of
photons leads to the equilibrium number distribution.

However, in the following derivation, we assume that P(n) can be any number dis-
tribution function to make the conclusion more general. Note that, even for a light that is
not in equilibrium, it is possible to define its temperature according to recent works [20,21].
Furthermore, we assume that this beam of light is shining on some atoms A and some of
the photons will be absorbed by A. After the time span ∆t, the number distribution of the
outgoing light will change a little due to the absorption. We emphasize that the following
derivation does not assume that the light beam will equilibrate again after a photon of the
beam has been absorbed by some atoms. Comparing the incoming and outgoing number
distributions will lead to the entropy change of the beam.

Let us first compute the outgoing number distribution. For instance, at the time t,
there are exactly n photons in the beam that are hitting the atom A. Then, there will be
some probability of the state |A; n〉 turning into |A∗; n− 1〉 with A∗ the excited state of
A and the energy gap between A∗ and A being EA∗ − EA = hν. According to quantum
field theory [18,22], the Hamiltonian of this process must look like H = H†

I a† + HI a,
where HI is an operator with non-zero matrix elements between different atom states,
H†

I is its Hermitian conjugate and their precise expressions are not important here [18],
and a† and a are the creation and annihilation operators of the photon, respectively. Then,
during a small time span ∆t, the amount of |A; n〉 that has been excited is proportional to
|〈A∗; n − 1|H|A; n〉|2∆t = |M0|2n∆t = nε with M0 = 〈A∗|HI |A〉, 〈n − 1|a†|n〉 = 0 and
〈n − 1|a|n〉 =

√
n (see ref. [22]). Here, we define a new parameter ε (≡ |M0|2∆t) for

convenience, which is small for the small time interval ∆t.
Therefore, the outgoing number distribution function becomes

Pout(n; ε) = P(n + 1) · (n + 1)ε + P(n)(1− nε). (1)
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where P(n + 1) · (n + 1)ε accounts for the probability of the occurrence of |A; n + 1〉 →
|A∗; n〉 while P(n)(1− nε) accounts for the probability of |A; n〉 not being transformed into
|A∗; n− 1〉.

Finally, the entropy of a single photon in a beam of light can be obtained by evaluating
the entropy decrease per number of photons absorbed by A as

sab(ν) = lim
ε→0

∆S
∆n

= lim
ε→0

−kB ∑∞
n=0[Pout(n; ε) ln Pout(n; ε)− P(n) ln P(n)]

−∑∞
n=0 nεP(n)

=
kB
〈nν〉

∞

∑
n=0

(n + 1)P(n + 1) ln
P(n)

P(n + 1)
, (2)

where ∑∞
n=1 nεP(n) accounts for the number of photons absorbed by A and the averaged

number of photons in the light is 〈nν〉 = ∑∞
n=1 nP(n). Thesubscript ab is used to emphasize

that this single-photon entropy is defined by evaluating the entropy decrease per number
of photons absorbed by A. Detailed derivation of Equation (2) is referred to Appendix A.
Note that Equation (2) is valid for all kinds of light sources.

Similarly, the entropy of a single photon in a beam of light can be also obtained by
evaluating the entropy increase per number of photons emitted by A∗ through |A∗; n〉 →
|A; n + 1〉 (both spontaneous and stimulated emissions have been included in this single
equation), as follows (see Appendix A):

sem(ν) = − lim
ε→0

−kB ∑∞
n=0[Pout(n) ln Pout(n)− P(n) ln P(n)]

∑∞
n=0(n + 1)εP(n)

=
kB

〈nν〉+ 1

∞

∑
n=0

(n + 1)P(n) ln
P(n)

P(n + 1)
(3)

Therefore, for an arbitrary number distribution, there will be two different ways, depending
on whether the photon is being added (Equation (3)) or being removed (Equation (2))
from the light, of defining the photon entropy, and these two definitions are usually not
equivalent. When there are ∆nab photons being absorbed and ∆nem photons being emitted
by A and A∗, respectively, the entropy change can be evaluated as ∆S = −sab(ν)∆nab +
sem(ν)∆nem. Quite interestingly, the definition of the temperature of non-equilibrium
quantum systems [20,21] is similar to that of the non-equilibrium light entropy. Just like
the light has two possible definitions of entropy (Equations (2) and (3)) when the light
is not in equilibrium, there are also two effective temperatures for the non-equilibrium
light, depending on whether the heat is flowing towards the environment or is absorbed by
the system, i.e., cool-down temperature Tc and heat-up temperature Th. In terms of P(n),
Tc = mini 6=j

(i−j)hν
kB ln P(i)/P(j) and Th = maxi 6=j

(i−j)hν
kB ln P(i)/P(j) according to Lipka-Bartosik et al.’s

work [21]. However, unfortunately, there are no clear relations between Tc/h and sab/em(ν)
as far as we are concerned.

If P(n)/P(n + 1) is independent of n, then we can define the single-photon entropy
as s(ν) = sab(ν) = sem(ν) = kB ln γ(ν) with γ(ν) = P(n)/P(n + 1); and, similarly,
Tc = Th = hν/kB ln γ(ν). When the incoming light is in equilibrium, then γ(ν) = ehν/kBT ,
and we have

s(ν) = sab(ν) = sem(ν) =
hν

T
, (4)

which agrees with previous works [6–9] and has been previously applied to evaluate the
entropy of a monochromatic laser [16]and the entropy production in photosynthesis [17].
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3. The Velocity Distribution of Two-Level Atoms in Blackbody Radiation Fields

Inspired by the first-principle derivation above, we find that we can derive the equilib-
rium velocity distribution of two-level atoms placed in blackbody radiation fields without
referring to Boltzmann factor.

Assume that there are a number of two-level atoms which will not interact with
each other moving in a blackbody radiation field, and the energy difference between A
and the excited state A∗ is hν0. Since the atoms are moving, the frequency of the photon
absorbed/emitted may not be ν0 but will be altered by the Doppler effect. It is expressed as

ν =
ν0

√
1− v2

c2

1− |v|c cos θ
, (5)

where θ is the angle between the directions of light and particle momentum.
At the same time, when the atoms absorb or emit photons, their momenta or velocities

will change. Based on this kinetics, we can derive the equilibrium velocity distribution.
For instance, consider an atom A with velocity v absorbing a photon with the wave

vector k and changing into the excited state A∗ with velocity v′ (see Figure 1), and assume
that the Hamiltonian of this process can be written as H = H†

I a† + HI a. Note that the
velocity v, the wave vector k or the photon frequency ν = |k|c, and the frequency ν0
satisfy Equation (5). The probability for this absorption process is pA(v)|〈A∗, v′; nk − 1,
k|H|A, v; nk, k〉|2 = pA(v)nk|〈A∗, v′|HI |A, v〉|2. The excited state A∗ with velocity v′

can also emit a photon with wave vector k (both spontaneous and stimulated emis-
sions) and change back to atom A with velocity v. The probability for this emission pro-
cess is pA∗(v′)|〈A, v; nk + 1, k|H|A∗, v′; nk, k〉|2 = pA∗(v′)(nk + 1)|〈A, v|H†

I |A∗, v′〉|2 =
pA∗(v′)(nk + 1)|〈A∗, v′|HI |A, v〉|2.

Figure 1. A demonstration of the absorption process.

When the system reaches equilibrium, the distribution will not change, which leads
to pA(v)〈nk〉 = pA∗(v′)(〈nk〉 + 1). Since the radiation field is blackbody-like, 〈nk〉 =
[exp(βh|k|c) − 1]−1 with β = 1/kBT and T is the blackbody temperature. Therefore,
we have

pA∗(v′) = pA(v) exp(−βh|k|c). (6)

Now, suppose that another atom with velocity v + dv can absorb a photon with the
wave vector k′ and change into the same excited state A∗ with the velocity v′. Similarly,
we have pA∗(v′) = pA(v + dv) exp(−h|k′|c/kBT) in equilibrium and, comparing it with
Equation (6), we obtain

pA(v + dv)
pA(v)

= exp[−βh(|k| − |k′|)c]. (7)
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According to the energy conservation, the following relation must hold:

mc2√
1− ( v

c )
2
+ h|k|c = mc2√

1− ( v+dv
c )2

+ h|k′|c, (8)

where the left-hand side accounts for the total energy of the state |A, v〉 and a photon with
k while the right-hand side is the total energy of the state |A, v + dv〉 and a photon with k′.
Substituting Equation (8) into Equation (7) and letting dv→ 0, we can obtain the equation
that the velocity distribution satisfies,

d
dv

pA(v) = −βpA(v)
d

dv
( mc2√

1− ( v
c )

2

)
. (9)

More details about this equation: the left side of Equation (7) gives 1 + dpA(v)
pA(v)dv and

the right-hand side of Equation (7) gives exp{β[ mc2√
1−( v

c )
2
− mc2√

1−( v+dv
c )2

]} ≈ exp{−dv ·

βd mc2√
1−( v

c )
2
/dv} ≈ 1− dv · βd mc2√

1−( v
c )

2
/dv after Equation (8) has been plugged into this

equation; equating these two expressions leads to the above equation. Noting that, in this
section, we assume that all functions of v are isotropic in v and can be expressed in terms
of |v|, then the operator d/dv in the above equation can be defined as d f (|v|)

dv ≡ d f (|v|)
d|v|

v
|v|

for some function f .
Finally, the velocity distribution can be obtained, by integrating the above equation, as

pA(v) ∝ exp(− βmc2√
1− ( v

c )
2
). (10)

This velocity distribution is identical to the Jüttner distribution [19,23], which is reduced to
the Maxwell velocity distribution for the small v. Note that the derivation above is unique
and from first principles since we do not need to introduce the Boltzmann factor [24].

Finally, several comments are made.
(i) In the original derivation [19] of Jüttner distribution, quantum effects were not

considered. However, this work shows that, even when quantum effects are explicitly
considered, through the second-quantization formulation, the atoms will still satisfy the
distribution in the blackbody radiation field.

(ii) Apart from this unique way of derivation, the result itself is also interesting. Since
these two-level atoms have no other internal energy level and no collisions (interactions)
with each other, it is hard to believe that the velocity distribution can still relax to Maxwell–
Jüttner form only by a blackbody radiation field because of the Doppler effect. Thus, we
think this may be a new perspective to understand the relation between thermal motion
and thermal radiation.

(iii) Even though we have proved, in theory, that atoms in a blackbody radiation
field will relax to the Jüttner distribution even without interatomic collisions, it is still
hard to imagine how this occurs. Therefore, we have performed a Monte Carlo (MC)
simulation showing that the velocity distribution function of 50,000 atoms with the same
initial absolute velocity (|v| = 0.00017c) will gradually evolve to the Jüttner distribution (see
Figure 2) without considering interatomic interactions. During each MC simulation step,
we randomly select an atom and select all the model variables, such as k and θ, according
to the probability or distributions given by the theory. According to Equation (5), an atom
with the speed v has the possibility to absorb photons with the frequency ranging from

ν0

√
1− v2

c2 /(1 + |v|
c ) to ν0

√
1− v2

c2 /(1− |v|c ) thanks to the Doppler effect, which might
be one of the key reasons that the distribution widening without interatomic collisions
is possible.
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(iv) Note that Equation (4) in the last section can be also applied to estimate the entropy
change of photons due to the absorption and emission processes discussed here, and it is
∆sν ∝ [PA∗(v′)(〈nk〉+ 1)− PA(v)〈nk〉]〈A∗, v′|HI |A, v〉|2h|k|c/T with T the temperature
of the blackbody.

Figure 2. Radial distribution functions (dash-dotted lines) of 50,000 atoms’ velocities at different
Monte Carlo (MC) simulation steps. The pale red solid line shows the Jüttner distribution at the
same temperature. In this MC simulation, all atoms with the same velocity |v| = 0.00017c but with
different speed directions are placed in a blackbody radiation field, and interatomic collisions have
not been considered. Parameter setting of the simulation is as follows: h = c = kB = 1, ν0 = 3, T = 2,
m = 0.1 and a MC step ∆t = 0.001τ. For simplicity, it is assumed that |〈A∗, v′|HI |A, v〉|2∆t/τ = 0.5
does not depend on atom’s velocities. c is the speed of light.

4. Conclusions

We have derived the entropy of a single photon from first principles and properly
addressed the three problems proposed in the Introduction as follows: (i) The single-photon
entropy s = hν/T is accurate as long as the light is initially in equilibrium, since our first-
principle derivation shows that the outgoing light does not need to be in equilibrium again.
(ii) If the light is initially not in equilibrium, then the single-photon entropy will be different
from hν/T, and there will be two different ways of defining the single-photon entropy
(Equations (2) and (3)). To our best knowledge, this result has not been reported before.
(iii) We have successfully derived the single-photon entropy from first principles without
assuming that the light will quickly equilibrate again.

From first principles without considering interatomic collisions, we have also derived
the Jüttner velocity distribution of two-level atoms in the blackbody radiation field. The way
of derivations and the results of both single-photon entropy and Jüttner distribution may
provide a new perspective to understand the thermodynamical properties of lights as well
as the connection between thermal motion and thermal radiation.
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Appendix A

First, it is easy to show that, if a function satisfies f (n)→ 0 for n→ ∞ and f (0) = 0,
then ∑∞

n=0[ f (n + 1) − f (n)] = f (0) = 0. Notice that, from Equation (1), we have
Pout(n; ε) = P(n+ 1) · (n+ 1)ε+ P(n)(1−nε) = P(n)+ α(n)ε with α(n) ≡ (n+ 1)P(n+ 1)
−nP(n). Obviously, ∑∞

n=0 α(n) = 0.
Therefore, we have

sab(ν) = limε→0
kB

∑∞
n=0 nεP(n) ∑∞

n=0[Pout(n; ε) ln Pout(n; ε)− P(n) ln P(n)]

= limε→0
kB
〈nν〉ε ∑∞

n=0{[P(n) + α(n)ε] ln P(n)[1 + α(n)
P(n) ε]− P(n) ln P(n)}

=̇ limε→0
kB
〈nν〉ε ∑∞

n=0[α(n)ε ln P(n) + α(n)ε]

= kB
〈nν〉 ∑∞

n=0[α(n) ln P(n)]

= kB
〈nν〉 ∑∞

n=0[(n + 1)P(n + 1)− nP(n)] ln P(n)

= kB
〈nν〉 ∑∞

n=0[(n + 1)P(n + 1) ln P(n + 1)− nP(n) ln P(n)
+(n + 1)P(n + 1) ln P(n)− (n + 1)P(n + 1) ln P(n + 1)]

= kB
〈nν〉 ∑∞

n=0(n + 1)P(n + 1) ln P(n)
P(n+1)

(A1)

By applying the relation [P(n) + α(n)ε] ln[1 + α(n)/εP(n)] ≈ [P(n) + α(n)ε]α(n)ε, where
ln(1 + x) ≈ x − x2/2 for x → 0 has been used, one obtains the third line from the sec-
ond line. Note that, in the third line, the identity ∑∞

n=0 α(n) = 0 has been applied and,
in the last third line, ∑∞

n=0[(n + 1)P(n + 1) ln P(n + 1) − nP(n) ln P(n)] = 0 because of
the above-mentioned identity ∑∞

n=0[ f (n + 1) − f (n)] = 0 with f (n) = nP(n) ln P(n)
here.Maybe nP(n) ln P(n) → 0 as n → ∞ is not so obvious. It can be proved as fol-
lows that ∑ nP(n) = 〈n〉must be finite indicates at least nP(n) ∼ 1/N for n→ ∞, where
N = δ−1 with δ is a first-order infinitesimal number, which further leads to P(n) ∼ 1/N2

and ln P(n) ∼ −2 ln N ∼ − ln N. Therefore, nP(n) ln P(n) ∼ − ln N/N → 0 as n → ∞
and N → ∞.

The emission process (including spontaneous and stimulated ones) can be described by
one process |A∗; n〉 → |A; n + 1〉 in quantum field theory. Similar to that of the absorption
case, the transition rate of this process is proportional to n + 1 since |〈n + 1|a†|n〉|2 = n + 1
with a† the creation operator. In addition, note that, for the emission case, the corresponding
outgoing number distribution function becomes

Pout(n; ε) = P(n− 1) · nε + P(n)(1− (n + 1)ε) = P(n) + α(n)ε (A2)

with ε = |〈A|HI |A∗〉|2∆t and α(n) = P(n− 1) · n− P(n) · (n+ 1) (note that α(0) = −P(0)).
Therefore, similar to the derivation in Equation (A1), we have

sem(ν) = − limε→0
kB

∑∞
n=0(n+1)εP(n) ∑∞

n=0[Pout(n) ln Pout(n)− P(n) ln P(n)]

= − kB
〈nν〉+1 ∑∞

n=0 α(n) ln P(n)

= − kB
〈nν〉+1 ∑∞

n=0[P(n− 1) · n− P(n) · (n + 1)] ln P(n)

= − kB
〈nν〉+1 ∑∞

n=0[P(n− 1) · n ln P(n)− P(n) · (n + 1) ln P(n + 1)

+P(n) · (n + 1) ln P(n+1)
P(n) ]

= kB
〈nν〉+1 ∑∞

n=0(n + 1)P(n) ln P(n)
P(n+1) .

(A3)
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