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Abstract: Online prediction of maneuvering target trajectory is one of the most popular research
directions at present. Specifically, the primary factors balancing, between prediction accuracy and
response time, will give the research substance. This paper presents an online trajectory prediction
algorithm based on small sample chaotic time series (OTP-SSCT). First, we optimize in terms of
data breadth. The dynamic split window is built according to the motion characteristics of the
maneuvering target, thus realizing trajectory segmentation and constructing a small sample chaotic
time series prediction set. Second, since fully considering the motion patterns of maneuvering
targets, we introduce the spatiotemporal features into the particle swarm optimization (PSO) model
identification algorithm, which improves the identification sensitivity of key trajectory data points.
Furthermore, we propose a feedback optimization strategy of residual compensation to correct the
trajectory prediction values to improve the prediction accuracy. For the initial value sensitivity
problem of the PSO model identification algorithm, we propose a new initial population strategy,
which improves the effectiveness of initial parameters on model identification. Through simulation
experiment analysis, it is verified that the proposed OTP-SSCT algorithm achieves better prediction
accuracy and faster response time.

Keywords: online prediction; trajectory segmentation; PSO model identification; feedback optimiza-
tion; initial value sensitivity

1. Introduction

Trajectory prediction combines trajectory information as time series, and uses predic-
tion algorithms to reasonably predict the future movement trend of maneuvering target. It
is widely used in unmanned aerial vehicle (UAV) trajectory planning, intelligent transporta-
tion system, pedestrian trajectory tracking and other fields [1–3]. In recent years, taking
advantage of sensor network technical development, the located target has higher mobility
and is nonlinear and time-varying. The classical trajectory prediction algorithm with a
pre-set motion model usually cannot dynamically adjust the model parameters. Hence, the
phenomenon of model mismatch, which leads to inaccurate results and occurs in the trajec-
tory prediction process of strong maneuverability targets. In order to solve the insufficient
dynamics problem, many scholars began to study online trajectory prediction methods
based on dynamic learning; however, those methods need to consider both prediction
accuracy and prediction response time. So, the establishment has processed ultra-big data
and the high-speed calculation capacity prediction system—the key question is what kind
of method is appropriate.

Generally, online trajectory prediction methods are mainly divided into two main
categories. One is the prediction algorithm with pre-set motion model. These methods
mainly establish the motion model in advance through the laws of dynamics or physics,
and then adjust the model parameters according to the motion state to achieve an online
prediction of maneuvering targets [4]. Zhang et al. proposed an online four-dimensional
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trajectory prediction method [5]. This method improved the accuracy of trajectory predic-
tion by updating the flight intention with the horizontal and vertical intention models of the
vehicle, while incorporating the current state. A multimodel-based extended Kalman filter
(EKF) was proposed in [6]. The method combined the EKF with the interacting multiple
model (IMM) framework to predict the vehicle trajectory by selecting different EKF models.
IMM is an adaptive algorithm that can effectively adjust the probability of each model,
and is especially suitable for the localization tracking of maneuvering targets [7]. Wu et
al. proposed an adaptive trajectory prediction algorithm [8]. By integrating two motion
models and adjusting the model parameters adaptively, the algorithm could accurately
predict the trajectory of pedestrians. Xie et al. proposed a vehicle trajectory prediction
algorithm, which considered both dynamic motion with physical laws in the short term
and advanced driving patterns with maneuverability estimation in the long term [9]; thus,
the long-term prediction of vehicle trajectories was achieved.

The above methods are suited for maneuvering targets with low motion complexity.
For moving targets with high maneuverability, it is difficult to directly establish a prediction
model to adapt to the nonlinearity shifts in the track process. For this reason, the complexity
of the model will increase sharply, and the robustness of the model will deteriorate. So, the
prediction algorithm with a parser motion model can hardly provide good performance for
high maneuverability targets.

The other category is data-driven trajectory prediction algorithms, which are divided
into two methods, classical prediction methods based on regression theory and model
identification methods using artificial intelligence data mining [10,11]. Regression pre-
diction methods use a large number of trajectory data to build regression equations and
achieve online prediction through iterative regression [12]. These algorithms include linear
regression, logistic regression, ridge regression, autoregressive moving average, etc. Model
identification methods focus on mining trajectory information deeply and identify target
tracking models by intelligent algorithms; therefore, these methods are enable online trajec-
tory prediction with high trajectory complexity. Liu et al. proposed a trajectory estimation
framework for multi-UAV based on the prediction of user’s movement information [13].
The method trains the parameters of the echo state network model by the true trajectory
data set, thereby establishing a tracking model to predict the trajectory of the UAV. Shi
et al. proposed a flight trajectory prediction model based on a long short-term memory
(LSTM) network [14]. The sliding window method was introduced to avoid the dynamic
dependence of adjacent states in long-term sequence, which improves the accuracy of
online prediction. Ma et al. proposed a deep learning-based four-dimensional trajectory
prediction algorithm, in which the flight trajectory features in the spatial and temporal
dimensions were extracted by convolutional neural networks and LSTM, respectively [15].
Han et al. proposed a short-term online trajectory prediction model based on the gated
cyclic neural network, which was trained and updated with model parameters by the batch
method to achieve an online prediction of short-term flight trajectories [16].

Generally, unlike the prediction algorithm of pre-set motion model, the above methods
learn the target motion law by mining the trajectory information, and thus achieve online
trajectory prediction. By avoiding the physical modeling problem of complex motion,
such algorithms are able to track highly maneuverable targets with surprising accuracy.
However, the accuracy of the model identification is often related to the amount of training
data. Such algorithms need the support of large-scale computation and real time prediction;
therefore, processing the data effectively and establishing an accurate model is the bridge
between the two aspects.

Due to the highly nonlinear and time-varying characteristics of maneuver target
trajectory, a simple time series analysis is difficult to use to analyze the comprehensive
reflect target’s motion laws. In recent years, the prediction of chaotic time series has
become a popular research direction regarding the aspect of trajectory prediction [17,18].
To analyze the deep behavioral characteristics of maneuvering targets, many methods
perform prediction model identification on the basis of chaos theory. Liu et al. proposed a
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ship trajectory prediction model, which enhanced the optimization effect of the differential
evolution algorithm on the model parameters by introducing chaos theory [19]. Hong et
al. proposed a motion prediction model of floating platform, which optimized the model
parameters by a chaotic efficient bat algorithm, thus achieving complex nonlinear trajectory
prediction [20]. Recently, the Volterra series model, as a common model, has been used
to predict chaotic time series, which can fit nonlinear data for accurate prediction [21].
Han et al. proposed a local Volterra prediction algorithm based on the clustering of
phase points [22]. The method compared the similarity of predicted phase points and
observation points in the clustering, and the optimal adjacent phase points were used to
train the prediction model. Qiao et al. proposed a novel hybrid prediction model based
on the Volterra filter [23]. The model parameters were optimized by an improved whale
optimization algorithm. Lv et al. proposed a hybrid dynamic prediction algorithm based
on the Volterra prediction model [24]. By introducing the sliding window method, the
algorithm realized the online identification of the Volterra model parameters, and the
dynamic relations were constructed from the high-dimensional phase space to realize the
trajectory prediction of complex systems. Therefore, combining the prediction method
with the chaos theory method, the algorithm achieves a better trajectory prediction effect;
however, most algorithms based on chaos theory are only suitable for off-line trajectory
prediction. For the complex motion model, how to extract the trajectory features in real
time and build the prediction model dynamically are still two major problems to be solved.
At present, the online trajectory prediction for chaotic time series has some deficiency in
dynamic construction of models.

To summarize: in order to achieve stable online prediction of maneuvering target
trajectories, this paper proposes an online trajectory prediction algorithm based on small
sample chaotic time series (OTP-SSCT). Firstly, a small sample chaotic time series prediction
set is constructed using a dynamic sliding window. Secondly, combining the spatiotemporal
characteristics of maneuvering targets, the online trajectory prediction model is constructed
using the improved PSO algorithm. Finally, the feedback optimization strategy is adopted
to further improve the accuracy of the online trajectory prediction. The main contributions
of this paper are as follows:

(1) In this paper, an online trajectory prediction method of maneuvering targets is
proposed according to chaotic time series analysis. Thus, considering the motion character-
istics of maneuvering targets, we construct a small sample chaotic time series prediction
set by an innovative trajectory segmentation method. It realizes dynamic segmentation for
trajectory data. Since fully considering nonlinear maneuver characteristics of trajectory
data, spatiotemporal features are introduced in the improved PSO algorithm to increase the
identification sensitivity of key trajectory data points. For the superposition of prediction
errors caused by model identification, the trajectory predicted values are corrected by the
feedback optimization strategy to ensure the prediction accuracy.

(2) For the initial value sensitivity problem of PSO model identification algorithm,
a new initial population strategy is proposed in this paper. According to the spatial
distribution of candidate populations, the strategy selects some improvement positions
to compensate the uniformity of the initial population distribution, which avoids the
algorithm from falling into local traps.

The content of this paper is organized as follows. Section 2 introduces the Volterra
prediction model based on phase space reconstruction of chaotic time series. Section 3
elaborates principle and implementation process of the proposed OTP-SSCT algorithm.
Further, a new initial population strategy of the PSO model identification algorithm is
presented in Section 4. Section 5 gives the pseudo-code of our algorithm. Section 6
verifies the feasibility and effectiveness of the proposed algorithm. Section 7 provides the
conclusions of this paper.
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2. Volterra Prediction Model Based on Phase Space Reconstruction

The trajectory of maneuvering target is highly nonlinear and time-varying, which
increases the difficulty of the prediction model identification. In this paper, an online
prediction method of maneuver trajectory is proposed according to chaotic time series
analysis. In order to obtain more motion laws of the target, the trajectory data can be
reconstructed into the phase space by chaos theory [25]. It is easier to fit the evolution law
between phase points by the nonlinear prediction model in the high-dimensional phase
space. Thus, accurate prediction of maneuvering targets can be achieved. The trajectory
prediction process of Volterra model is shown in Figure 1.

Figure 1. Trajectory prediction process of Volterra model.

Assuming that the observed trajectory one-dimensional time series is x(n), n =
1, 2, · · · , N. According to Takens embedding theorem, the phase space reconstruction of
the original sequence does not change the evolutionary information of the system [26]. The
reconstructed multidimensional time series is represented by phase points as follows:

Xl = [x(l), x(l + τ), · · · , x(l + (m− 1)τ)]T l = 1, 2, · · · , L (1)

where Xl is the l-th phase point in phase space. m is the embedding dimensions. τ is the
delay time. L = N − (m− 1)τ is the number of phase points. N is the number of trajectory
data.

In the phase space, there is a mapping F : Rm → Rm to represent the evolution law
between phase points. Thus, there exists a new mapping f : Rm → R to represent the
evolutionary law between trajectory data and phase points, as shown below:

x(l + (m− 1)τ + 1) = f (Xl) l = 1, 2, · · · , L (2)

where x(l + (m− 1)τ + 1) represents the m-th dimensional component of Xl+1 .
The Volterra model can characterize arbitrary nonlinear functions and has good scal-

ability. In this paper, the Volterra model is chosen as the mapping relationship f in
Equation (2). The p-order discrete Volterra model with memory length m is expressed as
follows:

y(n) =
p

∑
k=1

m−1

∑
i1,··· ,ik=0

hk(i1, i2, · · · , ik)
k

∏
j=1

x
(
n− ij

)
n = 1, 2, · · · , N (3)

where x(n) and y(n) is the input and the output, respectively. p is the order of Volterra
prediction model. m is the embedding dimensions (memory length). hk(i1, i2, · · · , ik)
is the k-th kernel parameter value, which can be expressed in the form of kernel vector
H = [h1(0), h1(1), · · · , h1(m− 1), h2(0, 0), h2(0, 1), · · · , h2(0, m− 1), · · · , hp(m− 1, m− 1)].
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Combining Equations (2) and (3), the prediction values x̂(n + 1) are obtained from the
Volterra prediction model as follows:

x̂(n + 1) =
p

∑
k=1

m−1

∑
i1,··· ,ik=0

hk(i1, i2, · · · , ik)
k

∏
j=1

x
(
n− ij × τ

)
n = 1, 2, · · · , N (4)

Determining the kernel parameters value of the Volterra prediction model is a typical
nonlinear system identification problem. The OTP-SSCT algorithm is proposed in Section 3.
By constructing a small sample chaotic time series prediction set, the parameters of Volterra
model are dynamically identified. Thus, online prediction of maneuvering target trajectories
is achieved.

3. Online Trajectory Prediction Algorithm Based on Small Sample Chaotic Time Series

Traditional prediction algorithms with pre-set motion model will rarely change the
model parameters, resulting in insufficient dynamic capabilities. In contrast, data-fitting
based prediction algorithms require large-scale training data support, resulting in poor
online performance. To overcome these problems, this paper proposes the OTP-SSCT
algorithm, which can dynamically construct the prediction model and realize the online
prediction of maneuvering trajectory.

3.1. Algorithm Model Framework

The framework diagram of the proposed algorithm is shown in Figure 2. To begin
with, the input trajectory data are pre-processed by the presented trajectory segmentation
method. The dynamic split window is built according to the motion characteristics of
maneuvering targets, thus realizing trajectory segmentation and constructing a small
sample chaotic time series prediction set. Secondly, in combination with that prediction
set, we construct an online trajectory prediction model through improving the PSO model
identification algorithm. In addition, we propose an initial population strategy to improve
the effectiveness of initial parameters on model identification. Finally, while outputting
the trajectory prediction values, we also compensate them by the feedback optimization
strategy, so as to improve the prediction accuracy.

Figure 2. Framework diagram of the proposed algorithm.
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3.2. Dynamic Trajectory Segmentation

The long-term movement of the maneuvering target generates a large amount of
redundant historical trajectory information, some of which is no longer valid or even
interferes with the construction of the prediction model. In this section, we propose an
innovative trajectory segmentation method, which is used to construct a small sample
chaotic time series prediction set of the target. The method achieves trajectory segmentation
through the dynamic split window. Firstly, we design a similarity function to measure the
dynamic changes of the trajectory data, and also define the magnitude of the similarity
value by the threshold method. Secondly, by extracting the motion characteristics of the
maneuvering target, we give the adjustment rules for the length of dynamic split window.
Finally, the trajectory segmentation is performed through the dynamic split window, and
a small sample chaotic time series prediction set is constructed for the subsequent model
identification. The flow chart of trajectory segmentation with dynamic split window is
shown in Figure 3.

Figure 3. Flow chart of trajectory segmentation with dynamic split window.

As the target trajectory information updates, redundant historical trajectories need to
be eliminated. The dynamic split window focuses on the latest trajectory information of
the target. To accomplish this goal, the dynamic time warping (DTW) distance is used as
the similarity function [27]. When the similarity value is greater than the preset threshold
THdtw (THdtw is determined by the actual data), it indicates that the target produces a new
maneuver. At this moment, it is necessary to adjust the length of dynamic split window so
that the segmentation trajectory discards useless information. After each length adjustment,
we save the first dynamic split window as SWold, while the latest dynamic split window is
SWnew. The similarity function is as follows:

DTW(SWnew, SWold) = arg min
P=p1,··· ,pk ,··· ,pK

√√√√ K

∑
k=1

[pk(i, j)]2 (5)

where

pk(i, j) = (x(i)− x(j))2 + min{pk(i− 1, j− 1), pk(i− 1, j), pk(i, j− 1)}

P is the warping path between SWnew and SWold. K ∈ [W, 2W − 1) is the length of the
warping path. W is the length of dynamic split window. x(i) ∈ SWnew and x(j) ∈ SWold
are the trajectory data, 1 ≤ i, j ≤W. More details can be found in [27].

The length of the dynamic split window is determined by the motion characteristics
of the maneuvering target. At first, we define that the motion characteristics consist of two
components, trajectory data mean volatility ratio RV and tracking model error volatility
ratio RE. The calculation methods are shown below, respectively:
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RV =
Vnew −Vold

Vold
(6)

RE =
Enew − Eold

Eold
(7)

where

Vnew =
Var(SWnew)

Max(SWnew)−Min(SWnew)
(8)

Enew =
1

W

W

∑
l=1
|x(l)− x̂(l)| x(l) ∈ SWnew (9)

Vold and Eold are calculated in the same way as Equations (8) and (9). Vnew and Vold are
the fluctuation values of SWnew and SWold, respectively, indicating the intensity of the
target motion. Var denotes calculation of variance. Max and Min denote calculation of the
maximum and minimum values, respectively. Enew and Eold are the average prediction
errors of SWnew and SWold, respectively, indicating the accuracy of the prediction model.
x̂(l) and x(l) denote the prediction value and true value of the trajectory, respectively.

The dynamic split window length W can be dynamically adjusted according to the
motion characteristics of Equations (6) and (7), as follows:

W = w + ∆w (10)

where w is the fixed length, determined by the actual data. ∆w is the dynamic length,
defined by the motion characteristics, and the calculation method is as follows:

∆w = (λ× RV + µ× RE)×
w
2

(11)

λ =

{
0 0 ≤ |RV | < δ

1 δ ≤ |RV |
(12)

µ =

{
0 0 ≤ |RE| < ε

1 ε ≤ |RE|
(13)

where λ and µ are the selection factors. 0 ≤ δ ≤ 1 and 0 ≤ ε ≤ 1 are the regulation
thresholds.

After segmenting the trajectory data through the dynamic split window, the trajectory
data SWk at the k-th moment is reconstructed according to Equation (4). Thereby, a small
sample chaotic time series prediction set is constructed as follows:

SCPk = [X(1), X(2), · · · , X(l), · · · , X(L)] L = W − (m− 1)τ (14)

where X(l) = [ x(l + (m− 1)τ),· · · ,x(l),x2(l + (m− 1)τ), · · · ,x2(l), · · · , xp(l + (m− 1)τ),
· · · ,xp(l) ]T. L is the number of phase points. X(l) is a D-dimensional phase points,

D =
p
∑

k=0
Ck

k+m−1. x(l) ∈ SWk is the trajectory data. m is the embedding dimensions. τ is

the delay time. p is the order of Volterra prediction model.

3.3. Prediction Model Construction

Since the dynamic split window focuses on the latest trajectory data, the small sample
chaotic time series prediction set we constructed is optimized in terms of data breadth;
however, the spatiotemporal features of the trajectories themselves cannot be ignored. To
further explore the motion patterns of maneuvering targets, we improve the sensitivity of
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the algorithm to identify key points by extracting the spatiotemporal features of trajectory
data, which is optimized in terms of data depth—see Figure 4.

Figure 4. Extraction diagram of trajectory spatiotemporal features.

The movement trajectory of a maneuvering target may seem haphazard, but there are
precursors before the maneuver occurs. In order to visualize the change pattern of target
maneuvers, the trajectory data are segregated by significant points. The spatiotemporal
features of the trajectory are extracted as follows:

|x(j)− x(i)|
(|x(j) + x(i)|)

/
2
≥ ρ j− i ≥ σ (15)

where x(i) and x(j) are the trajectory data, 1 ≤ i < j. σ and ρ are the distance threshold
and the position threshold, respectively.

The significant point in the dynamic split window SWk of the k-th moment is measured
by Equation (15), which is recorded as SPk:

SPk =
[
x(sp1), · · · , x

(
spq
)
, · · · , x

(
spQ

)]
spq ∈ {1, 2, · · · , W} (16)

where x
(
spq
)

is the q-th significant point, spq is the position in SWk. W is the length of
dynamic split window.

The significant points spatially represent the different trends of the trajectories, while
the trajectory data follow a temporal order. Therefore, combined with the characteristics of
sigmoid function, the spatiotemporal features ∂l of of the trajectory data are mined:

∂l =



al
/
(Q + 1) k ≤ l < sp1

2× al
/
(Q + 1) sp1 ≤ l < sp2

...

(q + 1)× al
/
(Q + 1) spq ≤ l < spq+1

...

al spQ ≤ l ≤ k + W − 1

(17)

where
al = 1

/[
1 + e(−10×l+5)

]
l ∈ [k, k + W − 1]

The PSO model identification algorithm is a problem-oriented metaheuristic that
gradually approximates the optimal solution through the update iteration of particle
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swarm. The fitness function is the central part of PSO model identification algorithm,
which controls the direction of population optimization. For the particle Ĥi, the fitness
function of the original algorithm as follows:

fe(ei) =
1
L

L

∑
l=1

(x(l)− x̂(l))2

=
1
L

L

∑
l=1

(
x(l)− Ĥi × X(l)

)2
(18)

where Ĥi is the i-th particle. L is the number of phase points in the small sample chaotic time
series prediction set. x(l) is the trajectory data and x(l) ∈ SWk. X(l) is a D-dimensional
phase points.

The velocity and position evolution rules of the i-th particle Ĥi are as follows:

vi(t + 1) = ω× vi(t) + c1 × r1 ×
(

Pi(t)− Ĥi(t)
)
+ c2 × r2 ×

(
Pg(t)− Ĥi(t)

)
(19)

Ĥi(t + 1) = Ĥi(t) + vi(t + 1) (20)

where t is the iteration number of the PSO algorithm. vi is the velocity. ω is the inertia
weight. c1 and c2 are learning factors. r1 and r2 are random numbers between the interval
[0, 1]. Pi(t) is the individual historical optimal position. Pg(t) is the overall historical
optimal position.

In this section, we design an improved fitness function by incorporating spatiotem-
poral features into a small sample chaotic temporal prediction set. By improving the
sensitivity of the algorithm to identify key points in the trajectory, the population is led to
evolve toward the optimal solution. The improved fitness function is as follows:

fe(ei) =
1
L

L

∑
l=1

[
βl ×

(
x(l)− Ĥi × X(l)

)2
]

(21)

βl = bl

/
M

∑
i=1

bi l = 1, 2, · · · , L (22)

where

bl = ∂l+(m−1)τ + · · ·+ ∂l + ∂2
l+(m−1)τ + · · ·+ ∂2

l + · · ·+ ∂
p
l+(m−1)τ + · · ·+ ∂

p
l

βl is the normalized effect factor, and ∂l is the trajectory spatiotemporal feature.
The PSO algorithm finds the global optimal position with the smallest fitness value,

which is the optimal parameter value of Volterra prediction model. The first model identifi-
cation applies the initial population strategy proposed in Section 4. As the dynamic split
window is updated online, the saved optimal values are utilized to initialize the particle
swarm to decrease the identification time. Ultimately, the identified model enables online
trajectory prediction of the maneuvering target.

3.4. Trajectory Estimation Optimization

Since the trajectory segmentation method is adopted to accomplish online identifica-
tion, there may be superposition of prediction errors. Thereby, leading to the degradation in
prediction accuracy of the algorithm. To improve the prediction performance, we propose
a feedback optimization strategy of residual compensation to correct the predicted values.
The feedback optimization strategy of residual compensation is shown in Figure 5. The
calculation method is as follows:

x̂adj(k + 1) = x̂(k + 1) + resi(k + 1) (23)
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resi(k + 1) = SWk × θ (24)

where x̂adj(k + 1) and x̂(k + 1) represent the corrected prediction and model prediction,
respectively. resi(k + 1) is the residual compensation. SWk is the dynamic split window. θ
is the compensation coefficient vector.

Figure 5. Feedback optimization strategy of residual compensation.

The least square (LS) algorithm is a simple linear recursive estimator with the advan-
tages of small memory and fast calculation speed. In this paper, the LS algorithm is used
to solve the compensation coefficient vector θ. The input item is SCPk, and the expected
output is ∆E:

∆E = [e(k−W + 1), e(k−W + 2), · · · , e(k)] (25)

where
e(k) = x(k)− x̂(k)

e(k) is the error between the true value and the predicted value. ∆E is the error vector of
SWk. W is the dynamic split window length.

4. Initial Population Strategy for PSO Model Identification Algorithm

The PSO model identification algorithm is an intelligent optimization algorithm with
simpler structure, easier convergence and stronger robustness. However, the method
suffers from the initial value sensitivity problem, and it is prone to fall into the local
optimum trap in the process of seeking the optimal. To avoid this problem, on the premise
of ensuring randomness, we propose a new initial population strategy to improve the
optimization performance of the identification algorithm.

4.1. Chaotic Population Initialization

Since chaotic motion has obvious characteristics of nonlinearity, randomness and
ergodicity, initializing the particle swarm with the idea of chaos can improve the quality
of the population. The chaotic initialization method utilizes chaotic mapping and obtains
the initial population through iterative means; however, it is difficult to traverse the
entire search space when the number of iterations is insufficient. Reverse learning is an
advancement of the traditional iterative approach, the idea of which is considering the
opposite direction when generating a feasible solution. The schematic diagram is shown in
Figure 6. Thus, it is combined with the reverse learning method to generate chaotic initial
populations.

Figure 6. Reverse optimization of initial population.
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A tent map is a chaotic map in its parameter range, with uniform distribution function
and good correlation. The tent chaotic map model is as follows:

Tk+1 =

{
Tk/ν Tk ∈ [0, ν)

(1− Tk)
/
(1− ν) Tk ∈ [ν, 1]

(26)

where ν ∈ (0, 1) is the model parameter. When Tk ∈ [0, 1] and Tk 6= ν, the above mapping
is in a chaotic state.

We assume that the population size is N, and the search space is D-dimensional. The
upper and lower search limits for each dimension are xd

min and xd
max, respectively.

Firstly, it generates a D-dimensional random vector T1:

T1 =
[
t1
1, t2

1, · · · , td
1, · · · , tD

1

]
td
1 ∈ (0, 1) (27)

Secondly, each dimension of T1 is substituted into Equation (26) for iteration. After
N/2 iterations, a group of D-dimensional chaotic vectors are generated:

Tn =
[
t1
n, t2

n, · · · , td
n, · · · , tD

n

]
n = 1, 2, · · · , N/2 (28)

where the value of each vector td
n ∈ (0, 1), and d = 1, 2, · · · , D is the dimension of the

search space.
Then, all chaotic vectors are mapped to the search space to generate the candidate

population set C1 = {CXn}:

CXn =
[
cx1

n, cx2
n, · · · , cxd

n, · · · , cxD
n

]
(29)

where
cxd

n =
(

xd
max − xd

min

)
× td

n + xd
min

Finally, the reverse learning method is applied to generate the candidate population
set C2 = {RXn}:

RXn =
[
rx1

n, rx2
n, · · · , rxd

n, · · · , rxD
n

]
(30)

where
rxd

n = xd
max − xd

min + cxd
n

The chaotic candidate population set {C1 ∪C2} generated by the above method take
into account both diversity and ergodicity. However, due to the randomness of the chaotic
mapping, the distribution of candidate populations in the search space is not uniform.
Thus, the algorithm is prone to fall into the local optimum trap.

4.2. Spatial Distribution Compensation

To ensure the homogeneity of the initial population, we propose a spatial distribution
compensation method to optimize the chaotic initialization, which makes the diversity and
homogeneity of the initial population guaranteed.

All dimensions of the search space are divided equally, and interval values Id
k and

spatial interval Sd
j are generated in each dimension, as follows:

Id
k = xd

min + (k− 1)×
(

xd
max − xd

min

)/
Q k = 1, 2, · · · , Q + 1 (31)

Sd
j =

[
Id
j , Id

j+1

]
j = 1, 2, · · · , Q (32)

where Q is the average number of divisions. d = 1, 2, · · · , D is the dimension of the search
space.
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Spatial interval Sd
j divides each dimension of the search space equally into discrete

grid states, as shown in Figure 7, where each grid represents an interval.

Figure 7. Discrete gridding of the search space.

From the distribution of the chaotic candidate population set in the search space,
defining the following sparsity function fs

(
Sd

j

)
:

fs

(
Sd

j

)
= 1− rd

j × cd
j

/
N (33)

where rd
j ∈ [0, 1] is a randomly generated value. cd

j is the number of the candidate popula-
tion in the j-th interval of d-th dimension. N is the population size.

The larger the sparsity value, the fewer candidate populations fall in the interval;
therefore, calculate the sparsity values of each interval and arrange in descending order,
and select the median of the M intervals with the greatest sparsity as the new candidate
populations.

sxd
i =
(

Id
i+1 − Id

i

)/
2 i = 1, 2, · · · , M (34)

where M (M < Q) is determined by the actual distribution. Id
i is the i-th interval value

after sorting according to sparsity.
Combining the interval median values calculated by Equation (34), it generates the

candidate population position set C3 = {SXi}:

SXi =
[
sx1

i , sx2
i , · · · , sxd

i , · · · , sxD
i

]
(35)

In summary, there are generated (N + M) groups of candidate population set C:

C = {C1 ∪C2 ∪C2} = {CXn ∪RXn ∪ SXi} n = 1, 2, · · · , N/2 i = 1, 2, · · · , M (36)

We select N groups of candidate populations with the best fitness as the initial popula-
tions of the PSO model identification algorithm. The proposed initial population strategy
avoids the algorithm from falling into local traps by increasing the diversity and homo-
geneity of the initial population. Meanwhile, it improves the efficiency of the algorithm in
finding the optimum.

5. Algorithm Implementation

For the online prediction scenario of maneuvering target trajectory, the OTP-SSCT
algorithm is proposed in this paper. Firstly, we initialize the algorithm parameters and use
the proposed initial population strategy to obtain the initial population of the PSO model
identification algorithm. Secondly, the split window length is dynamically adjusted by the
motion characteristics of the maneuvering target, and a small sample chaotic time series
prediction set is constructed. Then, we use the improved PSO algorithm to identify the
trajectory prediction model. Finally, the prediction results are obtained, while the feedback
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optimization strategy is applied to further improve the prediction accuracy. According
to the above analysis, more details related to the proposed OTP-SSCT algorithm, and the
pseudo-code is shown in Algorithm 1.

Algorithm 1: OTP-SSCT algorithm.

Input: Trajectory data x(n), n = 1, 2, · · · , N
Output: Prediction results x̂(n), n = W, W + 1, · · · , N, · · ·

1: Initializing the dynamic split window length W, embedding dimension m and delay
time τ based on the historical trajectory data;

2: Obtaining the initial population according to (26)–(36);
3: for k = 1 : N do
4: Calculating the similarity distance DTW according to (5);
5: if DTW > THdtw then
6: Adjusting the dynamic split window length W according to (10)–(13);
7: end if
8: Segmenting the trajectory data x(n) according to the dynamic split window;
9: Constructing the small sample chaotic time series prediction set SCPk according

to (14);
10: Extracting trajectories spatiotemporal features ∂n according to (17);
11: Identifying the model parameters H by the improved PSO model identification

algorithm according to (19)–(22);
12: Constructing the trajectory prediction model according to (4);
13: Obtaining the prediction results x̂(n) and performing the feedback optimization

strategy according to (23)–(25);
14: end for

6. Simulation and Analysis

To address the problem of stable online prediction of maneuvering target trajectories,
this paper proposes the OTP-SSCT algorithm. Considering the motion characteristics of
trajectory data, the improved PSO model identification algorithm is used to identify the
parameters of Volterra model. Finally, the online trajectory prediction of maneuvering
target is realized.

In this experiment, considering the maneuvering characteristics of the UAV trajec-
tory, we choose the 3rd-order Volterra prediction model as the structural basis of the
identification model, as follows:

x̂(n + 1) =
3

∑
k=1

m−1

∑
i1,i2,i3=0

hk(i1, i2, i3)
k

∏
j=1

x
(
n− ij × τ

)
=

m−1

∑
i1=0

h1(i1)x(n− i1 × τ)+
m−1

∑
i1=0

m−1

∑
i2=i1

h2(i1, i2)x(n− i1 × τ)x(n− i2 × τ)

+
m−1

∑
i1=0

m−1

∑
i2=i1

m−1

∑
i3=i2

h3(i1, i2, i3)x(n− i1 × τ)x(n− i2 × τ)x(n− i3 × τ)

(37)

where x̂(n + 1) and x(n) represent the prediction result and the trajectory data, respectively.
m and τ represent the memory length of the model and the delay time, respectively.
hk(i1, i2, i3) is the kernel parameter.

To verify the performance of our OTP-SSCT algorithm, the following simulation
experiments are designed in three directions.

(1) For the initial population setting problem of the PSO algorithm, different popu-
lation selection strategies are used for particle swarm initialization and model parameter
identification. The performance of the proposed population initialization strategy is verified
by comparing the identification accuracy.
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(2) The model identification of chaotic time series in Lorenz-X dimension is performed
with different optimization algorithms. In comparison with several performance metrics,
it tests the identification capability of the proposed improved PSO model identification
algorithm.

(3) Aiming at online trajectory prediction scenarios of maneuvering targets, different
prediction algorithms are adopted for online trajectory prediction of UAV three-degree-of-
freedom maneuvering target. By analyzing the precision metrics such as prediction accuracy
and response time, it verifies the performance of the proposed OTP-SSCT algorithm.

This paper uses four precision metrics for the quantitative evaluation: mean square
error (MES), root mean square error (RMSE), mean absolute percentage error (MAPE)
and coefficient of determination R2. The software used for the simulation experiment is
MATLAB2019a. The simulation environment: CPU is Intel Core i5-6500 3.20 GHz, memory
is 8GB, and the operating system is Microsoft Windows 10.

6.1. Parameter Identification Experiment with Different Initialization Methods

Initial population directly affects the optimization performance of PSO algorithm;
therefore, given the real parameters, the performance of our proposed initialization strategy
is tested by comparing the identification errors of different initialization methods. The
experimental process is shown in Figure 8.

Figure 8. Flowchart of experiment 1.

The comparison methods are random initialization method, chaotic initialization
method and sequence initialization method [28]. Identifying a 3rd-order Volterra model
with a memory length of 3. The given kernel parameter vector is as follows:

H = [1.54,−1, 0.56, 0.87, 0, 0, 1.13, 1.21,−1.29, 1.45, 0, 0, 0.88, 0, 0,−0.66, 0, 0, 1.06]T

For the Volterra model with given kernel parameters H, the input signal x(k) ∈ [0, 1]
is uniform white noise, and the output signal is y(k). x(k) and y(k) constitute the test set,
and the PSO algorithm with four initialization methods is used for parameter identification,
respectively. Setting the population size to 100 and the number of iterations to 500. Each
method is simulated for 50 times, and the identification results are averaged.

It can be seen from Figure 9 and Table 1 that the PSO algorithm using four different
initialization methods can identify approximate values close to the true values of the kernel
parameters. By comparing the absolute error between the identification results and the
true values, the minimum error of our method is about 0.0019, the maximum error is
about 0.0143, and the average error is about 0.0053. It can be seen that the average error
of our method is 73.3%, 65.6% and 36.9% smaller than that of the random initialization
method, chaotic initialization method and sequence initialization method, respectively;
therefore, the initial population strategy proposed in this paper significantly improves the
identification effect of the PSO model identification algorithm.
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Figure 9. Comparison of parameter identification error.

Table 1. Kernel parameter identification results.

H 1 T-V 2
Ours R-I 3 C-I 4 S-I 5

H* 6 E 7 H* E H* E H* E

h1(0) 1.54 1.5374 0.0026 1.5096 0.0304 1.5367 0.0033 1.5354 0.0046
h1(1) −1 −0.9935 0.0065 −0.9633 0.0367 −0.9735 0.0265 −0.9792 0.0208
h1(2) 0.56 0.5554 0.0046 0.5301 0.0299 0.5473 0.0127 0.5503 0.0097

h2(0, 0) 0.87 0.8738 0.0038 0.8752 0.0052 0.8734 0.0034 0.8750 0.0050
h2(0, 1) 0 −5.6× 10−4 5.6× 10−4 −0.0074 0.0074 −0.0098 0.0098 −0.0060 0.0060
h2(0, 2) 0 −8.6× 10−4 8.6× 10−4 0.0086 0.0086 0.0093 0.0093 0.0074 0.0074
h2(1, 1) 1.13 1.1377 0.0077 1.0990 0.0310 1.0986 0.0314 1.1193 0.0107
h2(1, 2) 1.21 1.2081 0.0019 1.2053 0.0047 1.2028 0.0072 1.2061 0.0039
h2(2, 2) −1.29 −1.2833 0.0067 −1.2636 0.0264 −1.2718 0.0182 −1.2807 0.0093

h3(0, 0, 0) 1. 45 1.4524 0.0024 1.4567 0.0067 1.4395 0.0105 1.4436 0.0064
h3(0, 0, 1) 0 −4.3× 10−5 4.3× 10−5 −0.0336 0.0336 0.0078 0.0078 0.0160 0.0160
h3(0, 0, 2) 0 7.2× 10−4 7.2× 10−4 0.0011 0.0011 0.0441 0.0441 0.0051 0.0051
h3(0, 1, 1) 0.88 0.8850 0.0050 0.8971 0.0171 0.8554 0.0246 0.8862 0.0062
h3(0, 1, 2) 0 −0.0079 0.0079 0.0255 0.0255 0.0028 0.0275 −0.0466 0.0466
h3(0, 2, 2) 0 0.0045 0.0045 −0.0121 0.0121 0.0516 0.0516 0.0162 0.0162
h3(1, 1, 1) −0.66 −0.6569 0.0031 −0.6408 0.0192 −0.6353 0.0247 −0.6682 0.0082
h3(1, 1, 2) 0 −0.0065 0.0065 −0.0910 0.0910 0.0402 0.0402 0.0202 0.0202
h3(1, 2, 2) 0 0.0105 0.0105 0.0765 0.0765 −0.0085 0.0085 0.0040 0.0040
h3(2, 2, 2) 1.06 1.0457 0.0143 1.0474 0.0126 1.0534 0.0066 1.0526 0.0074

Explain: 1 H represents the kernel parameters; 2 T-V represents true value; 3 R-I represents random initialization;
4 C-I represents chaotic initialization; 5 S-I represents sequence initialization; 6 H* represents the identification
result; 7 E represents the identification error.

6.2. Model Identification Experiment with Different Optimization Algorithms

To further evaluate the performance of our algorithm in identifying the model pa-
rameters. Firstly, the X-dimensional time series generated by the Lorenz equation is used
as validation data, and it is divided into historical training set and online prediction set.
Secondly, the algorithm parameters are determined and the training set is used to identify
the model. Finally, the prediction set is sampled by the dynamic split window, identifies
the prediction model online and performs single-step prediction. In addition, improved
particle swarm optimization algorithm (IPSO) [29], genetic algorithm (GA) [30] and beetle
antennae search algorithm (BAS) [31] are used for comparative analysis. The parameter of
the algorithms are shown in Table 2.
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Table 2. Algorithm parameter setting of experiment 2.

Algorithm Parameter Settings

Ours Q = 29, w = 0.8, c1 = c2 = 2, r1 = rand, r2 = rand
IPSO S = 5, λ1 = λ2 = λ3 = 2, α1 = rand, α2 = rand, α2 = rand
GA pc = 0.8, pm = 0.01
BAS η = 0.95, δ = 2

The Lorenz equation is a classical chaotic system, and the generated chaotic time
series are often used for algorithm verification. The mathematical expression of the Lorenz
equation is as follows: 

x′ = −σ(x− y)
y′ = (r− z)x− y
z′ = xy− bz

Based on the above Lorenz equation, we set the initial value to (1,0,0), σ = 10, r = 28
and b = 8

3 . The fourth-order Runge–Kutta method is used for sampling, with an integration
step of 0.02. In the generated chaotic time series, 700 sample points of the Lorenz-X
dimensional are selected as the experimental data. The initial length of dynamic split
window is set to 200, and the last 500 sample points are used as the test set. The delay time
τ = 8 and the embedding dimension m = 5 are determined by the historical trajectory. To
ensure the objectivity of comparison experiment, the population size of each algorithm is
100 and the maximum number of iterations is 500.

Figure 10 shows the trajectory prediction of Lorenz-X dimensional by four model
identification algorithms. It can be seen that the models identified by the four algorithms
can achieve nonlinear trajectory prediction, and the predicted trajectory of our algorithm
has best fit with the true trajectory, while the BAS algorithm has the most deviation points.
Figure 11 shows the trajectory prediction errors of the four algorithms, where Err =
|x(n)− x̂(n)|. It can be found that our algorithm has only 7.2% of prediction errors greater
than 0.2, compared to 21.4%, 42% and 38.4% for IPSO, GA and BAS algorithms, respectively.
Therefore, the identification model of our algorithm can control the prediction error within
a low fluctuation range, which indicates that the model identification performance is much
higher than the other three algorithms.

Figure 10. Trajectory prediction of Lorenz-X dimensional.
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(a) (b)

(c) (d)

Figure 11. Trajectory prediction errors of the four algorithms. (a) Our (OTP-SSCT) algorithm; (b) the
IPSO algorithm; (c) the GA algorithm; (d) the BAS algorithm.

From Figure 12, the average prediction error of our algorithm are only 35.9%, 16.2%,
and 13.6% of IPSO, GA and BAS algorithms, respectively, and the maximum prediction
error are only 50.1%, 38.9% and 24.5%, respectively. Obviously, the prediction accuracy
of the model identified by our algorithm is higher than the other three optimization algo-
rithms. According to the maneuver of the Lorenz-X dimensional trajectory, it is calculated
the average prediction error at each 50 steps, as shown in Figure 13. It is shown that
our algorithm can maintain a high prediction accuracy for strongly nonlinear trajectory
over time, while the other three algorithms are affected by the fluctuations of trajectories.
Meanwhile, it indicates that the proposed algorithm is highly robust and can achieve model
identification of strongly nonlinear trajectories.

Figure 12. Average and maximum prediction errors of the four algorithms.
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Figure 13. Average prediction error of the prediction process in experiment 2.

Table 3 shows that our algorithm has the smallest values of both MSE and RMSE, and
R2 is closest to 1. It shows that our algorithm has a significant advantage in nonlinear
trajectory prediction. Compared with the other three algorithms, the MAPE value of our
algorithm is the lowest, indicating that the OTP-SSCT algorithm has the best stability. The
statistics in Table 3 show the average results from 50 independent replicate experiments for
each algorithm. In summary, the proposed algorithm has certain advantages in terms of
prediction accuracy and stability.

Table 3. Comparison of precision metrics of experiment 2.

Trajectory Algorithm
Precision Metrics

MSE RMSE MAPE R2

Lorenz-X

Ours 0.0262 0.1618 0.0235 0.9996
IPSO 0.1575 0.3969 0.0702 0.9975
GA 0.5872 0.7663 0.1844 0.9907
BAS 0.8765 0.9362 0.2098 0.9861

6.3. Online Trajectory Prediction Experiment for Maneuvering Targets

In order to test the performance of the OTP-SSCT algorithm for the online prediction
of maneuvering target trajectories, the mapping f in Equation (2) is replaced by LSTM
algorithm, kernel least mean squares (KLMS) algorithm, kernel recursive least squares
(KRLS) algorithm and support vector regression (SVR) algorithm. We perform online single-
step prediction of maneuvering target trajectories using the five algorithms separately, and
a comparative analysis is given by precision metrics.

The trajectory maneuver can be divided into horizontal maneuvers, vertical maneuvers
and spatial combination maneuvers. We adopt the UAV three-degree-of-freedom model to
simulate the generation of real-time trajectory data. Considering the UAV as a mass point
and the ground coordinate system as an inertial coordinate system, the motion equations
are as follows: 

ẋt = vt cos θt cos ψt

ẏt = vt cos θt sin ψt

żt = vt cos θt

v̇t = g(Ft − sin θt)

θ̇t = g
vt
(Tt cos φt − cos θt)

ψ̇t = gTt sin φt
/
(vt cos θt)

(38)
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where xt , yt and zt represent the horizontal and height coordinates of the UAV in the
inertial coordinate system, respectively. vt, θt and ψt represent the speed, climb angle and
heading angle of the UAV, respectively. φt is the roll angle. g is the gravitational acceleration.
Ft and Tt represent the horizontal overload and the longitudinal overload, respectively.
[xt, yt, zt, vt, θt, ψt]T and [Ft, Tt, φt]T are the state variables and control variables of the UAV,
respectively.

A randomly generated maneuvering trajectory by Equation (38) was used as the
experimental data. The number of sensor samples is 300 and the sampling interval is 0.2 s.
The initial length of dynamic split window is set to 20, and predict the latter 280 trajectory
data online. Adopt three-dimensional coordinate independent prediction to improve the
prediction accuracy. The delay time τ and the embedding dimension m of each dimension
of the trajectory data are determined by the historical trajectory. X-dimension: τ = 5, m = 2.
Y-dimension: τ = 6, m = 2. Z-dimension: τ = 6, m = 2.

As can be seen from Figure 14, the five prediction trajectories roughly match the true
trajectories. Among them, our algorithm is closest to the true trajectory, while the other
four algorithms all appear a lot of deviation points. Figure 15 shows the online trajectory
prediction errors for each dimension. From Figure 15, the farthest distance in space be-
tween the predicted trajectory and the true trajectory can be calculated, where ours, LSTM,
KLMS, KRLS and SVR algorithms are about 1.34 m, 8.57 m, 9.54 m, 2.55 m and 8.93 m,
respectively. Meanwhile, the average prediction error of our algorithm improves approx-
imately 87.6%, 87.3%, 45.9% and 78.5% over LSTM, KLMS, KRLS and SVR algorithms,
respectively. Obviously, our algorithm has the smallest error fluctuation range and the
strongest robustness performance. The mean absolute error is calculated for every 20 steps,
as shown in Figure 16. It can be found that the prediction accuracy of our algorithm for
maneuvering target trajectory is better than the other four algorithms, which can achieve
high accuracy online trajectory prediction.

Figure 14. Online trajectory prediction of maneuvering target.

(a) (b) (c)

Figure 15. Online trajectory prediction errors of five algorithms. (a) X-dimension prediction errors;
(b) Y-dimension prediction errors; (c) Z-dimension prediction errors.
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Figure 16. Average prediction error of the prediction process in experiment 3.

From the precision metrics in Table 4, it can be seen that our algorithm has optimal
trajectory prediction results for the maneuvering target and it can accurately track the true
trajectory in the whole stage. The LSTM algorithm uses gradient descent algorithm to learn
the long-term dependencies of data through three gating units. The network parameters
are trained by the dynamic split window in this experiment. Since the algorithm is prone
to falling into local extremes or overfitting, and the insufficient amount of training data can
also lead to model training failure, which affects the prediction performance. The KLMS
and KRLS algorithms are adaptive filtering algorithms based on kernel method. In this
experiment, the Gaussian kernel function is chosen as the kernel function. Both algorithms
require only a small amount of computation for filtering estimation and weight update, but
memory consumption will increase linearly with the number of iterations. Although there
are some sparse methods such as novel criterion and approximate linear correlation, they
still cannot maintain the prediction accuracy of the algorithm. The SVR algorithm is used
to find a minimum interval band to wrap all the training samples. In this experiment, we
use the dynamic split window to segment the training and prediction sets. It can be found
that the SVR algorithm has a large prediction error at maneuvering turns, which is due to
the poor preprocessing of the training data thus leading to parameter identification failure.

Table 4. Comparison of precision metrics of experiment 3.

Prediction
Dimension

Prediction
Algorithm

Precision Metrics

MSE/m2 RMSE/m MAPE R2

X

Ours 0.3521 0.5934 0.0059 0.9998
LSTM 14.943 3.8655 0.0388 0.9994
KLMS 26.065 5.1054 0.0422 0.9988
KRLS 1.5008 1.2251 0.0111 0.9997
SVR 12.407 3.5224 0.0146 0.9993

Y

Ours 0.2383 0.4881 0.0053 0.9998
LSTM 21.746 4.6633 0.0563 0.9985
KLMS 17.012 4.1245 0.0504 0.9989
KRLS 0.9433 0.9712 0.0126 0.9996
SVR 10.144 3.1851 0.0338 0.9993

Z

Ours 0.2848 0.5337 4.7× 10−4 0.9999
LSTM 17.764 4.2148 0.0036 0.9987
KLMS 12.886 3.5897 0.0032 0.9991
KRLS 0.7959 0.8921 7.6× 10−4 0.9997
SVR 6.3458 2.5191 0.0017 0.9995
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Figure 17 shows the single-step predicted response time of the five algorithms for 50
independent replicate experiments, in which the average single-step prediction time of our
algorithm, LSTM, KLMS, KRLS and SVR algorithms are about 0.03352, 0.04344, 0.03257,
0.03604 and 0.04102, respectively. Among them, the single-step prediction time of our
algorithm is about 89.8% of five algorithms on average, indicating that our algorithm has an
outstanding position in terms of response time. Notice that the single-step prediction time
of our algorithm is slightly longer than that of the KLMS algorithm. This is due to the first
model identification adopting the improved initial population strategy, which consumes
more time. Although the saved optimal values are later used for population initialization,
maneuvering changes of the target still increase the identification time. However, it is
undeniable that our algorithm outperforms the KLMS algorithm in terms of prediction
accuracy.

Figure 17. Comparison of single-step prediction times.

7. Conclusions

In this paper, we propose the OTP-SSCT algorithm to achieve a stable online prediction
of maneuvering target trajectories. The algorithm has the following advantages: (1) We
build an online prediction model of maneuver trajectory according to chaotic time series
analysis. Thus, a small sample chaotic time series prediction set that characterizes the target
motion characteristics is constructed through the trajectory segmentation method. By fully
considering the nonlinear maneuver characteristics of trajectory data, we introduce the
spatiotemporal features into the PSO model identification algorithm, thus improving the
identification sensitivity of key points. Meanwhile, the feedback optimization strategy is
used to avoid the superposition of prediction errors and improve the prediction accuracy. (2)
We propose a new initial population strategy to solve the initial value sensitivity problem
of PSO model identification algorithm, thus improving the effectiveness of the initial
parameters on model identification. In our future work, it will be interesting to further
improve the speediness of the algorithm.
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