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Abstract: Predicting high-dimensional short-term time-series is a difficult task due to the lack of suffi-
cient information and the curse of dimensionality. To overcome these problems, this study proposes
a novel spatiotemporal transformer neural network (STNN) for efficient prediction of short-term
time-series with three major features. Firstly, the STNN can accurately and robustly predict a high-
dimensional short-term time-series in a multi-step-ahead manner by exploiting high-dimensional/spatial
information based on the spatiotemporal information (STI) transformation equation. Secondly, the
continuous attention mechanism makes the prediction results more accurate than those of previous
studies. Thirdly, we developed continuous spatial self-attention, temporal self-attention, and trans-
formation attention mechanisms to create a bridge between effective spatial information and future
temporal evolution information. Fourthly, we show that the STNN model can reconstruct the phase
space of the dynamical system, which is explored in the time-series prediction. The experimental results
demonstrate that the STNN significantly outperforms the existing methods on various benchmarks and
real-world systems in the multi-step-ahead prediction of a short-term time-series.

Keywords: time-series; spatiotemporal information transformation; attention mechanism; trans-
former network

1. Introduction

Time-series forecasting is a critical ingredient in many fields, such as computational
biology [1,2], finance [3], traffic flow [4], and geoscience [5]. However, due to the limited
measurement conditions, we usually can only obtain short-term time-series samples [6]. On
one hand, since a short-term dataset has no sufficient information, it becomes a challenging
task to carry out accurate multi-step-ahead prediction using a short-term time-series. On
the other hand, we can measure high-dimensional data in many real-world systems, which
include rich information of the dynamics on the target variable and thus can be exploited
to compensate the insufficiency of the short-term data. However, there is the curse of
dimensionality in effectively analyzing and predicting high-dimensional time-series [7].
As an empirical example, Figure 1 shows the prediction results on the 64-dimentional
pendulum datasets from fewer observed time-series steps (50 steps, Figure 1a) to enough
observed time-series steps (100 steps, Figure 1b). Figure 1c shows the forecasting metric
variation with observed time-series steps. When there are fewer observed data, the NRMSE
shows unsatisfactory performance, and the prediction model fails.
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Figure 1. (a) Short-term dataset without sufficient information. (b) Long-term dataset with sufficient 
information. (c) The prediction ability of existing models fails in the case of fewer observed time-
series steps. 

With decades of development, generally, there are two major types of methods for 
time-series forecasting. One type is model-based methods, which consist of autoregres-
sion (AR) [8], autoregressive integrated moving average (ARIMA) [9], and support vector 
regression (SVR) [10–12]. AR and ARIMA are mostly used in univariate regression analy-
sis, because the vector AR model used for multivariate prediction requires a large number 
of parameters, resulting in low prediction accuracy with a small training dataset. How-
ever, SVR also requires a large training dataset for the time-series prediction, so it is hard 
to accurately estimate the parameters of the model-based methods with short-term time-
series. The other type is neural networks based on deep learning methods [13–15], such as 
recurrent neural networks (RNNs) [16], long short-term memory (LSTM) networks [17], 
and reservoir computing [18]. Because they usually require a large training dataset to 
learn the nonlinear characteristics of the dynamical system to infer the temporal evolution 
of variables, it is often necessary to introduce dimension reduction or additional a priori 
knowledge to reconstruct their dynamic or statistical patterns. 

To explore high-dimensional information [19], the spatiotemporal information (STI) 
transformation equation [7] has recently been developed based on the delay embedding 
theorem [20]. As a set of nonlinear equations, the STI equation transforms the spatial in-
formation of high-dimensional variables into the future temporal information of any tar-
get variable, thus equivalently expanding the sample size and alleviating the short-term 
data problem [19]. Based on the STI equation, previous studies employed randomly dis-
tributed embedding (RDE) [7] and an anticipated learning machine (ALM) [19] to fit the 
STI equation. However, the robustness and accuracy of the prediction are not satisfactory 
due to the difficulty in solving the nonlinear STI equation with high dimensions and mul-
tiple parameters. 

Recently, the transformer neural network [21] has been developed as an extension of 
neural networks based on autoencoder frameworks [22,23], and it is suitable for sequential 
information processing. Unlike sequence-aligned models [24], the transformer processes 
an entire sequence of data and leverages self-attention mechanisms to learn information 
in the sequence, which allows us to model the relationship of variables without consider-
ing their distance in the input sequences. In particular, since the attention mechanism can 
not only fully capture the global information but also focus on the important content [21], 
it can alleviate the curse of dimensionality with great potentiality [19]. 

To overcome the problems in time-series prediction, we propose a spatiotemporal 
transformer neural network (STNN) for efficient multi-step-ahead prediction of high-di-
mensional short-term time-series by taking the advantages of both the STI equation and 
the transformer structure. Here, we summarize our contributions as follows: 

Figure 1. (a) Short-term dataset without sufficient information. (b) Long-term dataset with sufficient
information. (c) The prediction ability of existing models fails in the case of fewer observed time-series steps.

With decades of development, generally, there are two major types of methods for
time-series forecasting. One type is model-based methods, which consist of autoregression
(AR) [8], autoregressive integrated moving average (ARIMA) [9], and support vector
regression (SVR) [10–12]. AR and ARIMA are mostly used in univariate regression analysis,
because the vector AR model used for multivariate prediction requires a large number of
parameters, resulting in low prediction accuracy with a small training dataset. However,
SVR also requires a large training dataset for the time-series prediction, so it is hard to
accurately estimate the parameters of the model-based methods with short-term time-
series. The other type is neural networks based on deep learning methods [13–15], such as
recurrent neural networks (RNNs) [16], long short-term memory (LSTM) networks [17],
and reservoir computing [18]. Because they usually require a large training dataset to
learn the nonlinear characteristics of the dynamical system to infer the temporal evolution
of variables, it is often necessary to introduce dimension reduction or additional a priori
knowledge to reconstruct their dynamic or statistical patterns.

To explore high-dimensional information [19], the spatiotemporal information (STI)
transformation equation [7] has recently been developed based on the delay embedding
theorem [20]. As a set of nonlinear equations, the STI equation transforms the spatial
information of high-dimensional variables into the future temporal information of any
target variable, thus equivalently expanding the sample size and alleviating the short-
term data problem [19]. Based on the STI equation, previous studies employed randomly
distributed embedding (RDE) [7] and an anticipated learning machine (ALM) [19] to fit the
STI equation. However, the robustness and accuracy of the prediction are not satisfactory
due to the difficulty in solving the nonlinear STI equation with high dimensions and
multiple parameters.

Recently, the transformer neural network [21] has been developed as an extension of
neural networks based on autoencoder frameworks [22,23], and it is suitable for sequential
information processing. Unlike sequence-aligned models [24], the transformer processes
an entire sequence of data and leverages self-attention mechanisms to learn information in
the sequence, which allows us to model the relationship of variables without considering
their distance in the input sequences. In particular, since the attention mechanism can not
only fully capture the global information but also focus on the important content [21], it
can alleviate the curse of dimensionality with great potentiality [19].

To overcome the problems in time-series prediction, we propose a spatiotemporal
transformer neural network (STNN) for efficient multi-step-ahead prediction of high-
dimensional short-term time-series by taking the advantages of both the STI equation and
the transformer structure. Here, we summarize our contributions as follows:
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1. An STNN is developed to adopt the STI equation, which transforms the spatial
information of high-dimensional variables into the temporal evolution information of
one target variable, thus equivalently expanding the sample size and alleviating the
short-term data problem.

2. A continuous attention mechanism is developed to improve the numerical prediction
accuracy of the STNN.

3. A continuous spatial self-attention structure in the STNN is developed to capture
the effective spatial information of high-dimensional variables, with the temporal
self-attention structure used to capture the temporal evolution information of the
target variable, and the transformation attention structure used to combine spatial
information and future temporal information.

4. We show that the STNN model can reconstruct the phase space of the dynamical
system, which is explored in the time-series prediction.

The rest of this study is organized as follows. Section 2 mainly describes the relevant
works on the spatiotemporal transformation equation and transformer neural network
for time-series prediction. Section 3 presents the overall STNN architecture and describes
the relevant theory and procedures. Section 4 shows the computational experiments on
various benchmarks and real-world systems. Finally, we present our conclusion and discuss
directions of future study.

2. Related Works
2.1. Delay Embedding for Spatiotemporal Transformation Equation

For a general discrete time dynamical system [25], Equation (1) defines the dynamical
evolution of its state.

Xt+1 = φ
(
Xt) (1)

Xt =
(
xt

1, xt
2, . . . , xt

D
)
′ are defined in a D-dimensional space at time step t, where the

symbol ′means the transpose of a vector. The map φ : RD → RD is a nonlinear function,
which pushes states from time t to time t + 1.

To bridge the spatial information and the temporal evolution information, we let
Yt =

(
yt, yt+1, . . . , yt+L−1)′ = (

xt
target, xt+1

target, . . . , xt+L−1
target

)
′, which are the values of one

target variable selected from X for (L-1)-step-ahead prediction with L > 1. Note that Xt

is spatial/high-dimensional information due to the multiple (D) variables at one time
point t, while Yt is temporal information due to the single variable at multiple (L) time
points. When the system of Equation (1) is in a steady state or in a manifold V with
dimension d, based on Takens’ embedding theorem [20,26], we can construct the following
spatiotemporal information (STI) transformation equation, which maps the D-dimensional
data Xt to L-dimensional data Yt.

Φ
(
Xt) = Yt = (yt, yt+1, . . . , yt+L−1)′ (2)

where, generally, D >> L and L > 2d. Clearly, the spatiotemporal information (STI) trans-
formation equation transforms the available/previous spatial information Xt of multiple
variables to the future temporal information Yt of one target variable at each time point
t [7]. For the prediction, the studies of [7,19] indicated that there are L sub-predictors acting
on each dimension. If the measured time-series has M time steps, we can rewrite Equation
(2) in a matrix form, as shown in Equation (3).

Φ1(X1) Φ1(X2) · · · Φ1(XM)

Φ2

(
X1
)

Φ2

(
X2
)
· · · Φ2

(
XM
)

...
...

. . .
...

ΦL(X1) ΦL(X2) · · · ΦL(XM)

 =


y1 y2 · · · yM

y2 y3 · · · ŷM+1

...
...

. . .
...

yL yL+1 · · · ŷM+L−1

 (3)
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Since the observation variables are up to time step M, the ˆ indicates that the values
of target variable y from time steps M+1 to M+L−1 need to be predicted in addition to
the maps Φi for i = 1, . . . , L, given Xt for t = 1, . . . , M. Thus, we can have (L-1)-step-ahead
prediction of a target variable y by solving Φi and Yt of Equation (3), provided that Xt for
t = 1, . . . , M are available. Generally, even if the dimension D of the original system is
very high, the dimension d of its steady state or manifold is very low for most real-world
systems, i.e., D >> d. Thus, we generally choose a small d by letting L = 2d+1 in the
computation of Equation (3).

Several works have tried to predict high-dimensional short-term time-series with the
STI equation. For example, Ma et al. [7] first constructed the STI transformation equation
with a computational framework, named randomly distributed embedding (RDE), for
one-step-ahead prediction of short-term time-series. The novelty of this RDE framework
is rooted in exploiting the information embedded in many low-dimensional non-delay
attractors as well as in the appropriate use of the distribution of the target variable for
prediction. Chen et al. [27] developed an auto-reservoir computing framework, named
the auto-reservoir neural network (ARNN), to approximate the nonlinear STI equation
to a linear-like form, which can efficiently carry out multi-step-ahead prediction based
on a short-term high-dimensional time-series. Such ARNN transformation equivalently
expands the sample size, but its linear-like approximation sacrifices the accuracy to some
extent, although it has potential in practical applications of artificial intelligence.

2.2. Transformer Neural Network for Time-Series Prediction

The transformer has been widely used in the field of natural language processing,
which is described in detail by Vaswani et al. [21]. Unlike sequence-aligned models [24], the
transformer processes an entire sequence of data and leverages the classical self-attention
mechanism to capture global dependencies of the sequence X, as shown in Equation (4):

Attention(Q, K, V)= Softmax(
QKT
√

dk
·Mask)V (4)

where the query matrix Q = XWQ, key matrix K = XWK, and value matrix V = XWV are
transformed by X; WQ, WK, and WV are learnable parameter matrices; and dk means the
dimension of matrix K. Note that a mask matrix is applied to filter out rightward attention to

avoid future information leakage by setting all upper triangular elements in ( QKT√
dk

) to −∞.

However, at present, the transformer structure has not been well studied for processing
high-dimensional short-term time-series data. Moreover, only a few studies consider the
effective modeling of time-series from the perspective of the attention mechanism. For
example, Shih et al. [28] proposed an attention mechanism to extract temporal patterns, and
it successfully captures the temporal information of time-series. Moreover, the attention
mechanism will select the variables that are helpful for forecasting. Therefore, the vector
of the result finally obtained through the attention is a weighted sum containing the
information across multiple time steps, and it has potential for time-series prediction by
reducing the unrelated variables.

3. Problem Setup and Methodology
3.1. Problem Definition

Given a set of observed high-dimensional short-term time-series data
X = (X 1, X2, . . .., Xt, . . . , XM

)
∈ RD×M, M represents the observed time-series steps and D

represents the variable dimension. We define the state at any time step t as
Xt= (x t

1, xt
2, . . . , xt

D)
′, t = 1,2,...,M. We aim to have (L-1)-step-ahead prediction of a target

variable (y = xtarget) based on the time-series X, i.e., to predict

(y M+1, yM+2, . . . , yM+L−1) = (x M+1
target, xM+2

target, . . . , xM+L−1
target

)
, where xt

target is the target vari-

able which is any one among D variables of Xt.
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This study’s aim is to construct a neural network model for the prediction, the input of
which is the observed D-dimensional variables Xt and the L-dimensional target variables
Yt
= (0,yt, yt+1, ..., yt+L−2)′ at any time step t, and the output of which is the one-step-

ahead prediction (yt+L−1). We show how to construct such a model in Section 3.2 in detail.
Therefore, under a rolling forecast with a fixed window size L, our goal is to implement
(L-1)-step-ahead prediction and eventually output the final (L-1)-step-ahead prediction
result of the target variable (ŷM+1, ..., ŷM+L−1).

3.2. STNN Model

This study proposes a model named STNN to realize the spatiotemporal information
transformation. The STNN aims to efficiently solve the nonlinear STI transformation
equation, Equation (5), by exploring the transformer, i.e., construct Φ =[Φ1, Φ2, . . . , ΦL]

′,
which is a smooth diffeomorphism mapping [26].Φ


x1

1
x1

2
...

x1
D

Φ


x2

1
x2

2
...

x2
D

 . . . Φ


xM

1
xM

2
...

xM
D


 =


y1 y2 · · · yM

y2 y3 · · · yM+1

...
...

. . .
...

yL yL+1 · · · yM+L−1

 (5)

D represents the variable dimension, L represents the embedded dimension, and M
represents the observed time-series steps.

Φ
(

Xt, Yt
)
= Decoder

(
Encoder

(
Xt), Yt

)
= Ŷt (6)

The STNN model (Figure 2) employs the STI transformation equation (Equation (5))
with two specific transformer modules to carry out multi-step-ahead prediction. As the
description of Equation (6), one of the modules is the encoder, which takes D-dimensional
variables at the same time t (Xt) as inputs. Then, the encoder extracts effective spatial infor-
mation from the input variables. After that, the effective spatial information is transferred
to the decoder. The other is the decoder, which inputs an L-1-length time-series from the
target variable Y (Yt). Then, the decoder extracts the temporal evolution information of
the target variable. After that, the decoder predicts the future values of the target variable
(Ŷt) by combining the spatial information of the input variables (Xt) and the temporal
information of the target variable (Yt).

Note that y in Y is also one variable among the measured variables X. Φ in Equation
(6) is not exactly the same as that in Equation (5) due to Yt, but Φ can be expressed in a
similar form using an appropriate mathematical implementation. Clearly, the nonlinear
STI transformation Φ is solved by the encoder–decoder pair. Similar to the classical
seq2seq framework [29], Yt

= (0,yt, yt+1, ..., yt+L−2)′ is an L-dimensional time-series, which
is formed by replacing the first dimension of Yt−1= (y t−1, yt, . . . , yt+L−2)′ with zero, thus
keeping the causality of the prediction. Next, we detail the encoder and decoder modules.
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Figure 2. Overview of the proposed STNN framework. In the left model, the encoder receives
D-dimensional series inputs Xt and outputs the spatial information feature to the transformation
attention layer of the decoder. In the right model, the decoder receives L-dimensional series inputs Yt

with the spatial information feature from the encoder and outputs the L-dimensional prediction result
Ŷt, where Yt

= (0,yt, yt+1, ..., yt+L−2)′ is an L-dimensional series, which is formed by an L-1-length

series (y t, yt+1, . . . , yt+L−2
)′

from the observed times series with the first dimension filling out zero.

3.2.1. Encoder

The encoder is composed of two layers. One is a fully connected layer, and the other is a
continuous spatial self-attention layer. We employ the continuous spatial self-attention layer
to extract the effective spatial information from the high-dimensional input variables Xt.

The fully connected layer is used to obtain the effective expression by smoothing the
input high-dimensional variables Xt and filtering the noise, which is a forward propagation
network composed of a layer of neurons described by Equation (7).

Xt
FFN = ELU

(
WFFNXt + bFFN

)
(7)
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where FFN stands for feedforward neural network, WFFN ∈ RD×D is the coefficient matrix,
bFFN ∈ RD is the bias, and ELU is the activation function.

The continuous spatial self-attention layer takes Xt
FFN as an input. Since the self-

attention layer takes high-dimensional variables at the same time as inputs, the encoder
can extract the spatial information from the input variables. In order to obtain the ef-
fective spatial information ( ´SSAt), we propose a continuous attention mechanism for the
spatial self-attention layer instead of the classical discrete probability-based attention
mechanism [21]. The left of Figure 2 shows our continuous attention mechanism, whose
procedure can be described as follows.

Firstly, we generate three training weight matrices, WQ
E , WK

E , and WV
E , for the continu-

ous spatial self-attention layer.
Secondly, Equation (8) computes the query matrix (Qt

E), key matrix (Kt
E), and value

matrix (Vt
E) for the continuous spatial self-attention layer by multiplying the output Xt

FFN
of the fully connected layer by the above three weight matrices for time step (t).

Qt
E = Xt

FFNWQ
E

Kt
E = Xt

FFNWK
E

Vt
E= Xt

FFNWV
E

(8)

Thirdly, Equation (9) executes the matrix dot product to obtain the expression of key
spatial information ( ´SSAt) for the input variables Xt.

´SSAt
= exp(

1√
dE
·Qt

E·Kt
E
′)·Vt

E (9)

where dE is the dimension of the query matrix (Qt
E), key matrix (Kt

E), and value matrix
(Vt

E). Different from the classical discrete probability-based attention mechanism [21], the
continuous attention mechanism (Equation (9)) can guarantee a smooth data transmission
for the encoder.

Fourthly, we compute the normalized expression of effective spatial information (SSAt)
using residual join and the layer normalization operation [21] (Equation (10)), which can
prevent the gradient from quickly disappearing and accelerate the model convergence speed.

SSAt= Norm
(

Xt
FFN + ´SSAt

)
(10)

3.2.2. Decoder

The decoder combines effective spatial and temporal evolution information, and it
consists of two fully connected layers, i.e., one continuous temporal self-attention layer and
one transformation attention layer.

As shown in Figure 2, we obtain the effective expression (Yt
FFN) after filtering the

noise of the input data (Yt) using a fully connected layer. Next, we send the output (Yt
FFN)

into the continuous temporal self-attention layer. The continuous temporal attention layer
focuses on the historical temporal evolution information among different time steps of the
target variable (Yt). Because the impact on time is irreversible, we determine the current
state of the time-series using historical information but not future information. Therefore,
the continuous temporal attention layer uses a masked attention mechanism [21] to screen
out future information. The detailed procedure is as follows.

Firstly, we generate three training weight matrices, WQ
D, WK

D, and WV
D, for the temporal

spatial self-attention layer.
Secondly, Equation (11) computes the query matrix (Qt

D), key matrix (Kt
D), and value

matrix (Vt
D) for the temporal spatial self-attention layer.



Entropy 2022, 24, 1651 8 of 18


Qt

D = Yt
FFNWQ

D
Kt

D = Yt
FFNWK

D
Vt

D= Yt
FFNWV

D

(11)

Thirdly, Equation (12) executes the matrix dot product to obtain the expression of the
temporal evolution information ( ´TSAt) for the input variable (Yt).

´TSAt
= exp(

1√
dD
·Qt

D·Kt
D
′ ·Mask)·Vt

D (12)

where dD is the dimension of the query matrix (Qt
D), key matrix (Kt

D), and value matrix
(Vt

D) for the temporal spatial self-attention layer. Additionally, we employ Equation (13) to
describe the mask matrix with dM dimension.

Mask =


1 0 0 · · · 0
1 1 0 · · · 0
1 1 1 · · · 0
...

...
...

. . . 0
1 1 · · · 1 1


dM×dM

(13)

By setting zero in the mask matrix (Equation (13)), we prevent each position from
attending to the coming positions to capture the historical temporal evolution information
of the target variable.

Fourthly, we compute the normalized expression of the temporal evolution informa-
tion (TSAt) using residual join and the layer normalization operation [21].

TSAt= Norm
(

Yt
FFN + ´TSAt

)
(14)

Fifthly, the continuous transformation attention layer combines the effective spatial
information (SSAt) and the temporal evolution information (TSAt) to predict the future
values of the target variable (T́At) using Equation (15). Here, dSSAt is the dimension of SSAt.

T́At
=

1√
dSSAt

TSAt·SSAt′·SSAt (15)

Lastly, we put TAt into residual join, the layer normalization operation, and a fully
connected layer in a proper order to compute the L-dimensional prediction result Ŷt.{

TAt= Norm(TSAt + T́At
)

Ŷt
= ELU

(
W·TAt + b

) (16)

where W is the coefficient matrix, b is the bias, and ELU is the activation function.

3.2.3. Objective Function for STNN Model

The STNN framework defines the objective function (Equation (17)) to minimize the
loss ε.

min ε =
M−L+1

∑
t=1

‖Ŷt − Yt‖
2
2 + λ‖W‖2

2 (17)

where M represents the observed time-series steps, L represents the length of the fixed
window size, and Ŷt and Yt are the predicted and true values of a target variable, respec-
tively. ‖·‖2 is the Frobenius norm, λ controls the importance of the penalty, and W is the
parameter space of the STNN.
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4. Experiments

This section evaluates the performance of the STNN framework on several high-
dimensional short-term time-series datasets.

4.1. Datasets

We empirically performed multi-step-ahead prediction using a short-term high-
dimensional time-series on six datasets, including two benchmarks and four public datasets
from real-world systems.

4.1.1. Benchmarks

Pendulum: The nonlinear pendulum [30] is a classic textbook example of dynami-
cal systems, which is used for benchmarking models [31,32]. We generated a nonlinear
pendulum dataset with 80 observed time-series steps (M = 80), and we mapped the series
{xt} to a high-dimensional space via a random orthogonal transformation to obtain the
64-dimensional training snapshots (D = 64). The training dataset is composed of the first
63 steps, and the remaining 17 steps are for the testing dataset.

Lorenz: The Lorenz system [33] is a meteorological dynamic system for studying
essential dynamical characteristics of nonlinear systems, which is used in chaotic time-
series prediction [34]. This study generated a 90-dimensional coupled Lorenz dataset
(D = 90) with 80 observed time-series steps (M = 80). The training dataset is composed
of the first 61 steps, and the remaining 19 steps are for the testing dataset. Short-term
prediction on the Lorentz system is helpful to verify the prediction performance of the
model on the chaotic system.

4.1.2. Public Datasets

Traffic Speed (TS): The traffic speed (mile/h) dataset was collected from 207 loop
detectors (D = 207) on Highway 134 of Los Angeles County [35]. We employed the STNN
to predict the traffic flow with 80 observed time-series steps (M = 90). The training dataset
is composed of the first 71 steps, and the remaining 19 steps are for the testing dataset.
Short-term prediction on traffic speed datasets is helpful to detect the running speed of
vehicles and reduce the occurrence of traffic accidents.

Gene: The gene expression data [36] were obtained from rats, and some important
genes are related to the circadian rhythm, which is a fundamentally important physiological
process regarded as the “central clock” of mammals. Here, we used the data measured
by an Affymetrix microarray on a laboratory rat with 84 genes (D = 84) and 22 observed
time-series steps (M = 22) by creating a record every 2 h. The training dataset is composed
of the first 16 steps, and the remaining 6 steps are for the testing dataset. Short-term
prediction on the circadian rhythm gene datasets is helpful to understand whether the
physiological rhythm in the organism is disordered in advance and ensure life and health.

Solar: The data were originally collected from Wakkanai, Japan [37]. Here, we used
solar irradiance datasets based on 450 observed time-series steps (M = 450) from 51 sampling
sites (D = 51). Since 2011, the 51 sampling sites have formed a system to reflect the changes
in solar irradiance by creating a record every 10 min. The training dataset is composed of
the first 301 steps of solar irradiance, and the remaining 149 steps are for the testing dataset.
Short-term prediction on the solar irradiance datasets is essential to minimize energy costs
and provide a high power quality [38].

Traffic Flow (TF): The data were originally collected from the California Department
of Transportation and describe the road occupancy rate of the Los Angeles County high-
way network [39]. Here, we used a subset of the dataset, which contains 228 sensors
(D = 228) with 40 observed time-series steps (M = 40) for each sensor. The training dataset
is composed of the first 33 steps, and the remaining 7 steps are for the testing dataset.
Short-term prediction on the traffic flow datasets is helpful to understand the traffic jam
and relieve the traffic pressure during peak traffic hours.
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4.2. Experimental Details

Here, we briefly summarize the basics; more details on the network components and
setups are provided in the Supplementary Materials.

Platform: All the classical methods used in this study and our STNN framework are
based on the deep learning framework PyTorch. The experimental hardware environment was
configured with an Intel(R) Core (TM) i7-4710HQ CPU @ 2.50GHz, with 8.0 GB of memory.

Baselines: We selected six classical time-series forecasting methods and the STNN* to
compare the performance with our STNN method. It should be noted that we incorporated
the canonical attention mechanism in the STNN, which is named STNN*.

The six classical time-series forecasting methods consist of autoregressive integrated
moving average (ARIMA) [9], support vector regression with linear kernel (SVR) [10],
support vector regression with radial basis function (RBF) [11], a recurrent neural network
(RNN) [16], and the Koopman autoencoder (KAE) [22].

Metrics: We used the Pearson correlation coefficient (PCC) [40–43] and normalized
root mean square error (NRMSE) [42,44–46] to measure the performance of each algorithm.

PCC =
∑m+L−1

i=m (ŷi−µ̂)(yi−µ)
σpσ

(18)

NRMSE =

2
√

1
L ∑m+L−1

i=m ‖ŷi − yi‖2

σ
(19)

The PCC and NRMSE are computed based on the last column ŷM+1, ..., ŷM+L−1 of the
Y matrix in Equation (5), where ŷi is the predicted value at the time step i; µ̂ and µ are the
mean values of the prediction and true data, respectively; and σp and σ are the standard
deviation of the predicted data and true data, respectively.

4.3. Results and Analysis
4.3.1. Time-Series Forecasting

Table 1 summarizes the evaluation results (PCC and NRMSE) for all the methods on
the six datasets. We randomly selected four target variables (such as targe ∈ [1, 2, 3, 4] in
Equation (6)) to be predicted from each dataset, and each method recorded the average and
variance of the predictions. The best average results are highlighted in boldface. The last
row of Table 1 records the number of times each method obtained the best metric.

From Table 1, we can observe the following. (1) The proposed STNN model improves
the inference performance (winning counts in the last row) across all datasets. This proves
that STNN has better performance than existing methods in alleviating short-term data
problems. (2) The prediction variance of STNN is kept at a small level on all datasets,
which indicates that STNN has a relatively stable prediction ability compared with existing
methods. (3) The STNN beats its canonical degradation STNN* (the STNN model with the
canonical attention mechanism in the transformer) mostly in winning counts, i.e., 9 > 2,
which supports the fact that the continuous attention mechanism can efficiently improve
the numerical prediction accuracy of the STNN. (4) The STNN model returned significantly
better results than ARIMA and SVR. This reveals that the STNN can effectively transform
the spatial information of high-dimensional variables into the future temporal information
to acquire a better prediction capacity than the classical time-series algorithms.
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Table 1. Time-series forecasting results on six datasets by seven methods.

Dataset Metric STNN STNN* ARIMA SVR RBF RNN KAE

Pendulum
PCC

Mean 0.994 0.884 0.371 0.991 0.993 0.947 0.990
Var 1.419 × 10−5 0.018 0.248 3.250 × 10−5 1.250 × 10−6 8.065 × 10−4 8.475 × 10−5

NRMSE
Mean 0.146 0.590 0.679 0.178 0.190 0.258 0.129
Var 0.005 0.028 0.051 0.010 0.014 3.482 × 10−4 1.725 × 10−5

Lorenz
PCC

Mean 0.995 −0.554 0.906 −0.306 −0.446 0.308 −0.525
Var 3.569 × 10−5 0.194 0.013 0.640 0.601 0.254 0.245

NRMSE
Mean 0.097 2.451 0.620 1.580 1.600 1.816 2.629
Var 0.002 0.781 0.833 0.294 0.133 0.184 0.786

Gene
PCC

Mean 0.395 0.381 0.243 0.404 0.446 0.171 −0.065
Var 0.007 0.115 0.160 0.087 0.014 0.383 0.162

NRMSE
Mean 0.658 1.058 0.948 0.762 1.017 1.110 1.948
Var 0.005 0.125 0.0416 0.037 0.038 0.213 0.270

TS
PCC

Mean 0.866 0.668 0.258 0.514 0.545 0.198 −0.223
Var 0.005 0.102 0.149 0.022 0.009 0.089 0.164

NRMSE
Mean 0.504 0.755 1.082 1.226 1.303 1.232 1.275
Var 0.011 0.090 0.074 0.022 0.049 0.108 0.151

Solar
PCC

Mean 0.948 0.951 0.188 0.643 0.831 0.155 0.010
Var 0.001 0.001 0.112 0.065 3.747 × 10−4 0.005 0.046

NRMSE
Mean 0.372 0.345 1.129 0.809 0.934 1.580 1.602
Var 0.024 0.019 0.005 0.058 0.007 0.091 0.096

TF
PCC

Mean 0.989 0.846 0.821 0.987 0.990 0.507 0.658
Var 2.497 × 10−4 0.003 0.092 4.262 × 10−4 3.168 0.712 0.313

NRMSE
Mean 0.121 0.787 0.334 0.380 1.362 0.802 6.793
Var 0.002 0.058 0.100 0.025 0.185 0.136 1.825

Winning counts 9 2 0 0 1 0 0

4.3.2. Characteristic Experiment

Robustness: To test the robustness of the STNN model, we increased the noise strength
(σ) in the pendulum data and explored the change in prediction accuracy (detailed in
Supplementary Section S3.1). Figure 3 shows the change in the PCC and NRMSE with
the noise strength (σ) from 0 to 0.5 in the pendulum data for five different methods. In
Figure 3a, compared with the other four methods, the STNN not only has a maximum PCC
value with the increase in noise strength, but also maintains the PCC value at a high level.
In Figure 3b, compared with the other four methods, the STNN always has the lowest
NRMSE value with the increase in noise strength. This demonstrates that the STNN has the
strongest anti-noise ability, and its prediction has the greatest accuracy under strong noise.

Embedded dimension: Generally, Takens’ embedding theorem [26] demonstrates that
time delay embedding is topologically equivalent to the unknown phase space of dynamical
systems, when the embedded dimension L > 2d+1. Therefore, we constructed different time
delay embedding STI functions with the embedded dimension L from 2 to Lmax (Figure 4a)
to investigate the optimum range of the embedded dimension by performing experiments
on the pendulum dataset.



Entropy 2022, 24, 1651 12 of 18

Entropy 2022, 24, x FOR PEER REVIEW 11 of 17 
 

 

Var 1.419 × 10−5 0.018 0.248 3.250 × 10−5 1.250 × 10−6 8.065 × 10−4 8.475 × 10−5 

NRMSE 
Mean 0.146 0.590 0.679 0.178 0.190 0.258 0.129 
Var 0.005 0.028 0.051 0.010 0.014 3.482 × 10−4 1.725 × 10−5 

Lorenz 
PCC 

Mean 0.995 −0.554 0.906 −0.306 −0.446 0.308 −0.525 
Var 3.569 × 10−5 0.194 0.013 0.640 0.601 0.254 0.245 

NRMSE 
Mean 0.097 2.451 0.620 1.580 1.600 1.816 2.629 
Var 0.002 0.781 0.833 0.294 0.133 0.184 0.786 

Gene 
PCC 

Mean 0.395 0.381 0.243 0.404 0.446 0.171 −0.065 
Var 0.007 0.115 0.160 0.087 0.014 0.383 0.162 

NRMSE 
Mean 0.658 1.058 0.948 0.762 1.017 1.110 1.948 
Var 0.005 0.125 0.0416 0.037 0.038 0.213 0.270 

TS 
PCC 

Mean 0.866 0.668 0.258 0.514 0.545 0.198 −0.223 
Var 0.005 0.102 0.149 0.022 0.009 0.089 0.164 

NRMSE 
Mean 0.504 0.755 1.082 1.226 1.303 1.232 1.275 
Var 0.011 0.090 0.074 0.022 0.049 0.108 0.151 

Solar 
PCC 

Mean 0.948 0.951 0.188 0.643 0.831 0.155 0.010 
Var 0.001 0.001 0.112 0.065 3.747 × 10−4 0.005 0.046 

NRMSE 
Mean 0.372 0.345 1.129 0.809 0.934 1.580 1.602 
Var 0.024 0.019 0.005 0.058 0.007 0.091 0.096 

TF 
PCC 

Mean 0.989 0.846 0.821 0.987 0.990 0.507 0.658 
Var 2.497 × 10−4 0.003 0.092 4.262 × 10−4 3.168 0.712 0.313 

NRMSE 
Mean 0.121 0.787 0.334 0.380 1.362 0.802 6.793 
Var 0.002 0.058 0.100 0.025 0.185 0.136 1.825 

Winning counts 9 2 0 0 1 0 0 

4.3.2. Characteristic Experiment 
Robustness: To test the robustness of the STNN model, we increased the noise 

strength (σ) in the pendulum data and explored the change in prediction accuracy (de-
tailed in Supplementary Section S3.1). Figure 3 shows the change in the PCC and NRMSE 
with the noise strength (σ) from 0 to 0.5 in the pendulum data for five different methods. 
In Figure 3a, compared with the other four methods, the STNN not only has a maximum 
PCC value with the increase in noise strength, but also maintains the PCC value at a high 
level. In Figure 3b, compared with the other four methods, the STNN always has the low-
est NRMSE value with the increase in noise strength. This demonstrates that the STNN 
has the strongest anti-noise ability, and its prediction has the greatest accuracy under 
strong noise. 

 
Figure 3. The robustness of five methods (STNN, KAE, RBF, RNN and SVR). (a) The forecasting metric
PCC variation with noise strength. (b) The forecasting metric NRMSE variation with noise strength.

Entropy 2022, 24, x FOR PEER REVIEW 12 of 17 
 

 

Figure 3. The robustness of five methods (STNN, KAE, RBF, RNN and SVR). (a) The forecasting 
metric PCC variation with noise strength. (b) The forecasting metric NRMSE variation with noise 
strength. 

Embedded dimension: Generally, Takens’ embedding theorem [26] demonstrates 
that time delay embedding is topologically equivalent to the unknown phase space of 
dynamical systems, when the embedded dimension L > 2d+1. Therefore, we constructed 
different time delay embedding STI functions with the embedded dimension L from 2 to L୫ୟ୶ (Figure 4a) to investigate the optimum range of the embedded dimension by per-
forming experiments on the pendulum dataset. 

 
Figure 4. (a) The STI function varying with the embedded dimension from 2 to Lmax. (b) Forecasting 
metric variation with the embedded dimension. Var 1, 2, 3, and 4 are four randomly selected target 
predicted variables from Equation (6). The red line presents the mean metrics of the four target 
predicted variables. 

Figure 4b summarizes the forecasting metrics of four randomly selected target pre-
dicted variables (such as targe ∈ [1,2,3,4] in Equation (6)) and the mean metrics of the 
four target predicted variables. According to the frequency variation in the mean metrics 
(ΔNRMSE

ΔL
), we empirically divided the embedded dimension into three areas (I, II, and III). 

In area I, the NRMSE value decreases rapidly with the increase in the embedded dimen-
sion. In area II, the NRMSE value reaches its minimum and remains at a low level with 
the increase in the embedded dimension. In area III, the NRMSE value increases with the 
increase in the embedded dimension. 

To explore why the NRMSE decreases first and then increases with the increase in 
the embedded dimension, we repeated the above experiments on the pendulum dataset 
with data points [50,60, . . . ,100] using the STNN. 

Figure 5a intuitively presents the two embedded dimension points. With the increase 
in the observed time-series steps, the coordinates of the three embedded points form lines 
1 and 2, which divide the embedded dimension into three areas (I, II, and III). 
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metric variation with the embedded dimension. Var 1, 2, 3, and 4 are four randomly selected target
predicted variables from Equation (6). The red line presents the mean metrics of the four target
predicted variables.

Figure 4b summarizes the forecasting metrics of four randomly selected target pre-
dicted variables (such as targe ∈ [1, 2, 3, 4] in Equation (6)) and the mean metrics of the
four target predicted variables. According to the frequency variation in the mean metrics
( ∆NRMSE

∆L ), we empirically divided the embedded dimension into three areas (I, II, and III).
In area I, the NRMSE value decreases rapidly with the increase in the embedded dimension.
In area II, the NRMSE value reaches its minimum and remains at a low level with the
increase in the embedded dimension. In area III, the NRMSE value increases with the
increase in the embedded dimension.
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To explore why the NRMSE decreases first and then increases with the increase in the
embedded dimension, we repeated the above experiments on the pendulum dataset with
data points [50, 60, ..., 100] using the STNN.

Figure 5a intuitively presents the two embedded dimension points. With the increase
in the observed time-series steps, the coordinates of the three embedded points form lines 1
and 2, which divide the embedded dimension into three areas (I, II, and III).

Entropy 2022, 24, x FOR PEER REVIEW 13 of 17 
 

 

 
Figure 5. (a) Connection between the embedded dimension and observed time-series steps. For each 
observed time-series step M, the embedded dimension of the points on line 1 corresponds to the 
location on the x-axis of the first vertical line in Figure 4a, which divides the embedded dimension 
into area I and area II. Similarly, the embedded dimension of the points on line 2 corresponds to the 
location on the x-axis of the second vertical line in Figure 4a, which divides the embedded dimen-
sion into area II and area III. (b) The mean and variance of the NRMES corresponding to three areas. 

Figure 5b and Table 2 intuitively present the mean and variance of the NRMES cor-
responding to three areas. Through analysis of variance (nonparametric Kruskal–Wallis 
test) [47] (Table 2), the p-value (1.89 × 10−3) shows statistically significant differences in the 
NRMSE errors among the three areas. This proves that the prediction accuracy of the 
STNN will be greatly improved with the increase in the embedded dimension in area I. 
Then, the best prediction effect will be obtained when the embedded dimension reaches 
area II. The prediction accuracy of the STNN framework will decrease when we increase 
the embedded dimension in area III. 

Table 2. The NRMSE of three areas. 

Observed Time-Series Steps (M) Area I Area II Area III 
50 1.5367 0.5644 0.9169 
60 1.3138 0.3799 0.9085 
70 2.8385 0.5307 1.3988 
80 1.1171 0.2452 0.6116 
90 1.4030 0.2434 0.7835 
100 0.7451 0.1138 1.2030 

Mean 1.4924 0.3462 0.9704 
Variance 0.4255 0.0263 0.0680 

Variance analysis p-value = 1.89 × 10−3 

Figure 6 details line 1 and line 2 to show why the NRMSE decreases first and then 
increases with the embedded dimension. 

(1) As the observed time-series steps increase, Figure 6a shows that the division 
points of area I and area II remain approximately horizontal. Therefore, we calculated the 
mean of the division points as the interception of line 1, which equals 5.67. Here, d = 2 is 
the manifold dimension of pendulum. Since L = 5.67 is close to 2d + 1 = 5, this proves that 
the STNN cannot make an accurate prediction when the embedded dimension L is close 
to 2d + 1 (in area I). 

(2) As the observed time-series steps increase, Figure 6b shows an obvious positive 
correlation with the observed time-series steps, which implies that when the embedded 

Figure 5. (a) Connection between the embedded dimension and observed time-series steps. For each
observed time-series step M, the embedded dimension of the points on line 1 corresponds to the
location on the x-axis of the first vertical line in Figure 4a, which divides the embedded dimension
into area I and area II. Similarly, the embedded dimension of the points on line 2 corresponds to the
location on the x-axis of the second vertical line in Figure 4a, which divides the embedded dimension
into area II and area III. (b) The mean and variance of the NRMES corresponding to three areas.

Figure 5b and Table 2 intuitively present the mean and variance of the NRMES cor-
responding to three areas. Through analysis of variance (nonparametric Kruskal–Wallis
test) [47] (Table 2), the p-value (1.89 × 10−3) shows statistically significant differences in
the NRMSE errors among the three areas. This proves that the prediction accuracy of the
STNN will be greatly improved with the increase in the embedded dimension in area I.
Then, the best prediction effect will be obtained when the embedded dimension reaches
area II. The prediction accuracy of the STNN framework will decrease when we increase
the embedded dimension in area III.

Table 2. The NRMSE of three areas.

Observed Time-Series Steps (M) Area I Area II Area III

50 1.5367 0.5644 0.9169
60 1.3138 0.3799 0.9085
70 2.8385 0.5307 1.3988
80 1.1171 0.2452 0.6116
90 1.4030 0.2434 0.7835
100 0.7451 0.1138 1.2030

Mean 1.4924 0.3462 0.9704
Variance 0.4255 0.0263 0.0680

Variance analysis p-value = 1.89 × 10−3

Figure 6 details line 1 and line 2 to show why the NRMSE decreases first and then
increases with the embedded dimension.

(1) As the observed time-series steps increase, Figure 6a shows that the division points
of area I and area II remain approximately horizontal. Therefore, we calculated the mean



Entropy 2022, 24, 1651 14 of 18

of the division points as the interception of line 1, which equals 5.67. Here, d = 2 is the
manifold dimension of pendulum. Since L = 5.67 is close to 2d + 1 = 5, this proves that the
STNN cannot make an accurate prediction when the embedded dimension L is close to
2d + 1 (in area I).

(2) As the observed time-series steps increase, Figure 6b shows an obvious positive
correlation with the observed time-series steps, which implies that when the embedded
dimension increases, the STNN prediction accuracy is negatively related to the observed
time-series steps. Therefore, this proves that the prediction accuracy is decreased due to
the lower amount of training data and longer prediction length with the increase in the
embedded dimension (in area III).
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an approximately horizontal line, line 1. The interception of line 1 equals 5.67. (b) The basic
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4.3.3. The Performance of STNN

In order to explore how STNN’s performance will depend on M (observed time-
series steps), D (dimension of time-series), and L (embedded dimension), we conducted
experiments on two variables from the randomly selected variables in Section 4.3.1 with
pendulum data, solar data, and TS data. The details of the experiment are recorded in the
Supplementary Section S4.9.

Figure 7 details the forecasting metric (NRMSE) variation with the observed time-
series steps (M). As the observed time-series steps increase, Figure 7 shows that the NRMSE
is decreasing on pendulum data, solar data, and TS data. Therefore, we can conclude that
more observed data can provide more temporal information for STNN prediction, thus
improving the prediction accuracy of STNN.
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Figure 8 details the forecasting metric (NRMSE) variation with the dimension of time-
series (D). As the dimension of time-series increases, Figure 8 shows that the NRMSE
remains almost unchanged on pendulum data, solar data, and TS data. Therefore, we
can conclude that STNN can achieve high-performance prediction results with less spatial
information by mining the correlation between high-dimensional system variables.
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Figure 9 details the forecasting metric (NRMSE) variation with the embedded dimen-
sion (L). As the embedded dimension increases, Figure 9 shows that the NRMSE decreases
first and then increases with the increase in the embedded dimension on pendulum data,
solar data, and TS data, which is consistent with the previous discussion in Section 4.3.2.
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4.3.4. Ablation Experiment

We also conducted additional ablation experiments.
The performance of continuous spatial self-attention and temporal self-attention: To

verify that the continuous spatial attention mechanism and continuous temporal attention
mechanism are indispensable in the STNN, we removed the two components while keeping
other settings unchanged. In Table 2, STNN# uses a fully connected layer instead of the
continuous spatial self-attention mechanism, and STNN## uses a fully connected layer
instead of the continuous temporal self-attention mechanism. In Table 3, the predicted
results show that the STNN has better performance than the counterparts (STNN# and
STNN##), which demonstrates that the continuous spatial self-attention and continuous
temporal self-attention can improve the prediction accuracy of time-series. Therefore, we
consider that continuous spatial self-attention and continuous temporal self-attention are
critical for the spatiotemporal transformation of STI.
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Table 3. Ablation of continuous spatial self-attention and temporal self-attention.

Model Metric Pendulum Lorenz

STNN
PCC 0.9983 0.9979

NRMSE 0.0778 0.0967

STNN# PCC 0.9955 0.7362
NRMSE 0.0780 0.7118

STNN## PCC 0.9944 0.5703
NRMSE 0.0802 0.9747

5. Conclusions

To solve two problems in predicting high-dimensional short-term time-series—the lack
of sufficient information and the curse of dimensionality for high-dimensional short-term
time-series prediction—this study proposed the STNN framework by taking the advantages
of both the STI transformation equation and the transformer neural network framework to
accurately predict future values of a short-term time-series in a multi-step-ahead manner.

By comparing the STNN prediction with the existing methods on various benchmarks
and real-world systems, we conclude that the STNN not only can significantly improve
the accuracy and robustness of the prediction, but it also has strong generalization abil-
ity. Additionally, as the dimension of time-series increases, the NRMSE remains almost
unchanged, which shows that we may improve the operation efficiency of STNN through
the dimension reduction method and maintain high prediction performance.
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