Simple Equations Method (SEsM): An Effective Algorithm for Obtaining Exact Solutions of Nonlinear Differential Equations
Abstract
:1. Short Introduction and Overview of the Literature
- chemical systems [60].
- solitons in condensed matter physics [278]; solitons in lattices [279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299]; solitons in Heisenberg chains [300,301,302,303,304]; spin-wave solitons in magnetic films [305]; solitons in liquid crystals [306]; solitons in elastic solids [307]; solitons in rods, plates, and shells [308]; and collisions of solitons in spin systems [309];
- solitons in fluid mechanics, for example, water waves [317,318,319,320,321,322,323,324]. This is a large area of research as the model equations used in fluid mechanics can often be solved analytically and the corresponding solutions describe solitons and multisolitons. Several examples are the observation of solitons in a sea [325], the description of internal waves in the atmosphere and atmospheric solitons [326,327,328], solitons in film flows [329], solitary waves and liquid drops [330], nonlinear soliton wave–beach interaction [331], long internal waves in deep fluid [332], solitons in rotating baroclinic fluid [333], ocean waves [334], solitary waves in two-fluid media [335], the propagation of bores [336,337], Peregrine soliton [338], solitary Rossby waves [339], and nonlinear focusing of waves in a fluid of finite depth [340];
- Results on integrability: integrable Hamiltonian systems [367,368,369,370], asymptotic integrability [371,372], integrable nonlocal nonlinear equations [373], Lax pair for the one-dimensional Hubbard model [374] and higher-order models of water waves [375], the integrability of higher-dimensional discrete systems [376], geometrical aspects of solitons [377,378], conservation laws for nonlinear evolution equations [379], perturbed integrable equations [380], and the relationships between different methods for obtaining exact solutions of integrable systems [381];
- Algebraic results and results connected to symmetries: the relationship between integrable systems and groups of Lee [387], the results from algebraic theory applicable to the theory of nonlinear equations [388], symmetries and the integrability of nonlinear differential equations [389,390,391], similarity reductions of the Boussinesq equation [392], symmetries, Lax pairs and solutions for AKNS systems [393,394,395], and Katz–Moodey–Lee algebras and solitons [396];
- The results from transformations of nonlinear differential equations: the direct linearization of nonlinear difference equations [408], gauge transformations applicable to solitons [409], Bäcklund transformations [410,411], the inverse spectral transform [412], generalized Fourier transforms for soliton equations [413], the singular manifold method for recovering Lax pairs and Darboux transformations [414], and the study of Bäcklund–Darboux transformations [415];
2. The Simple Equations Method (SEsM)
3. The SEsM and the Transformation of the Nonlinearity of the Solved Equation
- 1.
- Terms containing only derivatives of u;
- 2.
- Terms containing one or several nonpolynomial nonlinearities of the function u and these nonpolynomial nonlinearities are of the same kind.
- 1.
- Property 1: The transformation T transforms any of the nonpolynomial nonlinearities to a function that contains only polynomials of F.
- 2.
- Property 2: The transformation T transforms the derivatives of u to terms containing only the polynomials of the derivatives of F or the polynomials of the derivatives of F multiplied or divided by the polynomials of F.
- Case 1:
- ; . The transformation is .
- Case 2:
- ; . A possible transformation is .
- Case 3:
- ; . The transformation is .
- Case 4:
- ; . A possible transformation is .
- Case 5:
- ; . The transformation in this case is .
- Case 6:
- ; . The transformation is .
- Case 7:
- ; . The transformation is .
- Case 8:
- ; . The transformation is . .
- Case 9:
- ; . The transformation is .
- Case 10:
- ; . The transformation is .
4. Composite Functions and Their Role in the Algorithm of SEsM
- : d-dimensional index containing integer non-negative numbers .
- : d-dimensional object containing real numbers .
- : sum of the elements of the d-dimensional index .
- : factorial of the multicomponent index .
- : -th power of the multicomponent variable .
- , : -th derivative with respect to the multicomponent variable . Then, the identity operator is denoted as .
- : maximum value component of the multicomponent variable for the interval .
- For the d-dimensional index ( are integers), it follows that when . The following notation is used:
- Ordering of vector indexes: for two vector indexes and , we have when one of the following holds:
- (a)
- .
- (b)
- and .
- (c)
- , , … and for some .
5. The Role of the Simple Equations in the SEsM
6. The SEsM and the Method of Hirota and Inverse Scattering Transform Method
6.1. The SEsM and the Method of Hirota
6.2. The SEsM and the Inverse Scattering Transform Method: The Case of the Korteweg-de Vries Equation
6.3. The SEsM and the Inverse Scattering Transform Method: The Case of the Nonlinear Schrödinger Equation
7. Special Application: The SEsM and the SIR Model of Epidemics
8. Other Examples of the Application of the SEsM
- , .Here, and , , , .
- , .Here, and , .
- , : an arbitrary positive integer that is different from 1, , , .Here, and , , .
9. The SEsM and Other Methods for Obtaining Specific Exact Solutions of Nonlinear Nonintegrable Differential Equations
- Use the forms of the known functions that are not solutions of any simple equations. This will be extremely difficult as one has to use functions that are not solutions of differential equations.
- Construct the searched solution as a function of the known functions, which is not a composite function. This is also an extremely difficult task.
10. Concluding Remarks
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Latora, V.; Nicosia, V.; Russo, G. Complex Networks. Principles, Methods, and Applications; Cambridge University Press: Cambridge, UK, 2017; ISBN 978-1-107-10318-4. [Google Scholar]
- Chian, A.C.-L. Complex Systems Approach to Economic Dynamics; Springer: Berlin, Germany, 2007; ISBN 978-3-540-39752-6. [Google Scholar]
- Vitanov, N.K. Science Dynamics and Research Production. Indicators, Indexes, Statistical Laws and Mathematical Models; Springer: Cham, Switzerland, 2016; ISBN 978-3-319-41629-8. [Google Scholar]
- Treiber, M.; Kesting, A. Traffic Flow Dynamics: Data, Models, and Simulation; Springer: Berlin, Germany, 2013; ISBN 978-3-642-32460-4. [Google Scholar]
- May, R.M.; Levin, S.A.; Sugihara, G. Complex Systems: Ecology for Bankers. Nature 2008, 451, 893–895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivanova, K.; Ausloos, M. Application of the Detrended Fluctuation Analysis (DFA) Method for Describing Cloud Breaking. Phys. A 1999, 274, 349–354. [Google Scholar] [CrossRef]
- Kutner, R.; Ausloos, M.; Grech, D.; Di Matteo, T.; Schinckus, C.; Stanley, H.E. Manifesto for a Post-Pandemic Modeling. Phys. A 2019, 516, 240–253. [Google Scholar] [CrossRef] [Green Version]
- Simon, J.H. The Economic Consequences of Immigration; The University of Michigan Press: Ann Arbor, MI, USA, 1999; ISBN 978-0472086160. [Google Scholar]
- Drazin, P.G. Nonlinear Systems; Cambridge University Press: Cambridge, UK, 1992; ISBN 0-521-40489-4. [Google Scholar]
- Dimitrova, Z.I. Numerical Investigation of Nonlinear Waves Connected to Blood Flow in an Elastic Tube with Variable Radius. J. Theor. Appl. Mech. 2015, 45, 79–92. [Google Scholar] [CrossRef] [Green Version]
- Kawasaki, K.; Ohta, T. Kink Dynamics in One-Dimensional Nonlinear Systems. Phys. A 1982, 116, 573–593. [Google Scholar] [CrossRef]
- Dimitrova, Z. On Traveling Waves in Lattices: The Case of Riccati Lattices. J. Theor. Appl. Mech. 2012, 42, 3–22. [Google Scholar] [CrossRef]
- Ganji, D.D.; Sabzehmeidani, Y.; Sedighiamiri, A. Nonlinear Systems in Heat Transfer; Elsevier: Amsterdam, The Netherlands, 2018; ISBN 978-0-12-812024-8. [Google Scholar]
- Kantz, H.; Schreiber, T. Nonlinear Time Series Analysis; Cambridge University Press: Cambridge, UK, 2004; ISBN 978-0511755798. [Google Scholar]
- Verhulst, F. Nonlinear Differential Equations and Dynamical Systems; Springer: Berlin, Germany, 2006; ISBN 978-3-540-60934-6. [Google Scholar]
- Mills, T. Applied Time Series Analysis; Academic Press: London, UK, 2019; ISBN 978-012-813117-6. [Google Scholar]
- Struble, R. Nonlinear Differential Equations; Dover: New York, NY, USA, 2018; ISBN 978-0486817545. [Google Scholar]
- Vitanov, N.K.; Dimitrova, Z.I.; Ausloos, M. Verhulst-Lotka-Volterra Model of Ideological Struggle. Phys. A 2010, 389, 4970–4980. [Google Scholar] [CrossRef] [Green Version]
- Grossberg, S. Nonlinear Neural Networks: Principles, Mechanisms, and Architectures. Neural Netw. 1981, 1, 17–61. [Google Scholar] [CrossRef] [Green Version]
- Brezis, H.; Browder, F. Partial Differential Equations in the 20th Century. Adv. Math. 1998, 135, 76–144. [Google Scholar] [CrossRef] [Green Version]
- Kruskal, M. Nonlinear Wave Equations. In Dynamical Systems, Theory and Applications; Moser, J., Ed.; Springer: Berlin, Germany, 1975; pp. 310–354. [Google Scholar] [CrossRef]
- Witting, J. On the Highest and Other Solitary Waves. SIAM J. Appl. Math. 1975, 28, 700–719. [Google Scholar] [CrossRef]
- Ablowitz, M.J. Nonlinear Evolution Equations-Continuous and Discrete. SIAM Rev. 1977, 19, 663–684. [Google Scholar] [CrossRef]
- Taha, T.R.; Ablowitz, M.J. Analytical and Numerical Aspects of Certain Nonlinear Evolution Equations. I. Analytical. J. Comput. Phys. 1984, 55, 192–202. [Google Scholar] [CrossRef]
- Camassa, R.; Hyman, J.M.; Luce, B.P. Nonlinear Waves and Solitons in Physical Systems. Phys. D Nonlinear Phenom. 1998, 123, 1–20. [Google Scholar] [CrossRef]
- Zabusky, N.J. Fermi–Pasta–Ulam, Solitons and the Fabric of Nonlinear and Computational Science: History, Synergetics, and Visiometrics. Chaos Interdiscip. J. Nonlinear Sci. 2005, 15, 015102. [Google Scholar] [CrossRef]
- Zabusky, N.J.; Kruskal, M.D. Interaction of “Solitons” in a Collisionless Plasma and the Recurrence of Initial States. Phys. Rev. Lett. 1965, 15, 240–243. [Google Scholar] [CrossRef] [Green Version]
- Kadomtsev, B.B.; Karpman, V.I. Nonlinear Waves. Sov. Phys. Uspekhi 1971, 14, 40–60. [Google Scholar] [CrossRef]
- Hasegawa, A.; Tappert, F. Transmission of Stationary Nonlinear Optical Pulses in Dispersive Dielectric Fibers. I. Anomalous Dispersion. Appl. Phys. Lett. 1973, 23, 142–144. [Google Scholar] [CrossRef]
- Boyd, J.P. Equatorial Solitary Waves. Part I: Rossby Solitons. J. Phys. Oceanogr. 1980, 10, 1699–1717. [Google Scholar] [CrossRef]
- Boyd, J.P. Equatorial Solitary Waves. Part 2: Envelope Solitons. J. Phys. Oceanogr. 1983, 13, 428–449. [Google Scholar] [CrossRef]
- Polturak, E.; deVegvar, P.G.N.; Zeise, E.K.; Lee, D.M. Solitonlike Propagation of Zero Sound in Superfluid 3He. Phys. Rev. Lett. 1981, 46, 1588–1591. [Google Scholar] [CrossRef]
- Lonngren, K.E. Soliton Experiments in Plasmas. Plasma Phys. 1983, 25, 943–982. [Google Scholar] [CrossRef]
- Burger, S.; Bongs, K.; Dettmer, S.; Ertmer, W.; Sengstock, K.; Sanpera, A.; Shlyapnikov, G.V.; Lewenstein, M. Dark Solitons in Bose–Einstein Condensates. Phys. Rev. Lett. 1999, 83, 5198–5201. [Google Scholar] [CrossRef] [Green Version]
- Whitham, G.B. Linear and Nonlinear Waves; Wiley: New York, NY, USA, 1999; ISBN 0-471-35942-4. [Google Scholar]
- Tanaka, M. Physics of Nonlinear Waves; Morgan & Claypool: London, UK, 2020; ISBN 9781681737140. [Google Scholar]
- Debnath, L. (Ed.) Nonlinear Waves; Cambridge University Press: Cambridge, UK, 1983; ISBN 0-521-25468-X. [Google Scholar]
- Infeld, E.; Rowlands, G. Nonlinear Waves, Solitons and Chaos; Cambridge University Press: Cambridge, UK, 2000; ISBN 0-521-63212-9. [Google Scholar]
- Popivanov, P.; Slavova, A. Nonlinear Waves: An Introduction; World Scientific: Singapore, 2010; ISBN 9789813107953. [Google Scholar]
- Popivanov, P.; Slavova, A. Nonlinear Waves: A Geometric Approach; World Scientific: Singapore, 2018; ISBN 9789813271623. [Google Scholar]
- Jang, J.K.; Erkintalo, M.; Murdoch, S.G.; Coen, S. Ultraweak Long-range Interactions of Solitons Observed Over Astronomical Distances. Nat. Photonics 2013, 7, 657–663. [Google Scholar] [CrossRef] [Green Version]
- Wadati, M. Introduction to Solitons. Pramana 2001, 57, 841–847. [Google Scholar] [CrossRef]
- Craig, W.; Guyenne, P.; Hammack, J.; Henderson, D.; Sulem, C. Solitary Water Wave Interactions. Phys. Fluids 2006, 18, 057106. [Google Scholar] [CrossRef] [Green Version]
- Kulikovskiii, A.; Sveshnikova, E. Nonlinear Waves in Elastic Media; CRC Press: Boca Raton, FL, USA, 1995; ISBN 0-8493-8643-8. [Google Scholar]
- Maugin, G. Nonlinear Waves in Elastic Crystals; Oxford University Press: Oxford, UK, 1999; ISBN 0-19-853484-1. [Google Scholar]
- Mielke, A.; Kirchgässner, K. (Eds.) Structure and Dynamics of Nonlinear Waves in Fluids; World Scientific: Singapore, 1995; ISBN 981-02-2124-X. [Google Scholar]
- Osborne, A.R. Nonlinear Topics in Ocean Physics; North-Holland: Amsterdam, The Netherlands, 1991; ISBN 9780444597823. [Google Scholar]
- Kundu, A. (Ed.) Tsunami and Nonlinear Waves; Springer: Berlin, Germany, 2007; ISBN 9783540712565. [Google Scholar]
- Kluwick, A. (Ed.) Nonlinear Waves in Real Fluids; Springer: Wien, Austria, 2014; ISBN 9783709126080. [Google Scholar]
- Ma, Q. Advances in Numerical Simulation of Nonlinear Water Waves; World Scientific: Singapore, 2010; ISBN 9789812836502. [Google Scholar]
- Guo, B.; Tian, L.; Yan, Z.; Ling, L.; Wang, Y.-F. Rogue Waves: Mathematical Theory and Applications in Physics; De Gryuiter: Berlin, Germany, 2017; ISBN 9783110470574. [Google Scholar]
- Grimshaw, R. (Ed.) Nonlinear Waves in Fluids: Recent Advances and Modern Applications; Springer: Berlin, Germany, 2007; ISBN 9783211380253. [Google Scholar]
- Kim, C.-H. Nonlinear Waves and Offshore Structures; World Scientific: Singapore, 2008; ISBN 9789813102484. [Google Scholar]
- Mishin, E.; Streltsov, A. Nonlinear Wave and Plasma Structures in the Auroral and Subauroral Geospace; Elsevier: Amsterdam, The Netherlands, 2021; ISBN 9780128209318. [Google Scholar]
- Jeffery, A.; Engelbrecht, J. (Eds.) Nonlinear Waves in Solids; Springer: Wien, Austria, 1994; ISBN 978-3-211-82558-7. [Google Scholar]
- Nazarov, V.; Radostin, A. Nonlinear Acoustic Waves in Micro-Inhomogeneous Solids; Wiley: Chchester, UK, 2005; ISBN 9781118456088. [Google Scholar]
- Cottam, M.G. (Ed.) Linear and Nonlinear Spin Waves in Magnetic Films and Superlattices; World Scientific: Singapore, 1994; ISBN 9789810210069. [Google Scholar]
- Maimistov, A.I.; Basharov, A.M. Nonlinear Optical Waves; Kluwer: Dordrecht, The Netherlands, 1999; ISBN 9780792357520. [Google Scholar]
- Leble, S.B. Nonlinear Waves in Waveguides; Springer: Berlin, Germany, 2013; ISBN 9783642754203. [Google Scholar]
- Epstein, I.R.; Pojman, J.A. An Introduction to Nonlinear Chemical Dynamics; Oxford University Press: Oxford, UK, 1998; ISBN 0-19-509670-3. [Google Scholar]
- Bhatnagar, P.L. Nonlinear Waves in One-Dimensional Dispersive Systems; Clarendon Press: Oxford, UK, 1980; ISSN 0964-9174. [Google Scholar]
- Belashov, V.Y.; Vladimirov, S.V. Solitary Waves in Dispersive Complex Media; Springer: Berlin, Germany, 2005; ISBN 978-3-540-23376-3. [Google Scholar]
- Ablowitz, M.J. Nonlinear Dispersive Waves: Asymptotic Analysis and Solitons; Cambridge University Press: Cambridge, UK, 2011; ISBN 9781107012547. [Google Scholar]
- Benjamin, T.B.; Bona, J.L.; Mahony, J.J. Model Equations for Long Waves in Nonlinear Dispersive Systems. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1972, 272, 47–78. [Google Scholar] [CrossRef]
- Karpman, V.I. Non-Linear Waves in Dispersive Media; Pergamon Press: Oxford, UK, 1975; ISBN 0-08-017720-4. [Google Scholar]
- Korpel, A.; Banerjee, P.P. A Heuristic Guide to Nonlinear Dispersive Wave Equations and Soliton-Type Solutions. Proc. IEEE 1984, 72, 1109–1130. [Google Scholar] [CrossRef]
- Fillipov, A.T. The Versatile Soliton; Springer: New York, NY, USA, 2010; ISBN 9780817649746. [Google Scholar]
- Bullough, R.K.; Caudrey, P.J. (Eds.) Solitons; Springer: Berlin, Germany, 2011; ISBN 9783642814501. [Google Scholar]
- Longren, K.E.; Scott, A.C. Solitons in Action; Academic Press: New York, NY, USA, 1978; ISBN 9780124555808. [Google Scholar]
- Lamb, G.L. Elements of Soliton Theory; Wiley: New York, NY, USA, 1980; ISBN 9780471045595. [Google Scholar]
- Drazin, P.G. Solitons; Cambridge University Press: Cambridge, UK, 1983; ISSN 0076-0552. [Google Scholar]
- Ablowitz, M.J.; Fuchssteiner, B.; Kruskal, M. Topics in Soliton Theory and Exactly Solvable Nonlinear Equations; World Scientific: Singapore, 1987; ISBN 9789813237957. [Google Scholar]
- Rogers, C.; Schief, W.K. Bäcklund and Darboux Transformations: Geometry and Modern Applications in Soliton Theory; Cambridge University Press: Cambridge, UK, 2002; ISBN 9780521012881. [Google Scholar]
- Iliev, I.D.; Khristov, E.; Kirchev, K.P. Spectral Methods in Soliton Equations; Kongman: Harlow, UK, 1994; ISBN 0-582-23963-X. [Google Scholar]
- Manton, N.; Sutcliffe, P. Topological Solitons; Cambridge University Press: Cambridge, UK, 2004; ISBN 9781139454698. [Google Scholar]
- Cercignani, C. Solitons-Theory and Application. Nuovo C. Riv. 1977, 7, 429–469. [Google Scholar] [CrossRef]
- Akhmediev, N.; Ankiewicz, A. Dissipative Solitons; Springer: Berlin, Germany, 2005; ISBN 9783540233732. [Google Scholar]
- Belinski, V.A.; Verdaguer, E. Gravitational Solitons; Cambridge University Press: Cambridge, UK, 2001; ISBN 9780521805865. [Google Scholar]
- Weigel, H. Chiral Soliton Models for Baryons; Springer: Berlin, Germany, 2007; ISBN 9783540754367. [Google Scholar]
- Ricketts, D.S.; Ham, D. Electrical Solitons: Theory, Design, and Applications; CRC Press: Boca Raton, FL, USA, 2011; ISBN 9781351833691. [Google Scholar]
- Zakharov, V.E.; Wabnitz, S. (Eds.) Optical Solitons: Theoretical Challenges and Industrial Perspectives; Springer: Berlin, Germany, 2013; ISBN 9783662038079. [Google Scholar]
- Drazin, P.G.; Johnson, R.S. Solitons: An Introduction; Cambridge University Press: Cambridge, UK, 1989; ISBN 9780521336550. [Google Scholar]
- Novikov, S.; Manakov, S.V.; Pitaevskii, L.P.; Zakharov, V.E. Theory of Solitons: The Inverse Scattering Method; Springer: Berlin, Germany, 1984; ISBN 9780306109775. [Google Scholar]
- Dickey, L.A. Soliton Equations and Hamiltonian Systems; World Scientific: Singapore, 2003; ISBN 9789812794512. [Google Scholar]
- Malomed, B.A. Soliton Management in Periodic Systems; Springer: New York, NY, USA, 2006; ISBN 9780387293349. [Google Scholar]
- Davydov, A.S. Solitons in Molecular Systems; Springer: Dordrecht, The Netherlands, 2013; ISBN 9789401730259. [Google Scholar]
- Olver, P.J.; Sattiger, D.H. Solitons in Physics, Mathematics, and Nonlinear Optics; Springer: New York, NY, USA, 2012; ISBN 9781461390336. [Google Scholar]
- Dauxois, T.; Peyrard, M. Physics of Solitons; Cambridge University Press: Cambridge, UK, 2006; ISBN 9780521854214. [Google Scholar]
- Scott, A.C.; Chu, F.Y.F.; McLaughlin, D.W. The Soliton: A New Concept in Applied Science. Proc. IEEE 1973, 61, 1443–1483. [Google Scholar] [CrossRef]
- Karpman, V.I. Soliton Evolution in the Presence of Perturbation. Phys. Scr. 1979, 20, 462–478. [Google Scholar] [CrossRef]
- Whitam, G.B. Lectures on Wave Propagation; Springer: Berlin, Germany, 1979; ISBN 3-540-08945-4. [Google Scholar]
- Jimbo, M.; Miwa, T. Solitons and Infinite Dimensional Lie Algebras. Publ. Res. Inst. Math. Sci. Kioto Univ. 1983, 19, 943–1001. [Google Scholar] [CrossRef] [Green Version]
- Gibbon, J.D. A Survey of the Origins and Physical Importance of Soliton Equations. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1985, 315, 335–365. [Google Scholar] [CrossRef]
- Newell, A.C. Solitons in Mathematics and Physics; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1985; ISBN 978-0-898711-96-7. [Google Scholar]
- Kivshar, Y.S.; Malomed, B.A. Dynamics of Solitons in Nearly Integrable Systems. Rev. Mod. Phys. 1989, 61, 763–915. [Google Scholar] [CrossRef] [Green Version]
- Remoissenet, M. Waves Called Solitons: Concepts and Experiments; Springer: Berlin, Germany, 2013; ISBN 978-3-642-05819-2. [Google Scholar]
- Yu, L. Solitons & Polarons in Conducting Polymers; World Scientific: Singapore, 1988; ISBN 9789971500542. [Google Scholar]
- Maxon, S. Cylindrical Solitons in a Warm, Multi-Ion Plasma. Phys. Fluids 1976, 19, 266–271. [Google Scholar] [CrossRef]
- Yajima, T.; Wadati, M. Solitons in Electron Beam Plasma. J. Phys. Soc. Jpn. 1990, 59, 3237–3248. [Google Scholar] [CrossRef]
- Huberman, B.A. Superfluid Solitons in Helium Films. Phys. Rev. Lett. 1978, 41, 1389–1393. [Google Scholar] [CrossRef]
- Kodama, Y.; Maruta, A.; Hasegawa, A. Long Distance Communications with Solitons. Quantum Opt. B 1994, 6, 463–516. [Google Scholar] [CrossRef]
- Gardner, C.S.; Greene, J.M.; Kruskal, M.D.; Miura, R.M. Method for Solving the Korteweg-deVries Equation. Phys. Rev. Lett. 1967, 19, 1095–1097. [Google Scholar] [CrossRef]
- Ablowitz, M.J.; Kaup, D.J.; Newell, A.C.; Segur, H. The Inverse Scattering Transform-Fourier Analysis for Nonlinear Problems. Stud. Appl. Math. 1974, 53, 249–315. [Google Scholar] [CrossRef]
- Ablowitz, M.J. Lectures on the Inverse Scattering Transform. Stud. Appl. Math. 1978, 58, 17–94. [Google Scholar] [CrossRef]
- Wadati, M.; Kamijo, T. On the Extension of Inverse Scattering Method. Prog. Theor. Phys. 1974, 52, 397–414. [Google Scholar] [CrossRef] [Green Version]
- Lax, P.D. Integrals of Nonlinear Equations of Evolution and Solitary Waves. Commun. Pure Appl. Math. 1968, 21, 467–490. [Google Scholar] [CrossRef]
- Zakharov, V.E.E.; Shabat, A.B. A Scheme for Integrating the Nonlinear Equations of Mathematical Physics by the Method of the Inverse Scattering Problem. I. Funktsional’nyi Anal. I Ego Prilozheniya 1974, 8, 43–53. [Google Scholar] [CrossRef]
- Zakharov, V.E.E.; Shabat, A.B. Integration of Nonlinear Equations of Mathematical Physics by the Method of Inverse Scattering. II. Funktsional’nyi Anal. I Ego Prilozheniya 1979, 13, 13–22. [Google Scholar] [CrossRef]
- Fokas, A.S. A Unified Transform Method for Solving Linear and Certain Nonlinear PDEs. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 1997, 453, 1411–1443. [Google Scholar] [CrossRef]
- Fokas, A.S.; Ablowitz, M.J. Method of Solution for a Class of Multidimensional Nonlinear Evolution Equations. Phys. Rev. Lett. 1983, 51, 7–10. [Google Scholar] [CrossRef]
- Manakov, S.V. The Method of the Inverse Scattering Problem, and Two-dimensional Evolution Equations. Uspekhi Mat. Nauk 1976, 31, 245–246. [Google Scholar]
- Manakov, S.V. The Inverse Scattering Transform for the Time-dependent Schrödinger Equation and Kadomtsev-Petviashvili Equation. Physica D 1981, 3, 420–427. [Google Scholar] [CrossRef]
- Dodd, R.K.; Bullough, R.K. The Generalised Marchenko Equation and the Canonical Structure of the AKNS-ZS Inverse Method. Phys. Scr. 1979, 20, 514–530. [Google Scholar] [CrossRef]
- Ablowitz, M.J.; Kruskal, M.; Segur, H. A Note on Miura’s Transformation. J. Math. Phys. 1979, 20, 999–1003. [Google Scholar] [CrossRef]
- Kaup, D.J.; Newell, A.C. Evolution Equations, Singular Dispersion Relations, and Moving Eigenvalues. Adv. Math. 1979, 31, 67–100. [Google Scholar] [CrossRef] [Green Version]
- Newell, A.C.; Redekopp, L.G. Breakdown of Zakharov-Shabat Theory and Soliton Creation. Phys. Rev. Lett. 1977, 38, 377–380. [Google Scholar] [CrossRef]
- Beals, R.; Coifman, R.R. Scattering and Inverse Scattering for First Order Systems. Commun. Pure Appl. Math. 1984, 37, 39–90. [Google Scholar] [CrossRef]
- Kaup, D.J. A perturbation Expansion for the Zakharov–Shabat Inverse Scattering Transform. SIAM J. Appl. Math. 1976, 31, 121–133. [Google Scholar] [CrossRef]
- Kaup, D.J. On the inverse scattering problem for cubic eigenvalue problems of the class ψxxx + 6Qψx + 6Rψ = λψ. Stud. Appl. Math. 1980, 62, 189–216. [Google Scholar] [CrossRef]
- Beals, R.; Coifman, R.R. The D-Bar Approach to Inverse Scattering and Nonlinear Evolutions. Phys. D Nonlinear Phenom. 1986, 18, 242–249. [Google Scholar] [CrossRef]
- Ablowitz, M.J. Applications of Slowly Varying Nonlinear Disperive Wave Theories. Stud. Appl. Math. 1971, 50, 329–344. [Google Scholar] [CrossRef]
- Goriely, A. Integrability and Nonintegrability of Dynamical Systems; World Scientific: Singapore, 2001; ISBN 981-02-3533-X. [Google Scholar]
- Calogero, F. A Method to Generate Solvable Nonlinear Evolution Equations. Lett. Al Nuovo Cimento 1975, 14, 443–447. [Google Scholar] [CrossRef]
- Newell, A.C. The General Structure of Integrable Evolution Equations. Proc. R. Soc. Lond. A Math. Phys. Sci. 1979, 365, 283–311. [Google Scholar] [CrossRef]
- Gupta, M.R. Exact Inverse Scattering Solution of a Non-Linear Evolution Equation in a Non-Uniform Medium. Phys. Lett. A 1979, 72, 420–422. [Google Scholar] [CrossRef]
- Shimizu, T.; Wadati, M. A New Integrable Nonlinear Evolution Equation. Prog. Theor. Phys. 1980, 63, 808–820. [Google Scholar] [CrossRef] [Green Version]
- Fokas, A.S. On the Integrability of Linear and Nonlinear Partial Differential Equations. J. Math. Phys. 2000, 41, 4188–4237. [Google Scholar] [CrossRef]
- Degasperis, A.; Lombardo, S. Multicomponent Integrable Wave Equations: I. Darboux- Dressing Transformation. J. Phys. A Math. Theor. 2007, 40, 961–977. [Google Scholar] [CrossRef] [Green Version]
- Kupershmidt, B.A. Integrable and Superintegrable Systems; World Scientific: Singapore, 1990; ISBN 9789810203160. [Google Scholar]
- Yang, J. Nonlinear Waves in Integrable and Nonintegrable Systems; SIAM: Philadelphia, PA, USA, 2010; ISBN 9780898719680. [Google Scholar]
- Fokas, A.S. Integrable Nonlinear Evolution Partial Differential Equations in 4+2 and 3+1 Dimensions. Phys. Rev. Lett. 2006, 96, 190201. [Google Scholar] [CrossRef] [PubMed]
- Zakharov, V.E.E.; Manakov, S.V. Construction of Higher-dimensional Nonlinear Integrable Systems and of Their Solutions. Funct. Anal. Its Appl. 1985, 19, 89–101. [Google Scholar] [CrossRef]
- Calogero, F.; Degasperis, A. Extension of the Spectral Transform Method for Solving Nonlinear Evolution Equations. Lett. Al Nuovo Cimento 1978, 22, 131–137. [Google Scholar] [CrossRef]
- Kichenassamy, S. Nonlinear Wave Equations; CRC Press: Boca Raton, FL, USA, 2021; ISBN 9781003210276. [Google Scholar]
- Deift, P.; Lund, F.; Trubowitz, E. Nonlinear Wave Equations and Constrained Harmonic Motion. Proc. Natl. Acad. Sci. USA 1980, 77, 716–719. [Google Scholar] [CrossRef] [Green Version]
- Hirota, R. Exact Solution of the Korteweg-de Vries Equation for Multiple Collisions of Solitons. Phys. Rev. Lett. 1971, 27, 1192–1194. [Google Scholar] [CrossRef]
- Hirota, R.; Satsuma, J. Soliton Solutions of a Coupled Korteweg-de Vries Equation. Phys. Lett. A 1981, 85, 407–408. [Google Scholar] [CrossRef]
- Gibbon, J.D.; Radmore, P.; Tabor, M.; Wood, D. The Painlev’e Property and Hirota’s Method. Stud. Appl. Math. 1985, 72, 39–63. [Google Scholar] [CrossRef]
- Matsukidaira, J.; Satsuma, J.; Strampp, W. Soliton Equations Expressed by Trilinear Forms and Their Solutions. Phys. Lett. A 1990, 147, 467–471. [Google Scholar] [CrossRef]
- Satsuma, J.; Kajiwara, K.; Matsukidaira, J.; Hietarinta, J. Solutions of the Broer-Kaup System Through Its Trilinear Form. J. Phys. Soc. Jpn. 1992, 61, 3096–3102. [Google Scholar] [CrossRef]
- Hirota, R. The Direct Method in Soliton Theory; Cambridge University Press: Cambridge, UK, 2004; ISBN 0-521-83660-3. [Google Scholar]
- Miura, R.M.; Gardner, C.S.; Kruskal, M.D. Korteweg-de Vries Equation and Generalizations. II. Existence of Conservation Laws and Constants of Motion. J. Math. Phys. 1968, 9, 1204–1209. [Google Scholar] [CrossRef]
- Gardner, C.S.; Greene, J.M.; Kruskal, M.D.; Miura, R.M. Korteweg-de Vries Equation and Generalizations. VI. Methods for Exact Solution. Commun. Pure Appl. Math. 1974, 27, 97–133. [Google Scholar] [CrossRef]
- Bona, J.L.; Smith, R. The Initial-Value Problem for the Korteweg-de Vries Equation. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1975, 278, 555–601. [Google Scholar] [CrossRef] [Green Version]
- Novikov, S.P. The Periodic Problem for the Korteweg–de Vries Equation. Funktsional’nyi Anal. I Ego Prilozheniya 1974, 8, 54–66. [Google Scholar] [CrossRef]
- Zabusky, N.J.; Galvin, C.J. Shallow-water Waves, the Korteweg-de Vries Equation and Solitons. J. Fluid Mech. 1971, 47, 811–824. [Google Scholar] [CrossRef]
- Wadati, M. The Exact Solution of the Modified Korteweg-de Vries Equation. J. Phys. Soc. Jpn. 1972, 32, 1681. [Google Scholar] [CrossRef]
- Hirota, R. Nonlinear Partial Difference Equations. I. A Difference Analogue of the Korteweg-de Vries Equation. J. Phys. Soc. Jpn. 1977, 43, 1424–1433. [Google Scholar] [CrossRef]
- Wahlquist, H.D.; Estabrook, F.B. Bäcklund Transformation for Solutions of the Korteweg-de Vries Equation. Phys. Rev. Lett. 1973, 31, 1386–1388. [Google Scholar] [CrossRef]
- Wadati, M. The Modified Korteweg-de Vries Equation. J. Phys. Soc. Jpn. 1973, 34, 1289–1296. [Google Scholar] [CrossRef]
- Sawada, K.; Kotera, T. A Method for Finding N-soliton Solutions of the KdV Equation and KdV-like Equation. Prog. Theor. Phys. 1974, 51, 1355–1367. [Google Scholar] [CrossRef] [Green Version]
- Lax, P.D. Periodic Solutions of the KdV Equation. Commun. Pure Appl. Math. 1975, 28, 141–188. [Google Scholar] [CrossRef]
- Miura, R.M. The Korteweg–deVries Equation: A Survey of Results. SIAM Rev. 1976, 18, 412–459. [Google Scholar] [CrossRef]
- Caudrey, P.J.; Dodd, R.K.; Gibbon, J.D. A New Hierarchy of Korteweg–de Vries Equations. Proc. R. Soc. Lond. A Math. Phys. Sci. 1976, 351, 407–422. [Google Scholar] [CrossRef]
- Satsuma, J. N-soliton Solution of the Two-dimensional Korteweg-deVries Equation. J. Phys. Soc. Jpn. 1976, 40, 286–290. [Google Scholar] [CrossRef]
- Ablowitz, M.J.; Segur, H. Asymptotic Solutions of the Korteweg-deVries Equation. Stud. Appl. Math. 1977, 57, 13–44. [Google Scholar] [CrossRef]
- Hammack, J.L.; Segur, H. The Korteweg-de Vries Equation and Water Waves. Part 3. Oscillatory Waves. J. Fluid Mech. 1978, 84, 337–358. [Google Scholar] [CrossRef] [Green Version]
- Grimshaw, R. Slowly Varying Solitary Waves. I. Korteweg-de Vries Equation. Proc. R. Soc. Lond. A Math. Phys. Sci. 1979, 368, 359–375. [Google Scholar] [CrossRef]
- Ito, M. An Extension of Nonlinear Evolution Equations of the K-dV (mK-dV) Type to Higher Orders. J. Phys. Soc. Jpn. 1980, 49, 771–778. [Google Scholar] [CrossRef]
- Miles, J.W. The Korteweg-de Vries Equation: A Historical Essay. J. Fluid Mech. 1981, 106, 131–147. [Google Scholar] [CrossRef]
- Lax, P.D.; David Levermore, C. The Small Dispersion Limit of the Korteweg-de Vries Equation. I. Commun. Pure Appl. Math. 1983, 36, 253–290. [Google Scholar] [CrossRef]
- Wadati, M. Stochastic Korteweg-de Vries Equation. J. Phys. Soc. Jpn. 1983, 52, 2642–2648. [Google Scholar] [CrossRef]
- Bona, J.L.; Souganidis, P.E.; Strauss, W.A. Stability and Instability of Solitary Waves of Korteweg-de Vries Type. Proc. R. Soc. Lond. A Math. Phys. Sci. 1987, 411, 395–412. [Google Scholar] [CrossRef]
- Boyd, J.P. Theta Functions, Gaussian Series, and Spatially Periodic Solutions of the Korteweg–de Vries Equation. J. Math. Phys. 1982, 23, 375–387. [Google Scholar] [CrossRef] [Green Version]
- Nijhoff, F.; Capel, H. The Discrete Korteweg-de Vries Equation. Acta Appl. Math. 1995, 39, 133–158. [Google Scholar] [CrossRef] [Green Version]
- Crighton, D.G. Applications of KdV. Acta Appl. Math. 1995, 39, 39–67. [Google Scholar] [CrossRef]
- Kenig, C.E.; Ponce, G.; Vega, L. A Bilinear Estimate with Applications to the KdV Equation. J. Am. Math. Soc. 1996, 9, 573–603. [Google Scholar] [CrossRef]
- Goncharenko, V.M. Multisoliton Solutions of the Matrix KdV Equation. Theor. Math. Phys. 2001, 126, 81–91. [Google Scholar] [CrossRef]
- Linares, F.; Ponce, G. Introduction to Nonlinear Dispersive Equations; Springer: New York, NY, USA, 2014; ISBN 978-0-38784-898-3. [Google Scholar]
- Dubrovin, B.A.E.; Matveev, V.B.; Novikov, S.P. Non-linear Equations of Korteweg-de Vries Type, Finite-zone Linear Operators, and Abelian Varieties. Russ. Math. Surv. 1976, 31, 59–146. [Google Scholar] [CrossRef]
- Ablowitz, M.J.; Kaup, D.J.; Newell, A.C.; Segur, H. Nonlinear Evolution Equations of Physical Significance. Phys. Rev. Lett. 1973, 31, 125–127. [Google Scholar] [CrossRef]
- Ting, A.C.; Chen, H.H.; Lee, Y.C. Exact Solutions of a Nonlinear Boundary Value Problem: The Vortices of the Two-Dimensional sinh-Poisson Equation. Phys. D Nonlinear Phenom. 1987, 26, 37–66. [Google Scholar] [CrossRef]
- Rubinstein, J. Sine-Gordon Equation. J. Math. Phys. 1970, 11, 258–266. [Google Scholar] [CrossRef]
- Hirota, R. Exact Solution of the Sine-Gordon Equation for Multiple Collisions of Solitons. J. Phys. Soc. Jpn. 1972, 33, 1459–1463. [Google Scholar] [CrossRef]
- Scott, A.C.; Chu, F.Y.; Reible, S.A. Magnetic-flux Propagation on a Josephson Transmission Line. J. Appl. Phys. 1976, 47, 3272–3286. [Google Scholar] [CrossRef]
- Dodd, R.K.; Bullough, R.K. Bäcklund Transformations for the Sine–Gordon Equations. Proc. R. Soc. Lond. A Math. Phys. Sci. 1976, 351, 499–523. [Google Scholar] [CrossRef]
- Orfanidis, S.J. Sine-Gordon Equation and Nonlinear σ Model on a Lattice. Phys. Rev. D 1978, 18, 3828–3832. [Google Scholar] [CrossRef]
- Pöppe, C. Construction of Solutions of The Sine-Gordon Equation by Means of Fredholm Determinants. Phys. D Nonlinear Phenom. 1983, 9, 103–139. [Google Scholar] [CrossRef]
- Weiss, J. The Sine-Gordon Equations: Complete and Partial Integrability. J. Math. Phys. 1984, 25, 2226–2235. [Google Scholar] [CrossRef]
- Malomed, B.A. Emission From, Quasi-Classical Quantization, and Stochastic Decay of Sine-Gordon Solitons in External Fields. Phys. D Nonlinear Phenom. 1987, 27, 113–157. [Google Scholar] [CrossRef]
- Ablowitz, M.J.; Kaup, D.J.; Newell, A.C.; Segur, H. Method for Solving the Sine- Gordon Equation. Phys. Rev. Lett. 1973, 30, 1262–1264. [Google Scholar] [CrossRef]
- Ablowitz, M.J.; Prinari, B.; Trubatch, A.D. Discrete and Continuous Nonlinear Schrödinger Systems; Cambridge University Press: Cambridge, UK, 2004; ISBN 0-521-52437-2. [Google Scholar]
- Zabusky, N.J. Solitons and Bound States of the Time-independent Schrödinger Equation. Phys. Rev. 1968, 168, 124–128. [Google Scholar] [CrossRef]
- Zakharov, V.E.; Manakov, S.V. On the Complete Integrability of a Nonlinear Schrödinger Equation. Theor. Math. Phys. 1974, 19, 551–559. [Google Scholar] [CrossRef]
- Segur, H. Asymptotic Solutions and Conservation Laws for the Nonlinear Schrödinger Equation. II. J. Math. Phys. 1976, 17, 714–716. [Google Scholar] [CrossRef]
- Nogami, Y.; Warke, C.S. Soliton Solutions of Multicomponent Nonlinear Schrödinger Equation. Phys. Lett. A 1976, 59, 251–253. [Google Scholar] [CrossRef]
- Jaulent, M.; Miodek, I. Nonlinear Evolution Equations Associated with ‘Enegry-Dependent Schrödinger potentials’. Lett. Math. Phys. 1976, 1, 243–250. [Google Scholar] [CrossRef]
- Pereira, N.R. Soliton in the Damped Nonlinear Schrödinger Equation. Phys. Fluids 1977, 20, 1735–1743. [Google Scholar] [CrossRef] [Green Version]
- Fukuda, I.; Tsutsumi, M. On Coupled Klein-Gordon-Schrödinger Equations, II. J. Math. Anal. Appl. 1978, 66, 358–378. [Google Scholar] [CrossRef] [Green Version]
- Kawata, T.; Inoue, H. Exact Solutions of the Derivative Nonlinear Schrödinger Equation Under the Nonvanishing Conditions. J. Phys. Soc. Jpn. 1978, 44, 1968–1976. [Google Scholar] [CrossRef]
- Kaup, D.J.; Newell, A.C. An Exact Solution for a Derivative Nonlinear Schrödinger Equation. J. Math. Phys. 1978, 19, 798–801. [Google Scholar] [CrossRef]
- Ma, Y.C. The Perturbed Plane-Wave Solutions of the Cubic Schrödinger Equation. Stud. Appl. Math. 1979, 60, 43–58. [Google Scholar] [CrossRef]
- Boiti, M.; Pempinelli, F. Nonlinear Schrödinger Equation, Bäcklund Transformations and Painlev’e Transcendents. Il Nuovo C. B 1980, 59, 40–58. [Google Scholar] [CrossRef]
- Balakrishnan, R. Dynamics of a Generalised Classical Heisenberg Chain. Phys. Lett. A 1982, 92, 243–246. [Google Scholar] [CrossRef]
- Cohen, A.; Kappeler, T. Scattering and Inverse Scattering for Steplike Potentials in the Schrödinger Equation. Indiana Univ. Math. J. 1985, 34, 127–180. [Google Scholar] [CrossRef]
- Hasse, R.W. A General Method for the Solution of Nonlinear Soliton and Kink Schrödinger Equations. Z. Phys. B Condens. Matter 1980, 37, 83–87. [Google Scholar] [CrossRef]
- Ma, Y.C.; Ablowitz, M.J. The Periodic Cubic Schrödinger Equation. Stud. Appl. Math. 1981, 65, 113–158. [Google Scholar] [CrossRef]
- Clarkson, P.A.; Cosgrove, C.M. Painlevé Analysis of the Non-Linear Schrödinger Family of Equations. J. Phys. A Math. Gen. 1987, 20, 2003–2024. [Google Scholar] [CrossRef]
- Olmedilla, E. Multiple Pole Solutions of The Non-Linear Schrödinger Equation. Phys. D Nonlinear Phenom. 1987, 25, 330–346. [Google Scholar] [CrossRef]
- Tracy, E.R.; Chen, H.H. Nonlinear Self-modulation: An Exactly Solvable Model. Phys. Rev. A 1988, 37, 815–839. [Google Scholar] [CrossRef]
- Davies, B. Higher Conservation Laws for the Quantum Non-linear Schrödinger Equation. Phys. A Stat. Mech. Its Appl. 1990, 167, 433–456. [Google Scholar] [CrossRef]
- Potasek, M.J.; Tabor, M. Exact Solutions for an Extended Nonlinear Schrödinger Equation. Phys. Lett. A 1991, 154, 449–452. [Google Scholar] [CrossRef]
- Clarkson, P.A. Dimensional Reductions and Exact Solutions of a Generalized Nonlinear Schrödinger Equation. Nonlinearity 1992, 5, 453–472. [Google Scholar] [CrossRef]
- Tasgal, R.S.; Potasek, M.J. Soliton Solutions to Coupled Higher-Order Nonlinear Schrödinger Equations. J. Math. Phys. 1992, 33, 1208–1215. [Google Scholar] [CrossRef]
- Boffetta, G.; Osborne, A.R. Computation of the Direct Scattering Transform for the Nonlinear Schrödinger Equation. J. Comput. Phys. 1992, 102, 252–264. [Google Scholar] [CrossRef]
- Manas, M. Darboux Transformations for the Nonlinear Schrödinger Equations. J. Phys. A Math. Gen. 1996, 29, 7721–7737. [Google Scholar] [CrossRef]
- Nakkeeran, K.; Porsezian, K.; Sundaram, P.S.; Mahalingam, A. Optical Solitons in N-Coupled Higher Order Nonlinear Schrödinger Equations. Phys. Rev. Lett. 1998, 80, 1425–1428. [Google Scholar] [CrossRef]
- Calogero, F.; Degasperis, A.; Xiaoda, J. Nonlinear Schrödinger-type Equations from Multiscale Reduction of PDEs. I. Systematic Derivation. J. Math. Phys. 2000, 41, 6399–6443. [Google Scholar] [CrossRef]
- Serkin, V.N.; Belyaeva, T.Y.L. High-Energy Optical Schrödinger Solitons. J. Exp. Theor. Phys. Lett. 2001, 74, 573–577. [Google Scholar] [CrossRef]
- Tenorio, C.H.; Vargas, E.V.; Serkin, V.N.; Granados, M.A.; Belyaeva, T.L.; Moreno, R.P.; Lara, L.M. Dynamics of Solitons in the Model of Nonlinear Schrödinger Equation with an External Harmonic Potential: II. Dark Solitons. Quantum Electron. 2005, 35, 929–937. [Google Scholar] [CrossRef]
- Aktosun, T.; Demontis, F.; Van Der Mee, C. Exact Solutions to the Focusing Nonlinear Schrödinger Equation. Inverse Probl. 2007, 23, 2171–2195. [Google Scholar] [CrossRef]
- Sulem, C.; Sulem, P.L. The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse; Springer: Berlin, Germany, 2007; ISBN 0-387-98611-1. [Google Scholar]
- Bottman, N.; Deconinck, B.; Nivala, M. Elliptic Solutions of the Defocusing NLS Equation are Stable. J. Phys. A Math. Theor. 2011, 44, 285201. [Google Scholar] [CrossRef]
- Suslov, S. On Integrability of Nonautonomous Nonlinear Schrödinger Equations. Proc. Am. Math. Soc. 2012, 140, 3067–3082. [Google Scholar] [CrossRef]
- Zhai, B.G.; Zhang, W.G.; Wang, X.L.; Zhang, H.Q. Multi-Rogue Waves and Rational Solutions of The Coupled Nonlinear Schrödinger Equations. Nonlinear Anal. Real World Appl. 2013, 14, 14–27. [Google Scholar] [CrossRef]
- Ling, L.; Zhao, L.C. Simple Determinant Representation for Rogue Waves of the Nonlinear Schrödinger Equation. Phys. Rev. E 2013, 88, 043201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chowdury, A.; Kedziora, D.J.; Ankiewicz, A.; Akhmediev, N. Soliton Solutions of an Integrable Nonlinear Schrödinger Equation With Quintic Terms. Phys. Rev. E 2014, 90, 032922. [Google Scholar] [CrossRef]
- Kedziora, D.J.; Ankiewicz, A.; Chowdury, A.; Akhmediev, N. Integrable Equations of the Infinite Nonlinear Schrödinger Equation Hierarchy with Time Variable Coefficients. Chaos Interdiscip. J. Nonlinear Sci. 2015, 25, 103114. [Google Scholar] [CrossRef]
- Ling, L.; Zhao, L.C.; Guo, B. Darboux Transformation and Multi-Dark Soliton for N-Component Nonlinear Schrödinger Equations. Nonlinearity 2015, 28, 3243–3271. [Google Scholar] [CrossRef]
- Fokas, A.S. Integrable Multidimensional Versions of the Nonlocal Nonlinear Schrödinger Equation. Nonlinearity 2016, 29, 319. [Google Scholar] [CrossRef]
- Biondini, G.; Mantzavinos, D. Long-Time Asymptotics for the Focusing Nonlinear Schrödinger Equation with Nonzero Boundary Conditions at Infinity and Asymptotic Stage of Modulational Instability. Commun. Pure Appl. Math. 2017, 70, 2300–2365. [Google Scholar] [CrossRef] [Green Version]
- Feng, B.F.; Luo, X.D.; Ablowitz, M.J.; Musslimani, Z.H. General Soliton Solution to a Nonlocal Nonlinear Schrödinger Equation with Zero and Nonzero Boundary Conditions. Nonlinearity 2018, 31, 5385–5409. [Google Scholar] [CrossRef]
- Ablowitz, M.J.; Feng, B.F.; Luo, X.D.; Musslimani, Z.H. Inverse Scattering Transform For The Nonlocal Reverse Space–Time Nonlinear Schrödinger Equation. Theor. Math. Phys. 2018, 196, 1241–1267. [Google Scholar] [CrossRef]
- Bilman, D.; Miller, P.D. A Robust Inverse Scattering Transform for the Focusing Nonlinear Schrödinger Equation. Commun. Pure Appl. Math. 2019, 72, 1722–1805. [Google Scholar] [CrossRef] [Green Version]
- Fedele, R.; Schamel, H. Solitary Waves in the Madelung’s Fluid: Connection Between the Nonlinear Schrödinger Equation and the Korteweg-de Vries Equation. Eur. Phys. J. B-Condens. Matter Complex Syst. 2002, 27, 313–320. [Google Scholar] [CrossRef]
- Fedele, R.; Schamel, H.; Shukla, P.K. Solitons in the Madelung’s Fluid. Phys. Scr. 2002, T98, 18–23. [Google Scholar] [CrossRef]
- Fedele, R. Envelope Solitons versus Solitons. Phys. Scr. 2002, 65, 502–508. [Google Scholar] [CrossRef]
- Serkin, V.N.; Hasegawa, A. Exactly Integrable Nonlinear Schrodinger Equation Models with Varying Dispersion, Nonlinearity and Gain: Application for Soliton Dispersion. IEEE J. Sel. Top. Quantum Electron. 2002, 8, 418–431. [Google Scholar] [CrossRef]
- Hyman, J.M.; Nicolaenko, B. The Kuramoto-Sivashinsky Equation: A Bridge Between PDE’s and Dynamical Systems. Phys. D Nonlinear Phenom. 1986, 18, 113–126. [Google Scholar] [CrossRef]
- Quispel, G.R.W.; Nijhoff, F.W.; Capel, H.W. Linearization of the Boussinesq Equation and the Modified Boussinesq Equation. Phys. Lett. A 1982, 91, 143–145. [Google Scholar] [CrossRef]
- Clarkson, P.A. Nonclassical Symmetry Reductions of the Boussinesq Equation. Chaos Solitons Fractals 1995, 5, 2261–2301. [Google Scholar] [CrossRef]
- Clarkson, P.A.; Dowie, E. Rational Solutions of the Boussinesq Equation and Applications to Rogue Waves. Trans. Math. Its Appl. 2017, 1, tnx003. [Google Scholar] [CrossRef]
- Johnson, R.S. A Two-Dimensional Boussinesq Equation for Water Waves and Some of its Solutions. J. Fluid Mech. 1996, 323, 65–78. [Google Scholar] [CrossRef]
- Tsuzuki, T. Nonlinear Waves in the Pitaevskii-Gross Equation. J. Low Temp. Phys. 1971, 4, 441–457. [Google Scholar] [CrossRef]
- Clarkson, P.A. Painlevé Analysis and the Complete Integrability of a Generalized Variable- Coefficient Kadomtsev-Petviashvili Equation. IMA J. Appl. Math. 1990, 44, 27–53. [Google Scholar] [CrossRef]
- Zhao, H.Q.; Ma, W.X. Mixed Lump–kink Solutions to the KP Equation. Comput. Math. Appl. 2017, 74, 1399–1405. [Google Scholar] [CrossRef]
- Ma, Y.C. The Complete Solution of the Long-wave–Short-wave Resonance Equations. Stud. Appl. Math. 1978, 59, 201–221. [Google Scholar] [CrossRef]
- Fokas, A.S.; Sung, L.Y. On the Solvability of the N-wave, Davey-Stewartson and Kadomtsev-Petviashvili equations. Inverse Probl. 1992, 8, 673–708. [Google Scholar] [CrossRef]
- Rao, J.; Zhang, Y.; Fokas, A.S.; He, J. Rogue Waves of the Nonlocal Davey–Stewartson I Equation. Nonlinearity 2018, 31, 4090–4104. [Google Scholar] [CrossRef]
- Bock, T.L.; Kruskal, M.D. A Two-Parameter Miura Transformation of the Benjamin-Ono Equation. Phys. Lett. A 1979, 74, 173–176. [Google Scholar] [CrossRef]
- Kaup, D.J.; Matsuno, Y. The Inverse Scattering Transform for the Benjamin–Ono Equation. Stud. Appl. Math. 1998, 101, 73–98. [Google Scholar] [CrossRef]
- Fokas, A.S.; Fuchssteiner, B. The Hierarchy of the Benjamin-Ono Equation. Phys. Lett. A 1981, 86, 341–345. [Google Scholar] [CrossRef]
- Parker, A. On the Camassa-Holm Equation and a Direct Method of Solution I. Bilinear Form and Solitary Waves. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2004, 460, 2929–2957. [Google Scholar] [CrossRef]
- Parker, A. On the Camassa–Holm Equation and a Direct Method of Solution. III. N-soliton Solutions. Proc. R. Soc. A Math. Phys. Eng. Sci. 2005, 461, 3893–3911. [Google Scholar] [CrossRef]
- Hone, A.N.W. The Associated Camassa-Holm Equation and the KdV Equation. J. Phys. A Math. Gen. 1999, 32, L307–L314. [Google Scholar] [CrossRef]
- Matsuno, Y. Cusp and Loop Soliton Solutions of Short-Wave Models for the Camassa–Holm and Degasperis–Procesi Equations. Phys. Lett. A 2006, 359, 451–457. [Google Scholar] [CrossRef]
- Miura, R.M. Conservation Laws for the Fully Nonlinear Long Wave Equations. Stud. Appl. Math. 1974, 53, 45–56. [Google Scholar] [CrossRef]
- Dye, J.M.; Parker, A. An Inverse Scattering Scheme for the Regularized Long-Wave Equation. J. Math. Phys. 2000, 41, 2889–2904. [Google Scholar] [CrossRef]
- Verheest, F.; Hereman, W. Conservations Laws and Solitary Wave Solutions for Generalized Schamel Equations. Phys. Scr. 1994, 50, 611–614. [Google Scholar] [CrossRef]
- Fordy, A.P.; Gibbons, J. Integrable Nonlinear Klein-Gordon Equations and Toda Lattices. Commun. Math. Phys. 1980, 77, 21–30. [Google Scholar] [CrossRef]
- Ablowitz, M.J.; Haberman, R. Nonlinear Evolution Equations-Two and Three Dimensions. Phys. Rev. Lett. 1975, 35, 1185–1188. [Google Scholar] [CrossRef]
- Matsuno, Y. Multisoliton Solutions of the Degasperis–Procesi Equation and Their Peakon Limit. Inverse Probl. 2005, 21, 1553–1570. [Google Scholar] [CrossRef]
- Constantin, A.; Ivanov, R.I.; Lenells, J. Inverse Scattering Transform for the Degasperis–Procesi Equation. Nonlinearity 2010, 23, 2559–2575. [Google Scholar] [CrossRef] [Green Version]
- Satsuma, J.; Ablowitz, M.J.; Kodama, Y. On An Internal Wave Equation Describing a Stratified Fluid With Finite Depth. Phys. Lett. A 1979, 73, 283–286. [Google Scholar] [CrossRef]
- Kako, F.; Mugibayashi, N. Complete Integrability of General Nonlinear Differential-Difference Equations Solvable by the Inverse Method. II. Prog. Theor. Phys. 1979, 61, 776–790. [Google Scholar] [CrossRef] [Green Version]
- Kaup, D. A Higher-order Water-Wave equation and the Method for Solving It. Prog. Theor. Phys. 1975, 54, 396–408. [Google Scholar] [CrossRef]
- Qiao, Z. New Integrable Hierarchy, Its Parametric Solutions, Cuspons, One-Peak Solitons, and M/W-Shape Peak Solitons. J. Math. Phys. 2007, 48, 082701. [Google Scholar] [CrossRef] [Green Version]
- Lamb, G.L., Jr. Analytical Descriptions of Ultrashort Optical Pulse Propagation in a Resonant Medium. Rev. Mod. Phys. 1971, 43, 99–124. [Google Scholar] [CrossRef]
- Haus, H.A.; Wong, W.S. Solitons in Optical Communications. Rev. Mod. Phys. 1996, 68, 423–444. [Google Scholar] [CrossRef]
- Moloney, J.V.; Newell, A.C. Nonlinear Optics. Phys. D Nonlinear Phenom. 1990, 44, 1–37. [Google Scholar] [CrossRef]
- Kumar, A. Soliton Dynamics in a Monomode Optical Fibre. Phys. Rep. 1990, 187, 63–108. [Google Scholar] [CrossRef]
- Wabnitz, S.; Kodama, Y.; Aceves, A.B. Control of Optical Soliton Interactions. Opt. FiberTechnol. 1995, 1, 187–217. [Google Scholar] [CrossRef]
- Hasegawa, A. An Historical Review of Application of Optical Solitons for High Speed Communications. Chaos Interdiscip. J. Nonlinear Sci. 2000, 10, 475–485. [Google Scholar] [CrossRef]
- Leblond, H. Half-Cycle Optical Soliton in Quadratic Nonlinear Media. Phys. Rev. A 2008, 78, 013807. [Google Scholar] [CrossRef] [Green Version]
- Zakharov, V.E.; Kuznetsov, E.A. Optical Solitons and Quasisolitons. J. Exp. Theor. Phys. 1998, 86, 1035–1046. [Google Scholar] [CrossRef]
- Hasegawa, A. Optical solitons in fibers. In Optical Solitons in Fibers; Hasegawa, A., Ed.; Springer: Berlin, Germany, 1989; pp. 1–74. [Google Scholar] [CrossRef]
- Kivshar, Y.S.; Agrawal, G. Optical Solitons: From Fibers to Photonic Crystals; Academic Press: Amsterdam, The Netherlands, 2003; ISBN 97800805380. [Google Scholar]
- Bullough, R.K.; Jack, P.M.; Kitchenside, P.W.; Saunders, R. Solitons in Laser Physics. Phys. Scr. 1979, 20, 364–381. [Google Scholar] [CrossRef]
- Haus, H.A. Optical Fiber Solitons, Their Properties and Uses. Proc. IEEE 1993, 81, 970–983. [Google Scholar] [CrossRef]
- Potasek, M.J. Novel Femtosecond Solitons in Optical Fibers, Photonic Switching, and Computing. J. Appl. Phys. 1989, 65, 941–953. [Google Scholar] [CrossRef]
- Ferreira, M.F.S. Solitons in Optical Fiber Systems; Wiley: Hoboken, NJ, USA, 2022; ISBN 9781119506676. [Google Scholar]
- Mollenauer, L.F.; Gordon, J.P. Solitons in Optical Fibers: Fundamentals and Applications; Elsevier: Amsterdam, The Netherlands, 2006; ISBN 9780080465067. [Google Scholar]
- Makhankov, V.G. Soliton Phenomenology; Kluwer: Dordrecht, The Netherlands, 1990; ISBN 9789401074940. [Google Scholar]
- Kodama, Y. Solitons in Two-Dimensional Shallow Water; SIAM: Philadelphia, PA, USA, 2018; ISBN 9781611975529. [Google Scholar]
- Song, Y.; Shi, X.; Wu, C.; Tang, D.; Zhang, H. Recent Progress of Study on Optical Solitons in Fiber Lasers. Appl. Phys. Rev. 2019, 6, 021313. [Google Scholar] [CrossRef]
- Lederer, F.; Stegeman, G.I.; Christodoulides, D.N.; Assanto, G.; Segev, M.; Silberberg, Y. Discrete Solitons in Optics. Phys. Rep. 2008, 463, 1–126. [Google Scholar] [CrossRef]
- Moloney, J.; Newell, A. Nonlinear Optics; CRC Press: Boca Raton, FL, USA, 2018; ISBN 978-0-8133-4118-7. [Google Scholar]
- Bishop, A.R. Solitons in Condensed Matter Physics. Phys. Scr. 1979, 20, 409–423. [Google Scholar] [CrossRef]
- Toda, M. Studies of a Non-linear Lattice. Phys. Rep. 1975, 18, 1–123. [Google Scholar] [CrossRef]
- Flaschka, H. The Toda Lattice. II. Existence of Integrals. Phys. Rev. B 1974, 9, 1924–1925. [Google Scholar] [CrossRef]
- Flaschka, H. On the Toda Lattice. II: Inverse-Scattering Solution. Prog. Theor. Phys. 1974, 51, 703–716. [Google Scholar] [CrossRef] [Green Version]
- Hirota, R.; Suzuki, K. Theoretical and Experimental Studies of Lattice Solitons in Nonlinear Lumped Networks. Proc. IEEE 1973, 61, 1483–1491. [Google Scholar] [CrossRef]
- Toda, M.; Wadati, M. A Soliton and Two Solitons in an Exponential Lattice and Related Equations. J. Phys. Soc. Jpn. 1973, 34, 18–25. [Google Scholar] [CrossRef]
- Wadati, M. Transformation Theories for Nonlinear Discrete Systems. Prog. Theor. Phys. Suppl. 1976, 59, 36–63. [Google Scholar] [CrossRef] [Green Version]
- Wilson, G. The Modified Lax and Two-Dimensional Toda Lattice Equations Associated with Simple Lie algebras. Ergod. Theory Dyn. Syst. 1981, 1, 361–380. [Google Scholar] [CrossRef] [Green Version]
- Kaup, D.J. The Forced Toda Lattice: An Example of an Almost Integrable System. J. Math. Phys. 1984, 25, 277–281. [Google Scholar] [CrossRef]
- Ueno, K.; Takasaki, K. Toda Lattice Hierarchy. Adv. Stud. Pure Math. 1984, 4, 1–95. [Google Scholar] [CrossRef]
- Ablowitz, M.J.; Ladik, J.F. A Nonlinear Difference Scheme and Inverse Scattering. Stud. Appl. Math. 1976, 55, 213–229. [Google Scholar] [CrossRef]
- Kac, M.; van Moerbeke, P. On an Explicitly Soluble System of Nonlinear Differential Equations Related to Certain Toda Lattices. Adv. Math. 1975, 16, 160–169. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.H.; Liu, C.S. Bäcklund Transformation Solutions of the Toda Lattice Equation. J. Math. Phys. 1975, 16, 1428–1430. [Google Scholar] [CrossRef]
- Varma, C.M. Dynamics of Anharmonic Lattices: Solitons and the Central-Peak Problem in One Dimension. Phys. Rev. B 1976, 14, 244–254. [Google Scholar] [CrossRef]
- Hirota, R. Discrete Analogue of Generalized Toda Equation. J. Phys. Soc. Jpn. 1981, 50, 3785–3791. [Google Scholar] [CrossRef]
- Levi, D.; Pilloni, L.; Santini, P.M. Integrable Three-dimensional Lattices. J. Phys. A Math. Gen. 1981, 14, 1567–1575. [Google Scholar] [CrossRef]
- Date, E.; Jinbo, M.; Miwa, T. Method for Generating Discrete Soliton Equations. I. J. Phys. Soc. Jpn. 1982, 51, 4116–4124. [Google Scholar] [CrossRef]
- Toda, M. Nonlinear Lattice and Soliton Theory. IEEE Trans. Circuits Syst. 1983, 30, 542–554. [Google Scholar] [CrossRef]
- Wiersma, G.L.; Capel, H.W. Lattice Equations, Hierarchies and Hamiltonian Structures. Phys. A Stat. Mech. Its Appl. 1987, 142, 199–244. [Google Scholar] [CrossRef]
- Papageorgiou, V.G.; Nijhoff, F.W.; Capel, H.W. Integrable Mappings and Nonlinear Integrable Lattice Equations. Phys. Lett. A 1990, 147, 106–114. [Google Scholar] [CrossRef]
- Veselov, A.P. Growth and Integrability in the Dynamics of Mappings. Commun. Math. Phys. 1992, 145, 181–193. [Google Scholar] [CrossRef]
- Braun, O.M.; Kivshar, Y.S. Nonlinear Dynamics of the Frenkel–Kontorova Model. Phys. Rep. 1998, 306, 1–108. [Google Scholar] [CrossRef]
- Takhtadzhan, L.A.; Faddeev, L.D. The Quantum Method of the Inverse Problem and The Heisenberg XYZ Model. Russ. Math. Surv. 1979, 34, 11–68. [Google Scholar] [CrossRef]
- Balakrishnan, R. On the Inhomogeneous Heisenberg Chain. J. Phys. C Solid State Phys. 1982, 15, L1305–L1308. [Google Scholar] [CrossRef]
- Latha, M.M.; Vasanthi, C.C. An Integrable Model of (2 + 1)-Dimensional Heisenberg Ferromagnetic Spin Chain and Soliton Excitations. Phys. Scr. 2014, 89, 065204. [Google Scholar] [CrossRef]
- Porsezian, K.; Daniel, M.; Lakshmanan, M. On the Integrability Aspects of the One- Dimensional Classical Continuum Isotropic Biquadratic Heisenberg Spin Chain. J. Math. Phys. 1992, 33, 1807–1816. [Google Scholar] [CrossRef]
- Fogedby, H.C. Solitons and Magnons in the Classical Heisenberg Chain. J. Phys. Math. Gen. 1980, 13, 1467–1499. [Google Scholar] [CrossRef]
- Slavin, A.N.; Rojdestvenski, I.V. “Bright” and “Dark” Spin Wave Envelope Solitons in Magnetic Films. IEEE Trans. Magn. 1994, 30, 37–45. [Google Scholar] [CrossRef]
- Lam, L.; Prost, J. (Eds.) Solitons in Liquid Crystals; Springer: New York, NY, USA, 1992; ISBN 978-1-4612-6946-5. [Google Scholar]
- Maugin, G.A. Solitons in Elastic Solids (1938–2010). Mech. Res. Commun. 2011, 38, 341–349. [Google Scholar] [CrossRef]
- Erofeev, V.I.; Klyueva, N.V. Solitons and Nonlinear Periodic Strain Waves in Rods, Plates, and Shells (A Review). Acoust. Phys. 2002, 48, 643–655. [Google Scholar] [CrossRef]
- Slavin, A.N.; Büttner, O.; Bauer, M.; Demokritov, S.O.; Hillebr, S.B.; Kostylev, M.P.; Kalinikos, B.A.; Shevchenko, T.; Rapoport, Y. Collision Properties of Quasi-One-Dimensional Spin Wave Solitons and Two-Dimensional Spin Wave Bullets. Chaos Interdiscip. J. Nonlinear Sci. 2003, 13, 693–701. [Google Scholar] [CrossRef]
- Ichikawa, Y.H. Topics on Solitons in Plasmas. Phys. Scr. 1979, 20, 296–305. [Google Scholar] [CrossRef]
- Ikezi, H.; Taylor, R.J.; Baker, D.R. Formation and Interaction of Ion-Acoustic Solitions. Phys. Rev. Lett. 1970, 25, 11–14. [Google Scholar] [CrossRef]
- Tran, M.Q. Ion Acoustic Solitons in a Plasma: A Review of Their Experimental Properties and Related Theories. Phys. Scr. 1979, 20, 317–327. [Google Scholar] [CrossRef]
- Sakanaka, P.H. Formation and Interaction of Ion-Acoustic Solitary Waves in a Collisionless Warm Plasma. Phys. Fluids 1972, 15, 304–310. [Google Scholar] [CrossRef]
- Ablowitz, M.J.; Segur, H. On The Evolution of Packets of Water Waves. J. Fluid Mech. 1979, 92, 691–715. [Google Scholar] [CrossRef]
- Nakamura, Y. Experiments on Ion-acoustic Solitons in Plasmas. IEEE Trans. Plasma Sci. 1982, 10, 180–195. [Google Scholar] [CrossRef]
- Yajima, N.; Oikawa, M. Formation and Interaction of Sonic-Langmuir Solitons: Inverse Scattering Method. Prog. Theor. Phys. 1976, 56, 1719–1739. [Google Scholar] [CrossRef] [Green Version]
- Yuen, H.C.; Lake, B.M. Nonlinear Dynamics of Deep-water Gravity Waves. Adv. Appl. Mech. 1982, 22, 67–229. [Google Scholar] [CrossRef]
- Segur, H. The Korteweg-de Vries Equation and Water Waves. Solutions of The Equation. Part 1. J. Fluid Mech. 1973, 59, 721–736. [Google Scholar] [CrossRef]
- Hirota, R.; Satsuma, J. N-Soliton Solutions of Model Equations for Shallow Water Waves. J. Phys. Soc. Jpn. 1976, 40, 611–612. [Google Scholar] [CrossRef]
- Zeytounian, R.K. Nonlinear Long Waves on Water and Solitons. Sov. Phys.-Uspekhi 1995, 38, 1333–1382. [Google Scholar] [CrossRef]
- Tzirtzilakis, E.; Xenos, M.; Marinakis, V.; Bountis, T.C. Interactions and Stability of Solitary Waves in Shallow Water. Chaos Solitons Fractals 2002, 14, 87–95. [Google Scholar] [CrossRef]
- Geyer, A. Solitary Traveling Water Waves of Moderate Amplitude. J. Nonlinear Math. Phys. 2012, 19 (Suppl. S1), 1240010. [Google Scholar] [CrossRef] [Green Version]
- Constantin, A. Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis; SIAM: Philadelphia, PA, USA, 2011; ISBN 978-1-61344-434-4. [Google Scholar]
- Madsen, P.A.; Fuhrman, D.R.; Schäffer, H.A. On the Solitary Wave Paradigm for Tsunamis. J. Geophys. Res. Ocean. 2008, 113, C12012. [Google Scholar] [CrossRef]
- Osborne, A.R.; Burch, T.L. Internal Solitons in the Andaman Sea. Science 1980, 208, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Helfrich, K.R.; Melville, W.K. Long Nonlinear Internal Waves. Annu. Rev. Fluid Mech. 2006, 38, 395–425. [Google Scholar] [CrossRef]
- Miles, J.W. On Internal Solitary Waves. Tellus 1979, 31, 456–462. [Google Scholar] [CrossRef] [Green Version]
- Christie, D.R.; Muirhead, K.J.; Hales, A.L. Intrusive Density Flows in the Lower Troposphere: A Source of Atmospheric Solitons. J. Geophys. Res. Ocean. 1979, 84, 4959–4970. [Google Scholar] [CrossRef]
- Vlachogiannis, M.; Bontozoglou, V. Observations of Solitary Wave Dynamics of Film Flows. J. Fluid Mech. 2001, 435, 191–215. [Google Scholar] [CrossRef]
- Ludu, A.; Draayer, J.P. Nonlinear Modes of Liquid Drops as Solitary Waves. Phys. Rev. Lett. 1998, 80, 2125–2128. [Google Scholar] [CrossRef]
- Ablowitz, M.J.; Baldwin, D.E. Nonlinear Shallow Ocean-Wave Soliton Interactions on Flat Beaches. Phys. Rev. E 2012, 86, 036305. [Google Scholar] [CrossRef] [Green Version]
- Ablowitz, M.J.; Segur, H. Long Internal Waves in Fluids of Great Depth. Stud. Appl. Math. 1980, 62, 249–262. [Google Scholar] [CrossRef]
- Gibbon, J.D.; James, I.N.; Moroz, I.M. An Example of Soliton Behaviour in a Rotating Baroclinic Fluid. Proc. R. Soc. Lond. A Math. Phys. Sci. 1979, 367, 219–237. [Google Scholar] [CrossRef]
- Osborne, A.R.; Segre, E.; Boffetta, G.; Cavaleri, L. Soliton Basis States in Shallow- Water Ocean Surface Waves. Phys. Rev. Lett. 1991, 67, 592–595. [Google Scholar] [CrossRef] [PubMed]
- Walker, L.R. Interfacial Solitary Waves in a Two-fluid Medium. Phys. Fluids 1973, 16, 1796–1804. [Google Scholar] [CrossRef]
- Bona, J.L.; Rajopadhye, S.V.; Schonbek, M.E. Models for Propagation of Bores. I. Two- Dimensional Theory. Differ. Integral Equ. 1994, 7, 699–734. [Google Scholar]
- Rajopadhye, S.V. Some Models for the Propagation of Bores. J. Differ. Equ. 2005, 217, 179–203. [Google Scholar] [CrossRef] [Green Version]
- Shrira, V.I.; Geogjaev, V.V. What Makes the Peregrine Soliton so Special as a Prototype of Freak Waves? J. Eng. Math. 2010, 67, 11–22. [Google Scholar] [CrossRef]
- Redekopp, L.G. On The Theory of Solitary Rossby Waves. J. Fluid Mech. 1977, 82, 725–745. [Google Scholar] [CrossRef]
- Slunyaev, A.; Kharif, C.; Pelinovsky, E.; Talipova, T. Nonlinear Wave Focusing on Water of Finite Depth. Phys. D Nonlinear Phenom. 2002, 173, 77–96. [Google Scholar] [CrossRef]
- Davydov, A.S. Solitons in Quasi-One-Dimensional Molecular Structures. Sov. Phys. Uspekhi 1982, 25, 603–613. [Google Scholar] [CrossRef]
- Hyman, J.M.; McLaughlin, D.W.; Scott, A.C. On Davydov’s Alpha-Helix Solitons. Phys. D Nonlinear Phenom. 1981, 3, 23–44. [Google Scholar] [CrossRef]
- Scott, A.C. Dynamics of Davydov Solitons. Phys. Rev. A 1982, 26, 578–595. [Google Scholar] [CrossRef]
- Yomosa, S. Solitary Waves in Large Blood Vessels. J. Phys. Soc. Jpn. 1987, 56, 506–520. [Google Scholar] [CrossRef]
- Purwins, H.G.; Bödeker, H.U.; Amiranashvili, S. Dissipative Solitons. Adv. Phys. 2010, 59, 485–701. [Google Scholar] [CrossRef]
- Yomosa, S. Solitary Excitations in Muscle Proteins. Phys. Rev. A 1985, 32, 1752–1758. [Google Scholar] [CrossRef] [PubMed]
- Orfanidis, S.J. Soliton Solutions of the Massive Thirring Model and the Inverse Scattering Transform. Phys. Rev. D 1976, 14, 472–478. [Google Scholar] [CrossRef]
- Kuznetsov, E.A.; Mikhailov, A.V. On the Complete Integrability of the Two-dimensional Classical Thirring Model. Theor. Math. Phys. 1977, 30, 193–200. [Google Scholar] [CrossRef]
- Matsutani, S.; Tsuru, H. Physical Relation Between Quantum Mechanics and Solitons on a Thin Elastic Rod. Phys. Rev. A 1992, 46, 1144–1147. [Google Scholar] [CrossRef]
- Kaup, D.J.; Newell, A.C. Solitons as Particles, Oscillators, and in Slowly Changing Media: A Singular Perturbation Theory. Proc. R. Soc. Lond. A Math. Phys. Sci. 1978, 361, 413–446. [Google Scholar] [CrossRef]
- Bogoyavlenskii, O.I. Breaking Solitons in 2+ 1-Dimensional Integrable Equations. Russ. Math. Surv. 1990, 45, 1–86. [Google Scholar] [CrossRef]
- Zakharov, V.E.; Kuznetsov, E.A. Solitons and Collapses: Two Evolution Scenarios of Nonlinear Wave Systems. Sov. Phys.-Uspekhi 2012, 55, 535–556. [Google Scholar] [CrossRef] [Green Version]
- Balakrishnan, R. Soliton Propagation in Nonuniform Media. Phys. Rev. A 1985, 32, 1144–1149. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, A.; Vazquez, L. Nonlinear Wave Propagation in Disordered Media. Int. J. Mod. Phys. B 1991, 5, 2825–2882. [Google Scholar] [CrossRef] [Green Version]
- Kuznetsov, E.A.; Dias, F. Bifurcations of Solitons and Their Stability. Phys. Rep. 2011, 507, 43–105. [Google Scholar] [CrossRef]
- Bass, F.G.; Kivshar, Y.S.; Konotop, V.V.; Sinitsyn, Y.A. Dynamics of Solitons Under Random Perturbations. Phys. Rep. 1988, 157, 63–181. [Google Scholar] [CrossRef]
- Keener, J.P.; McLaughlin, D.W. Solitons Under Perturbations. Phys. Rev. A 1977, 16, 777–790. [Google Scholar] [CrossRef]
- Kodama, Y.; Ablowitz, M.J. Perturbations of Solitons and Solitary Waves. Stud. Appl. Math. 1981, 64, 225–245. [Google Scholar] [CrossRef]
- Malomed, B.A. Vortex Solitons: Old Results and New Perspectives. Phys. D Nonlinear Phenom. 2019, 399, 108–137. [Google Scholar] [CrossRef] [Green Version]
- Matveev, V.B. Positons: Slowly Decreasing Analogues of Solitons. Theor. Math. Phys. 2002, 131, 483–497. [Google Scholar] [CrossRef]
- Appert, K.; Vaclavik, J. Dynamics of Coupled Solitons. Phys. Fluids 1977, 20, 1845–1849. [Google Scholar] [CrossRef]
- Boiti, M.; Martina, L.; Pempinelli, F. Multidimensional Localized Solitons. Chaos Solitons Fractals 1995, 5, 2377–2417. [Google Scholar] [CrossRef] [Green Version]
- Hammack, J.; Henderson, D.; Guyenne, P.; Yi, M. Solitary-Wave Collisions. In Advances in Engineering Mechanics—Reflections and Outlooks: In Honor of Theodore YT Wu; Chwang, A.T., Teng, M.H., Valentine, D.T., Eds.; World Scientific: Singapore, 2005; pp. 173–194. [Google Scholar] [CrossRef] [Green Version]
- Lund, F.; Regge, T. Unified Approach to Strings and Vortices with Soliton Solutions. Phys. Rev. D 1976, 14, 1524–1535. [Google Scholar] [CrossRef]
- Benney, D.J. A General Theory for Interactions Between Short and Long Waves. Stud. Appl. Math. 1977, 56, 81–94. [Google Scholar] [CrossRef]
- Chu, F.Y.; Scott, A.C. Inverse Scattering Transform for Wave-Wave Scattering. Phys. Rev. A 1975, 12, 2060–2064. [Google Scholar] [CrossRef]
- Pohlmeyer, K. Integrable Hamiltonian Systems and Interactions through Quadratic Constraints. Commun. Math. Phys. 1976, 46, 207–221. [Google Scholar] [CrossRef]
- Olver, P.J.; Rosenau, P. Tri-Hamiltonian Duality Between Solitons and Solitary-Wave Solutions Having Compact Support. Phys. Rev. E 1996, 53, 1900–1906. [Google Scholar] [CrossRef]
- Gerdjikov, V.S.; Vilasi, G.; Yanovski, A.B. Integrable Hamiltonian Hierarchies: Spectral and Geometric Methods; Springer: Berlin, Germany, 2008; ISBN 978-3-540-77054-1. [Google Scholar]
- Reshetikhin, N.Y.; Faddeev, L.D. Hamiltonian Structures for Integrable Models of Field Theory. In Fifty Years of Mathematical Physics: Selected Works of Ludwig Faddeev; Ge, M., Niemi, A.J., Eds.; World Scientific: Singapore, 2016; pp. 323–338. ISBN 978-981-4340-95-3. [Google Scholar]
- Degasperis, A.; Procesi, M. Asymptotic Integrability. Symmetry Perturbation Theory 1999, 1, 23–37. [Google Scholar]
- Babelon, O.; Bernard, D.; Talon, M. Introduction to Classical Integrable Systems; Cambridge University Press: Cambridge, UK, 2003; ISBN 978-0-511-05571-3. [Google Scholar]
- Ablowitz, M.; Muslimani, Z.H. Integrable Nonlocal Nonlinear Equations. Stud. Appl. Math. 2016, 139, 7–59. [Google Scholar] [CrossRef] [Green Version]
- Wadati, M.; Olmedilla, E.; Akutsu, Y. Lax Pair for the One-Dimensional Hubbard Model. J. Phys. Soc. Jpn. 1987, 56, 1340–1347. [Google Scholar] [CrossRef]
- Ponce, G. Lax Pairs and Higher Order Models for Water Waves. J. Differ. Equ. 1993, 102, 360–381. [Google Scholar] [CrossRef]
- Ramani, A.; Grammaticos, B.; Satsuma, J. Integrability of Multidimensional Discrete Systems. Phys. Lett. A 1992, 169, 323–328. [Google Scholar] [CrossRef]
- Terng, C.L.; Uhlenbeck, K. Geometry of Solitons. Not. Am. Math. Soc. 2000, 47, 17–25. [Google Scholar]
- Terng, C.L. Soliton Equations and Differential Geometry. J. Differ. Geom. 1997, 45, 407–445. [Google Scholar] [CrossRef]
- Cavalcante, J.A.; Tenenblat, K. Conservation Laws for Nonlinear Evolution Equations. J. Math. Phys. 1988, 29, 1044–1049. [Google Scholar] [CrossRef]
- Kamchatnov, A.M. On Whitham Theory for Perturbed Integrable Equations. Phys. D Nonlinear Phenom. 2004, 188, 247–261. [Google Scholar] [CrossRef] [Green Version]
- Wadati, M.; Sanuki, H.; Konno, K. Relationships Among Inverse Method, Bäcklund Transformation and an Infinite Number of Conservation Laws. Prog. Theor. Phys. 1975, 53, 419–436. [Google Scholar] [CrossRef] [Green Version]
- Benjamin, T.B. The Stability of Solitary Waves. Proc. R. Soc. Lond. A Math. Phys. Sci. 1972, 328, 153–183. [Google Scholar] [CrossRef]
- Pego, R.L.; Weinstein, M.I. On Asymptotic Stability of Solitary Waves. Phys. Lett. A 1992, 162, 263–268. [Google Scholar] [CrossRef] [Green Version]
- Tao, T. Why Are Solitons Stable? Bull. Am. Math. Soc. 2009, 46, 1–33. [Google Scholar] [CrossRef] [Green Version]
- Wahlquist, H.D.; Estabrook, F.B. Prolongation Structures of Nonlinear Evolution Equations. J. Math. Phys. 1975, 16, 1–7. [Google Scholar] [CrossRef]
- Corones, J. Solitons and Simple Pseudopotentials. J. Math. Phys. 1976, 17, 756–759. [Google Scholar] [CrossRef]
- Olshanetsky, M.A.; Perelomov, A.M. Classical Integrable Finite-Dimensional Systems Related to Lie Algebras. Phys. Rep. 1981, 71, 313–400. [Google Scholar] [CrossRef]
- Krichever, I.M. Methods of Algebraic Geometry in the Theory of Non-linear Equations. Russ. Math. Surv. 1077, 32, 185–213. [Google Scholar] [CrossRef]
- Fokas, A.S. Symmetries and Integrability. Stud. Appl. Math. 1987, 77, 253–299. [Google Scholar] [CrossRef]
- Wadati, M.; Konno, K.; Ichikawa, Y.H. New Integrable Nonlinear Evolution Equations. J. Phys. Soc. Jpn. 1979, 47, 1698–1700. [Google Scholar] [CrossRef]
- Palais, R. The Symmetries of Solitons. Bull. Am. Math. Soc. 1997, 34, 339–403. [Google Scholar] [CrossRef] [Green Version]
- Clarkson, P.A.; Kruskal, M.D. New Similarity Reductions of the Boussinesq Equation. J. Math. Phys. 1989, 30, 2201–2213. [Google Scholar] [CrossRef]
- Ma, W.X.; Strampp, W. An Explicit Symmetry Constraint for the Lax Pairs and the Adjoint Lax Pairs of AKNS Systems. Phys. Lett. A 1994, 185, 277–286. [Google Scholar] [CrossRef]
- Correa, F.; Dunne, G.V.; Plyushchay, M.S. The Bogoliubov–de Gennes System, the AKNS Hierarchy, and Nonlinear Quantum Mechanical Supersymmetry. Ann. Phys. 2009, 324, 2522–2547. [Google Scholar] [CrossRef] [Green Version]
- Neugebauer, G.; Meinel, R. General N-Soliton Solution of the Class on Arbitrary Background. Phys. Lett. A 1984, 100, 467–470. [Google Scholar] [CrossRef]
- Flaschka, H.; Newell, A.C.; Ratiu, T. Kac-Moody Lie Algebras and Soliton Equations: II. Lax Equations Associated with A1 (1). Phys. D Nonlinear Phenom. 1983, 9, 300–323. [Google Scholar] [CrossRef]
- Ramani, A.; Grammaticos, B.; Bountis, T. The Painlevé Property and Singularity Analysis of Integrable and Non-integrable Systems. Phys. Rep. 1989, 180, 159–245. [Google Scholar] [CrossRef]
- Hone, A.N. Painlevé Tests, Singularity Structure and Integrability. In Integrability; Mikhailov, A.V., Ed.; Springer: Berlin, Germany, 2009; pp. 245–277. ISBN 978-3-540-88111-7. [Google Scholar]
- Conte, R.; Musette, M. The Painlevé Handbook; Springer: Cham, Switzerland, 2008; ISBN 978-3-030-53339-7. [Google Scholar]
- Newell, A.C.; Tabor, M.; Zeng, Y.B. A Unified Approach to Painlevé Expansions. Phys. D Nonlinear Phenom. 1987, 29, 1–68. [Google Scholar] [CrossRef]
- Kruskal, M.D.; Clarkson, P.A. The Painlevé-Kowalevski and Poly-Painlevé Tests for Integrability. Stud. Appl. Math. 1992, 86, 87–165. [Google Scholar] [CrossRef]
- Ablowitz, M.J.; Ramani, A.; Segur, H. A Connection Between Nonlinear Evolution Equations and Ordinary Differential Equations of P-Type. I. J. Math. Phys. 1980, 21, 715–721. [Google Scholar] [CrossRef]
- Ablowitz, M.J.; Ramani, A.; Segur, H. A Connection Between Nonlinear Evolution Equations and Ordinary Differential Equations of P-type. II. J. Math. Phys. 1980, 21, 1006–1015. [Google Scholar] [CrossRef]
- Karpman, V.I.; Maslov, E.M. Perturbation Theory for Solitons. Sov. Phys.-JETP 1977, 46, 281–291. [Google Scholar] [CrossRef]
- Ablowitz, M.J.; Satsuma, J. Solitons and Rational Solutions of Nonlinear Evolution Equations. J. Math. Phys. 1978, 19, 2180–2186. [Google Scholar] [CrossRef]
- Nakamura, A.A. Direct Method of Calculating Periodic Wave Solutions to Nonlinear Evolution Equations. I. Exact Two-periodic Wave Solution. J. Phys. Soc. Jpn. 1979, 47, 1701–1705. [Google Scholar] [CrossRef]
- Konopelchenko, B.; Strampp, W. The AKNS Hierarchy as Symmetry Constraint of the KP Hierarchy. Inverse Probl. 1991, 7, L17–L24. [Google Scholar] [CrossRef]
- Nijhoff, F.W.; Quispel, G.R.W.; Capel, H.W. Direct Linearization of Nonlinear Difference-Difference Equations. Phys. Lett. A 1983, 97, 125–128. [Google Scholar] [CrossRef]
- Wadati, M.; Sogo, K. Gauge Transformations in Soliton Theory. J. Phys. Soc. Jpn. 1983, 52, 394–398. [Google Scholar] [CrossRef]
- Chen, H.H. General Derivation of Bäcklund Transformations from Inverse Scattering Problems. Phys. Rev. Lett. 1974, 33, 925–928. [Google Scholar] [CrossRef]
- Lambert, F.; Springael, J. Soliton Equations and Simple Combinatorics. Acta Appl. Math. 2008, 102, 147–178. [Google Scholar] [CrossRef]
- Calogero, F.; Degasperis, A. Nonlinear Evolution Equations Solvable by the Inverse Spectral Transform.—I. Il Nuovo Cimento B 1976, 32, 201–242. [Google Scholar] [CrossRef]
- Gerdjikov, V.S. Generalised Fourier Transforms for The Soliton Equations. Gauge-Covariant formulation. Inverse Probl. 1986, 2, 51–74. [Google Scholar] [CrossRef]
- Pickering, A. The Singular Manifold Method Revisited. J. Math. Phys. 1996, 37, 1894–1927. [Google Scholar] [CrossRef]
- Sakhnovich, A. Generalized Backlund-Darboux Transformation: Spectral Properties and Nonlinear Equations. J. Math. Anal. Appl. 2001, 262, 274–306. [Google Scholar] [CrossRef] [Green Version]
- Satsuma, J. A Wronskian Representation of N-soliton Solutions of Nonlinear Evolution Equations. J. Phys. Soc. Jpn. 1979, 46, 359–360. [Google Scholar] [CrossRef]
- Segur, H.; Ablowitz, M.J. Asymptotic Solutions of Nonlinear Evolution Equations and a Painlevé Transcedent. Phys. D Nonlinear Phenom. 1981, 3, 165–184. [Google Scholar] [CrossRef]
- Makhankov, V.G. Dynamics of Classical Solitons (in Non-integrable Systems). Phys. Rep. 1978, 35, 1–128. [Google Scholar] [CrossRef]
- Fornberg, B.; Whitham, G.B. A Numerical and Theoretical Study of Certain Nonlinear Wave Phenomena. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1978, 289, 373–404. [Google Scholar] [CrossRef]
- Channell, P.J.; Scovel, C. Symplectic Integration of Hamiltonian systems. Nonlinearity 1990, 3, 231–259. [Google Scholar] [CrossRef]
- Vliegenthart, A.C. On Finite-difference Methods for the Korteweg-de Vries Equation. J. Eng. Math. 1971, 5, 137–155. [Google Scholar] [CrossRef]
- Argyris, J.; Haase, M. An Engineer’s Guide to Soliton Phenomena: Application of the Finite Element Method. Comput. Methods Appl. Mech. Eng. 1987, 61, 71–122. [Google Scholar] [CrossRef]
- Feng, B.F.; Mitsui, T. A Finite Difference Method for the Korteweg-de Vries and the Kadomtsev-Petviashvili Equations. J. Comput. Appl. Math. 1998, 90, 95–116. [Google Scholar] [CrossRef] [Green Version]
- Argyris, J.; Haase, M.; Heinrich, J.C. Finite Element Approximation to Two-Dimensional Sine-Gordon Solitons. Comput. Methods Appl. Mech. Eng. 1991, 86, 1–26. [Google Scholar] [CrossRef]
- Alexander, M.E.; Morris, J.L. Galerkin Methods Applied to Some Model Equations for Non- linear Dispersive Waves. J. Comput. Phys. 1979, 30, 428–451. [Google Scholar] [CrossRef]
- Griffiths, D.F.; Mitchell, A.R.; Morris, J.L. A Numerical Study of the Nonlinear Schrödinger equation. Comput. Methods Appl. Mech. Eng. 1984, 45, 177–215. [Google Scholar] [CrossRef]
- Bhatta, D.D.; Bhatti, M.I. Numerical Solution of KdV Equation Using Modified Bernstein Polynomials. Appl. Math. Comput. 2006, 174, 1255–1268. [Google Scholar] [CrossRef]
- Bratsos, A.G.; Tsitouras, C.; Natsis, D.G. Linearized Numerical Schemes for the Boussinesq Equation. Appl. Numer. Anal. Comput. Math. 2005, 2, 34–53. [Google Scholar] [CrossRef]
- Liu, H.; Yan, J. A Local Discontinuous Galerkin Method for the Korteweg–de Vries Equation With Boundary Effect. J. Comput. Phys. 2006, 215, 197–218. [Google Scholar] [CrossRef]
- Dehghan, M.; Shokri, A. A Numerical Method for KdV Equation Using Collocation and Radial Basis Functions. Nonlinear Dyn. 2007, 50, 111–120. [Google Scholar] [CrossRef]
- Liu, P.L.F.; Cheng, Y. A Numerical Study of the Evolution of a Solitary Wave over a Shelf. Phys. Fluids 2001, 13, 1660–1667. [Google Scholar] [CrossRef]
- Bridgman, T.; Hereman, W.; Quispel, G.R.W.; van der Kamp, P.H. Symbolic Computation of Lax Pairs of Partial Difference Equations Using Consistency Around the Cube. Found. Comput. Math. 2013, 13, 517–544. [Google Scholar] [CrossRef] [Green Version]
- Gordoa, P.R.; Pickering, A. Nonisospectral Scattering Problems: A Key to Integrable Hierarchies. J. Math. Phys. 1999, 40, 5749–5786. [Google Scholar] [CrossRef]
- Herbst, B.M.; Morris, J.L.; Mitchell, A.R. Numerical Experience With the Nonlinear Schrödinger Equation. J. Comput. Phys. 1985, 60, 282–305. [Google Scholar] [CrossRef]
- Meiss, J.D.; Pereira, N.R. Internal Wave Solitons. Phys. Fluids 1978, 21, 700–702. [Google Scholar] [CrossRef]
- Ponce Dawson, S.; Ferro Fontan, C. Soliton Decay of Nonlinear Alfven waves: Numerical Studies. Phys. Fluids 1988, 31, 83–89. [Google Scholar] [CrossRef]
- Hopf, E. The Partial Differential Equation: ut + uux = ϵuxx. Commun. Pure Appl. Math. 1950, 3, 201–230. [Google Scholar] [CrossRef]
- Cole, J.D. On a Quasi-Linear Parabolic Equation Occurring in Aerodynamics. Q. Appl. Math. 1951, 9, 225–236. [Google Scholar] [CrossRef]
- Ablowitz, M.J.; Clarkson, P.A. Solitons, Nonlinear Evolution Equations and Inverse Scattering; Cambridge University Press: Cambridge, UK, 1991; ISBN 978-0511623998. [Google Scholar]
- Tabor, M. Chaos and Integrability in Dynamical Systems; Wiley: New York, NY, USA, 1989; ISBN 978-0471827283. [Google Scholar]
- Carrielo, F.; Tabor, M. Similarity Reductions from Extended Painlevé Expansions for Nonintegrable Evolution Equations. Phys. D 1991, 53, 59–70. [Google Scholar] [CrossRef]
- Carrielo, F.; Tabor, M. Painlev’e Expansions for Nonintegrable Evolution Equations. Phys. D 1989, 39, 77–94. [Google Scholar] [CrossRef]
- Weiss, J.; Tabor, M. Carnevalle, G. The Painlevé Property for Partial Differential Equations. J. Math. Phys. 1983, 24, 522–526. [Google Scholar] [CrossRef]
- Kudryashov, N.A. On Types of Nonlinear Nonintegrable Equations with Exact Solutions. Phys. Lett. A 1991, 155, 269–275. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Simplest Equation Method to Look for Exact Solutions of Nonlinear Differential Equations. Chaos Solitons Fractals 2005, 24, 1217–1231. [Google Scholar] [CrossRef] [Green Version]
- Kudryashov, N.A.; Loguinova, N.B. Extended Simplest Equation Method for Nonlinear Differential Equations. Appl. Math. Comput. 2008, 205, 361–365. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Partial Differential Equations with Solutions Having Movable First-Order Singularities. Phys. Lett. A 1992, 169, 237–242. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Exact Solitary Waves of the Fisher Equation. Phys. Lett. A 2005, 342, 99–106. [Google Scholar] [CrossRef]
- Kudryashov, N.A. One Method for Finding Exact Solutions of Nonlinear Differential Equations. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 2248–2253. [Google Scholar] [CrossRef] [Green Version]
- Kudryashov, N.A. Exact Soliton Solutions of the Generalized Evolution Equation of Wave Dynamics. J. Appl. Math. Mech. 1988, 52, 361–365. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Exact Solutions of Nonlinear Wave Equations Arising in Mechanics. J. Appl. Math. Mech. 1990, 54, 372–375. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Exact Solutions and Integrability of the Duffing–Van der Pol Equation. Regul. Chaotic Dyn. 2018, 23, 471–479. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Exact Solutions of the Equation for Surface waves in a Convecting Fluid. Appl. Math. Comput. 2019, 344, 97–106. [Google Scholar] [CrossRef]
- Kudryashov, N.A. A Generalized Model for Description of Propagation Pulses in Optical Fiber. Optik 2019, 189, 42–52. [Google Scholar] [CrossRef]
- Kudryashov, N.A. First Integrals and Solutions of the Traveling Wave Reduction for the Triki–Biswas Equation. Optik 2019, 185, 275–281. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Highly Dispersive Optical Solitons of the Generalized Nonlinear Eighth-Order Schrödinger Equation. Optik 2020, 206, 164335. [Google Scholar] [CrossRef]
- Kudryashov, N.A. The Generalized Duffing Oscillator. Commun. Nonlinear Sci. Numer. Simul. 2021, 93, 105526. [Google Scholar] [CrossRef]
- Urbain, F.; Kudryashov, N.A.; Tala-Tebue, E.; Hubert, M.B.; Doka, S.Y.; Crepin, K.T. Exact Solutions of the KdV Equation with Dual-Power Law Nonlinearity. Comput. Math. Math. Phys. 2021, 61, 431–435. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Solitary waves of the generalized Sasa-Satsuma equation with arbitrary refractive index. Optik 2021, 232, 166540. [Google Scholar] [CrossRef]
- Vitanov, N.K.; Dimitrova, Z.I.; Vitanov, K.N. Simple Equations Method (SEsM): Algorithm, Connection with Hirota Method, Inverse Scattering Transform Method, and Several Other Methods. Entropy 2021, 23, 10. [Google Scholar] [CrossRef] [PubMed]
- Vitanov, N.K. Recent Developments of the Methodology of the Modified Method of Simplest Equation with Application. Pliska Stud. Math. Bulg. 2019, 30, 29–42. [Google Scholar]
- Vitanov, N.K. Modified Method of Simplest Equation for Obtaining Exact Solutions of Nonlinear Partial Differential Equations: History, recent development and studied classes of equations. J. Theor. Appl. Mech. 2019, 49, 107–122. [Google Scholar] [CrossRef]
- Vitanov, N.K. The Simple Equations Method (SEsM) For Obtaining Exact Solutions of Nonlinear PDEs: Opportunities Connected to the Exponential Functions. AIP Conf. Proc. 2019, 2159, 030038. [Google Scholar] [CrossRef]
- Vitanov, N.K. Simple Equations Method (SEsM): Review and New Results. AIP Conf. Ser. 2022, 2459, 020003. [Google Scholar] [CrossRef]
- Vitanov, N.K. Simple Equations Method (SEsM) and Nonlinear PDEs with Fractional Derivatives. AIP Conf. Ser. 2022, 2459, 030040. [Google Scholar] [CrossRef]
- Vitanov, N.K.; Dimitrova, Z.I. Simple Equations Method (SEsM) and Other Direct Methods for Obtaining Exact Solutions of Nonlinear PDEs. AIP Conf. Proc. 2019, 2159, 030039. [Google Scholar] [CrossRef]
- Vitanov, N.K. Schrödinger Equation and Nonlinear Waves. In Understanding the Schrödinger Equation; Simpao, V., Little, H., Eds.; Nova Science Publishers: New York, NY, USA, 2020; pp. 37–92. ISBN 978-1-53617-662-9. [Google Scholar]
- Dimitrova, Z.I.; Vitanov, N.K. Travelling Waves Connected to Blood Flow and Motion of Arterial Walls. In Water in Biomechanical and Related Systems; Gadomski, A., Ed.; Springer: Cham, Switzerland, 2021; pp. 243–263. ISBN 978-3-030-67226-3. [Google Scholar]
- Vitanov, N.K.; Dimitrova, Z.I. Simple Equations Method and Non-linear Differential Equations with Non-polynomial Non-linearity. Entropy 2021, 23, 1624. [Google Scholar] [CrossRef]
- Vitanov, N.K.; Dimitrova, Z.I.; Vitanov, K.N. On the Use of Composite Functions in the Simple Equations Method to Obtain Exact Solutions of Nonlinear Differential Equations. Computation 2021, 9, 104. [Google Scholar] [CrossRef]
- Vitanov, N.K. Simple Equations Method (SEsM) for Obtaining Exact Solutions of Nonlinear Differential Equations. In Advances in Mathematics Research; Baswell, A.R., Ed.; Nova Science Publishers: New York, NY, USA, 2022; pp. 105–138. ISBN 978-1-68507-892-8. [Google Scholar]
- Martinov, N.; Vitanov, N. On the Correspondence Between the Self-consistent 2D Poisson-Boltzmann Structures and the Sine-Gordon Waves. J. Phys. A Math. Gen. 1992, 25, L51–L56. [Google Scholar] [CrossRef]
- Martinov, N. Vitanov. On Some Solutions of the Two-Dimensional Sine-Gordon Equation. J. Phys. A Math. Gen. 1992, 25, L419–L426. [Google Scholar] [CrossRef]
- Vitanov, N.K. On Travelling Waves and Double-Periodic Structures in Two-Dimensional Sine–Gordon Systems. J. Phys. A Math. Gen. 1996, 29, 5195–5207. [Google Scholar] [CrossRef]
- Vitanov, N.K. Breather and Soliton Wave Families for the Sine-Gordon Equation. Proc. Roy. Soc. Lond. A 1998, 454, 2409–2423. [Google Scholar] [CrossRef]
- Vitanov, N.K.; Jordanov, I.P.; Dimitrova, Z.I. On Nonlinear Dynamics of Interacting Populations: Coupled Kink Waves in a System of Two Populations. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 2379–2388. [Google Scholar] [CrossRef]
- Vitanov, N.K.; Jordanov, I.P.; Dimitrova, Z.I. On Nonlinear Population Waves. Appl. Math. Comput. 2009, 215, 2950–2964. [Google Scholar] [CrossRef]
- Vitanov, N.K. Application of Simplest Equations of Bernoulli and Riccati Kind for Obtaining Exact Traveling-Wave Solutions for a Class of PDEs with Polynomial Nonlinearity. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 2050–2060. [Google Scholar] [CrossRef]
- Vitanov, N.K.; Dimitrova, Z.I. Application of The Method of Simplest Equation for Obtaining Exact Traveling-Wave Solutions for Two Classes of Model PDEs from Ecology and Population Dynamics. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 2836–2845. [Google Scholar] [CrossRef]
- Vitanov, N.K.; Dimitrova, Z.I.; Kantz, H. Modified Method of Simplest Equation and its Application to Nonlinear PDEs. Appl. Math. Comput. 2010, 216, 2587–2595. [Google Scholar] [CrossRef]
- Vitanov, N.K. Modified Method of Simplest Equation: Powerful Tool for Obtaining Exact and Approximate Traveling-Wave Solutions of Nonlinear PDEs. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 1176–1185. [Google Scholar] [CrossRef]
- Vitanov, N.K.; Dimitrova, Z.I.; Vitanov, K.N. On the Class of Nonlinear PDEs That Can be Treated by the Modified Method of Simplest Equation. Application to Generalized Degasperis–Processi Equation and B-Equation. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 3033–3044. [Google Scholar] [CrossRef]
- Vitanov, N.K. On Modified Method of Simplest Equation for Obtaining Exact and Approximate Solutions of Nonlinear PDEs: The Role of the Simplest Equation. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 4215–4231. [Google Scholar] [CrossRef]
- Vitanov, N.K.; Dimitrova, Z.I.; Kantz, H. Application of the Method of Simplest Equation for Obtaining Exact Traveling-Wave Solutions for the Extended Korteweg–de Vries Equation and Generalized Camassa–Holm Equation. Appl. Math. Comput. 2013, 219, 7480–7492. [Google Scholar] [CrossRef]
- Vitanov, N.K.; Dimitrova, Z.I. Solitary Wave Solutions for Nonlinear Partial Differential Equations that Contain Monomials of Odd and Even Grades with Respect to Participating Derivatives. Appl. Math. Comput. 2014, 247, 213–217. [Google Scholar] [CrossRef]
- Vitanov, N.K.; Dimitrova, Z.I.; Vitanov, K.N. Modified Method of Simplest Equation for Obtaining Exact Analytical Solutions of Nonlinear Partial Differential Equations: Further Development of the Methodology with Applications. Appl. Math. Comput. 2015, 269, 363–378. [Google Scholar] [CrossRef] [Green Version]
- Vitanov, N.K.; Dimitrova, Z.I.; Ivanova, T.I. On Solitary Wave Solutions of a Class of Nonlinear Partial Differential Equations Based on the Function 1/cosh(αx+βt)n. Appl. Math. Comput. 2017, 315, 372–380. [Google Scholar] [CrossRef]
- Vitanov, N.K.; Dimitrova, Z.I. Modified Method of Simplest Equation Applied to the Nonlinear Schrödinger Equation. J. Theor. Appl. Mech. Sofia 2018, 48, 59–68. [Google Scholar] [CrossRef] [Green Version]
- Vitanov, N.K. Simple Equations Method (SEsM) and Its Connection with the Inverse Scattering Transform Method. AIP Conf. Proceedibgs 2021, 2321, 030035. [Google Scholar] [CrossRef]
- Nikolova, E.V.; Jordanov, I.P.; Dimitrova, Z.I.; Vitanov, N.K. Evolution of non-linear Waves in a Blood-Filled Artery with an Aneurysm. AIP Conf. Proc. 2017, 1895, 07002. [Google Scholar] [CrossRef] [Green Version]
- Jordanov, I.P.; Vitanov, N.K. On the Exact Traveling Wave Solutions of a Hyperbolic Reaction- Diffusion Equation. Stud. Comput. Intell. 2019, 793, 199–210. [Google Scholar] [CrossRef]
- Nikolova, E.V.; Chilikova-Lubomirova, M.; Vitanov, N.K. Exact Solutions of a Fifth-Order Korteweg–de Vries–type Equation Modeling non-linear Long Waves in Several Natural Phenomena. AIP Conf. 2021, 2321, 030026. [Google Scholar] [CrossRef]
- Vitanov, N.K.; Vitanov, K.N. Population Dynamics in Presence of State Dependent Fluctuations. Comput. Math. Appl. 2013, 68, 962–971. [Google Scholar] [CrossRef]
- Vitanov, N.K.; Dimitrova, Z.I. Simple Equations Method (SEsM) and Its Particular Cases: Hirota Method. AIP Conf. Proc. 2021, 2321, 030036. [Google Scholar] [CrossRef]
- Dimitrova, Z.I.; Vitanov, K.N. Homogeneous Balance Method and Auxiliary Equation Method as Particular Cases of Simple Equations Method (SEsM). AIP Conf. Proc. 2021, 2321, 030004. [Google Scholar] [CrossRef]
- Constantine, G.M.; Savits, T.H. A Multivariate Faa di Bruno Formula with Applications. Trans. Am. Math. Soc. 1996, 348, 503–520. [Google Scholar] [CrossRef]
- Hereman Zhuang, W.W. Symbolic Computation of Solitons via Hirota’s Bilinear Method; Department of Mathematical and Computer Sciences Colorado School of Mines: Golden, CO, USA, 1994; preprint. [Google Scholar]
- Rosales, R.R. Exact Solution of Some Nonlinear Evolution Equations. Stud. Appl. Math. 1978, 59, 117–151. [Google Scholar] [CrossRef]
- Rosales, R.R. Exact Solution of Some Nonlinear Evolution Equations. Ph.D. Thesis, California Institute of Technology, Pasadena, CA, USA, 1977. [Google Scholar]
- Zakharov, V.; Shabat, A. Exact Theory of Two-dimensional Self-focusing and One-dimensional Self-modulation of Waves in Nonlinear Media. J. Exp. Theor. Phys. 1971, 61, 118–134. [Google Scholar]
- Kermack, W.O.; McKendrick, A.G. A Contribution to the Mathematical Theory of Epidemics. Proc. R. Soc. Lond. Ser. A 1927, 115, 700–721. [Google Scholar] [CrossRef] [Green Version]
- Ablowitz, M.J.; Zeppetella, A. Explicit Solutions of Fisher’s Equation for a Special Wave Speed. Bull. Math. Biol. 1979, 41, 835–840. [Google Scholar] [CrossRef]
- Malfliet, W. Solitary Wave Solutions of Nonlinear Wave Equations. Am. J. Phys. 1992, 60, 650–654. [Google Scholar] [CrossRef]
- Broadbridge, P.; Bradshaw, B.H.; Fulford, G.R.; Aldis, G.K. Huxley and Fisher Equations for Gene Propagation: An Exact Solution. ANZIAM J. 2002, 44, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Scott, A.C. Nonlinear Science. Emergence and Dynamics of Coherent Structures; Oxford University Press: Oxford, UK, 1999; ISBN 9780198528524. [Google Scholar]
- Camassa, R.; Holm, D.D. An Integrable Shallow Water Equation with Peaked Solitons. Phys. Rev. Lett. 1993, 71, 1661–1664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, R.S. The Classical Problem of Water Waves: A Reservoir of Integrable and Nearly Integrable Equations. J. Nonlinear Math. Phys. 2003, 10 (Suppl. S1), 72–92. [Google Scholar] [CrossRef] [Green Version]
- Nikolova, E.V. Exact Travelling-Wave Solutions of the Extended Fifth-Order Korteweg–deVries Equation via Simple Equations Method (SEsM): The Case of Two Simple Equations. Entropy 2022, 24, 1288. [Google Scholar] [CrossRef]
- Vitanov, N.; Dimitrova, Z. On Waves and Distributions in Population Dynamics. Biomath 2012, 1, 1209253. [Google Scholar] [CrossRef] [Green Version]
- Dimitrova, Z.I. Several Examples of Application of the Simple Equations Method (SEsM) for Obtaining Exact Solutions of Nonlinear PDEs. AIP Conf. Proc. 2022, 2459, 030005. [Google Scholar] [CrossRef]
- Dimitrova, Z.I. On Several Specific Cases of the Simple Equations Method (SEsM): Jacobi Elliptic Function Expansion method, F-Expansion Method, Modified Simple Equation Method, Trial Function Method, General Projective Riccati Equations Method, and First Intergal Method. AIP Conf. Proc. 2022, 2459, 030006. [Google Scholar] [CrossRef]
- Liu, S.; Fu, Z.; Liu, S.; Zhao, Q. Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Phys. Lett. A 2001, 289, 69–74. [Google Scholar] [CrossRef]
- Wang, M.; Zhou, Y. The Periodic Wave Solutions for the Klein–Gordon–Schrödinger Equations. Phys. Lett. A 2003, 318, 84–92. [Google Scholar] [CrossRef]
- Wang, M.; Li, X. Applications of F-expansion to Periodic Wave Solutions for a new Hamiltonian Amplitude Equation. Chaos Solitons Fractals 2005, 24, 1257–1268. [Google Scholar] [CrossRef]
- Ren, Y.-J.; Zhang, K.-Q. A Generalized F-expansion Method to find Abundant Families of Jacobi Elliptic Function solutions of the (2 + 1)-Dimensional Nizhnik–Novikov–Veselov Equation. Chaos Solitons Fractals 2006, 27, 959–979. [Google Scholar] [CrossRef]
- Jawad, A.J.M.; Petkovic, M.D.; Biswas, A. Modified Simple Equation Method for Nonlinear Evolution Equations. Appl. Math. Comput. 2010, 217, 869–877. [Google Scholar] [CrossRef]
- Liu, S.; Fu, Z.; Liu, S.-D.; Zhao, Q. A Simple Fast Method in Finding Particular Solutions of Some Nonlinear PDE. Appl. Math. Mech. 2001, 22, 326–331. [Google Scholar] [CrossRef]
- Xie, Y.; Tang, J. A Unified Trial Function Method in Finding the Explicit and Exact Solutions to Three NPDEs. Phys. Scr. 2006, 74, 197–200. [Google Scholar] [CrossRef]
- Li, B.; Chen, Y. General Projective Riccati Equation Method and Exact Solutions for Generalized KdV-type and KdV–Burgers-type Equations with Nonlinear Terms of Any Order. Chaos Solitons Fractals 2004, 19, 977–984. [Google Scholar] [CrossRef]
- Feng, Z.S. The First Integer Method to Study the Burgers-Korteweg-de Vries Equation. J. Phys. A 2002, 35, 343–349. [Google Scholar] [CrossRef]
- Wang, M.-L. Solitary Wave Solutions for Variant Boussinesq equations. Phys. Lett. A 1995, 199, 169–172. [Google Scholar] [CrossRef]
- Wang, M.-L. Exact Solutions for a Compound KdV-Burgers Equation. Phys. Lett. A 1996, 213, 279–287. [Google Scholar] [CrossRef]
- Wang, M.-L.; Zhou, Y.; Li, Z. Application of a Homogeneous Balance Method to Exact Solutions of Nonlinear Equations in Mathematical Physics. Phys. Lett. A 1996, 216, 67–75. [Google Scholar] [CrossRef]
- Fan, E.; Zhang, H. A note on the homogeneous balance method. Phys. Lett. A 1998, 246, 403–406. [Google Scholar] [CrossRef]
- Sirendaoreji; Jiong, S. Auxiliary Equation Method for Solving Nonlinear Partial Differential Equations. Phys. Lett. A 2003, 309, 387–396. [Google Scholar] [CrossRef]
- Dimitrova, Z.I. Relation Between G’/G-expansion Method and the Modified Method of Simplest Equation. Comptes Rendus L’Academie Bulg. Des Sci. 2012, 65, 1513–1520. [Google Scholar]
- Wang, M.L.; Li, X.Z.; Zhang, J.L. The (G’/G)-Expansion Method and Traveling Wave Solutions of Nonlinear Evolution Equations in Mathematical Physics. Phys. Lett. A 2008, 372, 417–423. [Google Scholar] [CrossRef]
- He, J.H.; Wu, X.H. Exp-Function Method for Nonlinear Wave Equations. Chaos Solitons Fractals 2006, 30, 700–708. [Google Scholar] [CrossRef]
- Malfliet, W.; Hereman, W. The tahn method I: Exact solutions of nonlinear evolution and wave equations. Phys. Scr. 1996, 54, 563–568. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vitanov, N.K. Simple Equations Method (SEsM): An Effective Algorithm for Obtaining Exact Solutions of Nonlinear Differential Equations. Entropy 2022, 24, 1653. https://doi.org/10.3390/e24111653
Vitanov NK. Simple Equations Method (SEsM): An Effective Algorithm for Obtaining Exact Solutions of Nonlinear Differential Equations. Entropy. 2022; 24(11):1653. https://doi.org/10.3390/e24111653
Chicago/Turabian StyleVitanov, Nikolay K. 2022. "Simple Equations Method (SEsM): An Effective Algorithm for Obtaining Exact Solutions of Nonlinear Differential Equations" Entropy 24, no. 11: 1653. https://doi.org/10.3390/e24111653
APA StyleVitanov, N. K. (2022). Simple Equations Method (SEsM): An Effective Algorithm for Obtaining Exact Solutions of Nonlinear Differential Equations. Entropy, 24(11), 1653. https://doi.org/10.3390/e24111653