Tuning the Quantum Properties of ZnO Devices by Modulating Bulk Length and Doping
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. The DOS of Au-S-ZnO-S-Au Device
3.2. The DOS of Au-S-ZnO-S-Au Devices with Doped Cu
3.3. The Transmission Properties of ZnO Devices
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yazdani, A.; Eigler, D.; Lang, N. Off-resonance conduction through atomic wires. Science 1996, 272, 1921–1924. [Google Scholar] [CrossRef] [PubMed]
- Tian, W.; Datta, S.; Hong, S.; Reifenberger, R.; Henderson, J.I.; Kubiak, C.P. Conductance spectra of molecular wires. J. Chem. Phys. 1998, 109, 2874–2882. [Google Scholar] [CrossRef]
- Chen, J.; Reed, M.; Rawlett, A.; Tour, J. Large on-off ratios and negative differential resistance in a molecular electronic device. Science 1999, 286, 1550–1552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sagan, C.; Jiang, Y.; Caban, F.; Snaider, J.; Amell, R.; Wei, S.; Florio, G.M. Oligofluorene molecular wires: Synthesis and single-molecule conductance. J. Phys. Chem. C 2017, 121, 24945–24953. [Google Scholar] [CrossRef]
- Venkataraman, L.; Klare, J.E.; Nuckolls, C.; Hybertsen, M.S.; Steigerwald, M.L. Dependence of single-molecule junction conductance on molecular conformation. Nature 2006, 442, 904–907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bennett, P.B.; Pedramrazi, Z.; Madani, A.; Chen, Y.C.; de Oteyza, D.G.; Chen, C.; Fischer, F.R.; Crommie, M.F.; Bokor, J. Bottom-up graphene nanoribbon field-effect transistors. Appl. Phys. Lett. 2013, 103, 253114. [Google Scholar] [CrossRef] [Green Version]
- Rui, C.; Shao, C.; Liu, J.; Chen, A.; Zhu, K.; Shao, Q. Transport properties of B/P doped graphene nanoribbon field-effect transistor. Mater. Sci. Semicond. Process. 2021, 130, 105826. [Google Scholar] [CrossRef]
- Geim, A.K.; Grigorieva, I.V. Van der Waals heterostructures. Nature 2013, 499, 419–425. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Pasupathy, A.N.; Goldsmith, J.I.; Chang, C.; Yaish, Y.; Petta, J.R.; Rinkoski, M.; Sethna, J.P.; Abruña, H.D.; McEuen, P.L.; et al. Coulomb blockade and the Kondo effect in single-atom transistors. Nature 2002, 417, 722–725. [Google Scholar] [CrossRef]
- Salomon, A.; Cahen, D.; Lindsay, S.; Tomfohr, J.; Engelkes, V.B.; Frisbie, C.D. Comparison of electronic transport measurements on organic molecules. Adv. Mater. 2003, 15, 1881–1890. [Google Scholar] [CrossRef]
- Emberly, E.G.; Kirczenow, G. Theoretical study of electrical conduction through a molecule connected to metallic nanocontacts. Phys. Rev. B 1998, 58, 10911. [Google Scholar] [CrossRef] [Green Version]
- Ghavami, B.; Rastkar-Ebrahimzadeh, A. Varistor characteristics of a nano-device containing graphene and oxidised graphene: Verification by DFT + NEGF. Mol. Phys. 2015, 113, 3696–3702. [Google Scholar] [CrossRef]
- Shukla, V.; Kumawat, R.L.; Jena, N.K.; Pathak, B.; Ahuja, R. Electronic and transport properties of bilayer phosphorene nanojunction: Effect of paired substitution doping. ACS Appl. Electron. Mater. 2021, 3, 733–742. [Google Scholar] [CrossRef]
- Bousari, N.B.; Anvarifard, M.K. A theoretical study on charge transfer of twisted T-graphene nanoribbon surface. ECS J. Solid State Sci. Technol. 2020, 9, 021001. [Google Scholar] [CrossRef]
- Dai, C.; Yan, X.; Xiao, Y.; Guo, Y. Electronic and transport properties of T-graphene nanoribbon: Symmetry-dependent multiple Dirac points, negative differential resistance and linear current-bias characteristics. EPL Europhys. Lett. 2014, 107, 37004. [Google Scholar] [CrossRef]
- Wang, F.; Wang, X.; Ye, S.; Gan, Y.; Li, S.; Wang, J. Co-modulation effect of endohedral Au atom and anchor S atoms on C20. Mol. Phys. 2020, 118, e1651917. [Google Scholar] [CrossRef]
- Ren, M.Q.; Wang, S.Z.; Han, S.; Song, C.L.; Ma, X.C.; Xue, Q.K. Tuning the electronic states and superconductivity in alkali fulleride films. AAPPS Bull. 2022, 32, 1. [Google Scholar] [CrossRef]
- Uchihashi, T. Surface atomic-layer superconductors with Rashba/Zeeman-type spin-orbit coupling. AAPPS Bull. 2021, 31, 27. [Google Scholar] [CrossRef]
- Dhingra, A.; Hu, X.; Borunda, M.F.; Johnson, J.F.; Binek, C.; Bird, J.; Sutter, J.P.; Delahaye, E.; Switzer, E.D.; Del Barco, E.; et al. Molecular transistors as substitutes for quantum information applications. J. Phys. Condens. Matter 2022, 34, 441501. [Google Scholar] [CrossRef]
- Lavroff, R.H.; Pennington, D.L.; Hua, A.S.; Li, B.Y.; Williams, J.A.; Alexandrova, A.N. Recent innovations in solid-state and molecular qubits for quantum information applications. J. Phys. Chem. 2021, 125, 12111–12114. [Google Scholar] [CrossRef]
- Xiong, Y.C.; Wang, J.N.; Wang, P.C.; Zhou, Y.; Ma, Y.N.; Zhou, W.H.; Tong, R. Trapping integrated molecular devices via local transport circulation. Phys. Chem. Chem. Phys. 2022, 24, 5522–5528. [Google Scholar] [CrossRef] [PubMed]
- Igamberdiev, A.U. Quantum computation, non-demolition measurements, and reflective control in living systems. BioSystems 2004, 77, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Zhang, Y.; Wen, Y.H.; Zheng, J.C.; Zhu, Z.Z. First-principles study on the structural and electronic properties of ultrathin ZnO nanofilms. Phys. Lett. A 2010, 374, 1054–1058. [Google Scholar] [CrossRef]
- Galdámez-Martinez, A.; Santana, G.; Güell, F.; Martínez-Alanis, P.R.; Dutt, A. Photoluminescence of ZnO nanowires: A review. Nanomaterials 2020, 10, 857. [Google Scholar] [CrossRef]
- Gao, C.; Zhong, K.; Fang, X.; Fang, D.; Zhao, H.; Wang, D.; Li, B.; Zhai, Y.; Chu, X.; Li, J.; et al. Brief Review of Photocatalysis and Photoresponse Properties of ZnO–Graphene Nanocomposites. Energies 2021, 14, 6403. [Google Scholar] [CrossRef]
- Xing, G.; Xing, G.; Li, M.; Sie, E.J.; Wang, D.; Sulistio, A.; Ye, Q.l.; Huan, C.H.A.; Wu, T.; Sum, T.C. Charge transfer dynamics in Cu-doped ZnO nanowires. Appl. Phys. Lett. 2011, 98, 102105. [Google Scholar] [CrossRef]
- Özgür, Ü.; Alivov, Y.I.; Liu, C.; Teke, A.; Reshchikov, M.; Doğan, S.; Avrutin, V.; Cho, S.J.; Morkoç, H. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 2005, 98, 11. [Google Scholar] [CrossRef] [Green Version]
- Bao, J.; Zimmler, M.A.; Capasso, F.; Wang, X.; Ren, Z. Broadband ZnO single-nanowire light-emitting diode. Nano Lett. 2006, 6, 1719–1722. [Google Scholar] [CrossRef] [Green Version]
- Haldar, K.K.; Biswas, R.; Tanwar, S.; Sen, T.; Lahtinen, J. One-pot synthesis of Au embedded ZnO nanorods composite heterostructures with excellent photocatalytic properties. ChemistrySelect 2018, 3, 7882–7890. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, Y.H.; Zhu, L. Surface engineering of ZnO nanoparticles with diethylenetriamine for efficient red quantum-dot light-emitting diodes. iScience 2022, 25, 105111. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, P.; Zang, Z. High performance CsPbBr3 quantum dots photodetectors by using zinc oxide nanorods arrays as an electron-transport layer. Appl. Phys. Lett. 2020, 116, 162103. [Google Scholar] [CrossRef] [Green Version]
- Qu, X.; Ma, J.; Jia, S.; Wu, Z.; Liu, P.; Wang, K.; Sun, X.W. Improved blue quantum dot light-emitting diodes via chlorine passivated ZnO nanoparticle layer. Chin. Phys. B 2021, 30, 118503. [Google Scholar] [CrossRef]
- Yuan, Y.; Xue, X.; Wang, T.; Chi, X.; Wang, R.; Ji, W. Polyethylenimine modified sol-gel ZnO electron-transporting layers for quantum-dot light-emitting diodes. Org. Electron. 2022, 100, 106393. [Google Scholar] [CrossRef]
- Zahid, F.; Paulsson, M.; Datta, S. Electrical conduction through molecules. In Advanced Semiconductor and Organic Nano-Techniques; Elsevier: Amsterdam, The Netherlands, 2003; pp. 1–41. [Google Scholar]
- Paulsson, M.; Zahid, F.; Datta, S. Huckel-IV on the NanoHub. Available online: https://www.nanohub.org/resources/422/ (accessed on 1 September 2022).
- Paulsson, M.; Brandbyge, M. Transmission eigenchannels from nonequilibrium Green’s functions. Phys. Rev. B 2007, 76, 115117. [Google Scholar] [CrossRef] [Green Version]
- Zahid, F.; Liu, L.; Zhu, Y.; Wang, J.; Guo, H. A generic tight-binding model for monolayer, bilayer and bulk MoS2. AIP Adv. 2013, 3, 052111. [Google Scholar] [CrossRef] [Green Version]
- Palos, E.I.; Paez, J.I.; Reyes-Serrato, A.; Galván, D.H. Electronic structure calculations for rhenium carbonitride: An extended Hückel tight-binding study. Phys. Scr. 2018, 93, 115801. [Google Scholar] [CrossRef]
- Harrison, W.A. Why tight-binding theory? Solid State Commun. 2002, 124, 443–447. [Google Scholar] [CrossRef]
- Tsuji, Y.; Estrada, E. Influence of long-range interactions on quantum interference in molecular conduction. A tight-binding (Hückel) approach. J. Chem. Phys. 2019, 150, 204123. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, Z.; Li, G.-Q.; Long, G.-L. Tuning the Quantum Properties of ZnO Devices by Modulating Bulk Length and Doping. Entropy 2022, 24, 1750. https://doi.org/10.3390/e24121750
Fan Z, Li G-Q, Long G-L. Tuning the Quantum Properties of ZnO Devices by Modulating Bulk Length and Doping. Entropy. 2022; 24(12):1750. https://doi.org/10.3390/e24121750
Chicago/Turabian StyleFan, Zheng, Gui-Qin Li, and Gui-Lu Long. 2022. "Tuning the Quantum Properties of ZnO Devices by Modulating Bulk Length and Doping" Entropy 24, no. 12: 1750. https://doi.org/10.3390/e24121750
APA StyleFan, Z., Li, G. -Q., & Long, G. -L. (2022). Tuning the Quantum Properties of ZnO Devices by Modulating Bulk Length and Doping. Entropy, 24(12), 1750. https://doi.org/10.3390/e24121750