
Citation: Tarasov, S.; Shannon, W.;

Kocharovsky, V.; Kocharovsky, V.

Multi-Qubit Bose–Einstein

Condensate Trap for Atomic Boson

Sampling. Entropy 2022, 24, 1771.

https://doi.org/10.3390/e24121771

Academic Editors: Christos Volos,

Karthikeyan Rajagopal, Sajad Jafari,

Jacques Kengne and Jesus M.

Munoz-Pacheco

Received: 29 October 2022

Accepted: 29 November 2022

Published: 3 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Multi-Qubit Bose–Einstein Condensate Trap for Atomic
Boson Sampling
Sergey Tarasov 1 , William Shannon 2 , Vladimir Kocharovsky 1 and Vitaly Kocharovsky 2,*

1 Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod 603950, Russia
2 Department of Physics and Astronomy and Institute for Quantum Science and Engineering,

Texas A&M University, College Station, TX 77843-4242, USA
* Correspondence: vkochar@physics.tamu.edu

Abstract: We propose a multi-qubit Bose–Einstein-condensate (BEC) trap as a platform for studies of
quantum statistical phenomena in many-body interacting systems. In particular, it could facilitate
testing atomic boson sampling of the excited-state occupations and its quantum advantage over
classical computing in a full, controllable and clear way. Contrary to a linear interferometer enabling
Gaussian boson sampling of non-interacting non-equilibrium photons, the BEC trap platform pertains
to an interacting equilibrium many-body system of atoms. We discuss a basic model and the main
features of such a multi-qubit BEC trap.

Keywords: Bose–Einstein condensation; Gaussian boson sampling; quantum advantage; NP-hard
problem

1. Introduction to Quantum Statistical Physics of Atomic Boson Sampling in a
BEC Trap
1.1. The Essence of the Problem

Recently, a stationary stochastic process of many-body fluctuations of the excited-atom
occupations in a trapped Bose–Einstein-condensed gas has been suggested for quantum
simulation of the ]P-hard problem of boson sampling [1]. Such an atomic boson sampling,
based on the Bose–Einstein-condensate (BEC) platform, is an alternative to a well-known
photonic boson sampling based on the linear interferometer platform [2–25]. It has the
potential to demonstrate quantum advantage [26–30] of the many-body interacting systems
over classical computers. For a full and clear demonstration of a ]P-hardness of computing
atom-excitation sampling, a condensate should be nonuniformly spread over an entire
BEC trap and provide, via an interparticle interaction, multimode Bogoliubov coupling
between a large number of excited atom states. Moreover, all of the above parameters of the
many-body system should be controllable in a wide range to ensure sufficient variability
of the observed joint occupation statistics of the excited states or coarse-grained groups
of excited states. So, there is an open problem of designing BEC traps most suitable for
experimental studies of various phenomena associated with atomic boson sampling.

The present paper is devoted to this problem: We discuss a basic model of a potential
design of the multi-qubit BEC trap that could provide the required conditions and be
particularly suitable for atomic-boson-sampling experiments. It is inspired by an analogy
with multi-qubit or multi-qudit systems [31,32] and could look like a system of a finite
number, Q, of single-qubit or -qudit cells shown in Figure 1 in a two-dimensional (2D) case.

Remarkably, a direct measurement of fluctuations in a total occupation of the noncon-
densate in cold dilute gases has already been achieved [33,34]. Splitting the noncondensate
into some parts associated with the groups of excited states and measuring atom-number
fluctuations in the occupations of those parts is the next important step in the many-body
statistical physics toward testing quantum advantage. It is beyond the bulk of previous
studies of the BEC phenomena, which is devoted to the mean properties of the condensate
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and quasiparticles, and it is also beyond the previous studies of fluctuations in the total oc-
cupation of the condensate (see, e.g., [34–42]). The atom-number fluctuations are especially
important for the applications related to quantum information science and matter-wave
interferometers [43], including Ramsey [44,45] and Mach–Zehnder [46] on-chip interfer-
ometers. In the literature, there are also other interesting discussions of the atom-number
fluctuations associated with a subvolume of a BEC trap [47,48], BEC collapse [49], and
squeezed states [44].

Figure 1. Two-dimensional (2D) model of a BEC trap made up of Q single-qubit (or single-qudit) cells
of size L× L′ each contributing with two (or more) lower energy levels to the lower-energy miniband
of the multi-qubit (or multi-qudit) trap. This miniband is separated from the higher energy levels
by an energy gap ∆E much larger than the lower-energy splitting δE. For presentation purposes, an
inhomogeneous underlying (background) potential, designed for controlling the condensate profile
and Bogoliubov couplings, as well as the high potential walls at the outer borders of the trap are
not shown.

1.2. What Is the Atomic Boson Sampling?

In statistical theory, sampling is a selection of events (subsets) from within a sample
space of all possible outcomes (or results or sample points) to mimic the characteristics
of the probability distribution in a probability space (a probabilistic model). Atomic
boson sampling means sampling from the excited-state occupations of identical Bose
atoms subject to interparticle scattering (interaction) in a trapped Bose–Einstein condensed
gas within a statistical ensemble of a given experimental setup. The atoms forming the
condensate are not counted. One can consider the integer occupations nk = 0, 1, 2, . . . and
their joint probability distribution ρ({nk}) for the individual orthonormal excited states
{φk(r)| k = 1, 2, . . .}, orthogonal to the condensate wave function, or for groups of such
excited states. The simultaneous measurement of their occupations has to be completed
by multiple detectors via projecting atoms onto preselected subsets (groups) of the excited
states. The latter subsets determine the sampling probability distribution in question.

Condensed-matter statistical physics of a mesoscopic system of N atoms confined
in a trap is highly nontrivial due to an interaction between massive atoms taking place
on a background of the Bose–Einstein condensate formed by the same interacting atoms
via spontaneous symmetry breaking at a critical temperature Tc. Quantum many-body
fluctuations in this system remain ]P-hard for computing [1] even in equilibrium and even
within the grand-canonical-ensemble [50] and Bogoliubov–Popov approximations [51–53].
For simplicity’s sake, we adopt these approximations in the present paper and assume that
the temperature is well below the critical region of the BEC phase transition, T � Tc.

The computational ]P-hardness of atomic boson sampling is a real property of the
interacting BEC gas, not just a feature of the Bogoliubov–Popov approximation. It follows
from the exact non-perturbative theory of critical fluctuations in BEC, which is based on the
non-polynomial diagram technique [54–56] and also leads to the representation of the joint
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probability distribution of the occupations of the bare excited atomic states in terms of the
hafnian of a matrix associated with a correlation matrix which is similar to the one given by
the stated approximation. In other words, the ]P-hardness is a robust property of atomic
boson sampling in the sense that it manifests itself (survives) even in the Bogoliubov–Popov,
i.e., the first order with respect to the interaction parameter, mean-field approximation.

Each act of atomic boson sampling occurs by means of a measurement of the occu-
pations of excited states or groups of them. One can employ, say, a simultaneous optical
multi-detector imaging. Then, the system of interacting atoms returns back to its equilib-
rium state and becomes ready for the next act of sampling/measurement. In a sense, the
system of atoms resets itself. This is true both if the atoms were reloaded into the trap
after being released from the trap in the case of a trap-destruction measurement or if the
atoms were not removed from the trap. Thus, the atomic boson sampler is not a quantum
simulator of some input signal or some artificial, controlled process. The system of atoms
in the BEC trap equipped with the atom-number detectors is just a quantum generator of
random strings of atom-excitation occupations based on the natural process of persistent
equilibrium fluctuations.

Surprisingly, atomic boson sampling has the potential to demonstrate a quantum
advantage that is similar to the one of Gaussian boson sampling of non-interacting photons
in a linear interferometer.

1.3. Comparison with Photonic Boson Sampling in a Linear Interferometer

Physics of photonic boson sampling in a linear interferometer, widely studied in the
past decade [2–25], looks significantly simpler since photons are non-interacting, massless
and enter the interferometer in a given quantum (e.g., Fock or squeezed) state from the
external sophisticated on-demand light sources. Importantly, atomic boson sampling from
an equilibrium BEC trap does not require external sources of atoms in a prescribed quantum
state because the interacting atoms generate squeezing by themselves. Thus, in order to
demonstrate the quantum advantage in a linear interferometer, one has to prepare the
system of photons in a prescribed nonequilibrium state, whereas a usual thermal state
of atoms in the BEC trap is enough in the case of atomic boson sampling. The reason
for switching from the original proposal [3] to the Gaussian boson sampling protocol
was an absence of the on-demand single-photon sources and availability of the reliable
on-demand sources of input photons in the Gaussian/squeezed states based on the process
of a parametric down-conversion [4,5,23].

The computational ]P-hardness of the joint excited-state occupation fluctuations in
the BEC trap exists by itself and does not require an adjustment or fine tuning of any input,
processing, interaction or coupling parameters. On the contrary, Gaussian boson sampling
in a linear interferometer, like other usually discussed nonequilibrium quantum processors
and simulators, requires a lossless propagation through a system of beam couplers, splitters,
and phase shifters as well as external sources of photons in squeezed states. Moreover, the
main limiting factor for a demonstration of quantum advantage in photonic sampling is an
exponential growth of photon losses on the input–output propagation with an increasing
number of optical channels and coupling elements. Such a limiting factor is absent in the
case of atomic boson sampling.

1.4. Why Atomic Boson Sampling Is ]P-Hard for Computing?—A Brief Theory

Despite a number of outstanding differences stated above, both atomic and photonic
boson samplings belong to the same ]P-hard complexity class. The fact is that in both
cases, the sampling (i.e., joint boson-occupation) probability distribution is determined by
a hafnian (or, sometimes, a permanent) of matrices built from an appropriate covariance
matrix G of the boson creation and annihilation operators. The above fact follows from
the analytical calculation of the characteristic function (that is, Fourier transform) of the
joint occupation probability distribution by means of the Wigner transform technique
and application of the Hafnian Master Theorem that gives an explicit Taylor expansion
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of this characteristic function via the aforementioned hafnian [1,57]. It is well known that
for a general n× n matrix, computing the hafnian or permanent is ]P-hard [58–60], that
is, requires an exponentially large number of operations ∼n32n/2 or ∼n22n, respectively,
for the best general-purpose algorithms [60–63]. Contrary to a determinant that can be
computed in polynomial time ∼n3 via Gaussian elimination, the hafnian and permanent
matrix functions are intimately related to the analysis of the ]P-hard problems [26,64].

Yet, the computational ]P-hardness (which is the basis of quantum advantage) of
atomic boson sampling pertains only if the matrices under the hafnian and the covariance
matrix G from which they are built are variable/controllable in a wide range by varying
the trapping potential, interparticle interaction (via Feshbach resonance [65]), temperature,
number of trapped atoms and other parameters of the BEC trap [66]. In other words, those
matrices should not be restricted to a narrow subset of matrices for which the hafnian
could be computed in polynomial time by some efficient approximation or algorithm,
such as a fully polynomial random approximation scheme (FPRAS) [59], a recurrence
method [67], etc.

In order to understand how to satisfy this requirement in the design of the BEC trap,
we need to know how the covariance matrix G depends on the trap parameters. Fortunately,
we have an analytical formula for the G via the matrix R of the Bogoliubov transformation,

G = RDR† +
1
2
(

RR† − 1
)
; G ≡

〈
:
(

â†

â

)(
â†

â

)T

:

〉
, D =

[
D1 0
0 D1

]
, D1 =

⊕
j

1

eEj/T − 1
. (1)

Here, the boldface operator vectors â† = (â†
1, â†

2, . . .)T and â = (â1, â2, . . .)T are the column-
vectors of the creation and annihilation operators for bare excited atom states, respectively.
The superscripts T and † denote transpose and conjugate transpose, respectively. The
angles stand for the statistical average. The colons denote the normal ordering of operators,
meaning that all creation operators stand to the left from the annihilation ones. The 2× 2
block-diagonal matrix D include the Bose–Einstein thermal occupation numbers for the
quasiparticles of eigenenergies {Ej}. The matrix R performs the Bogoliubov transformation(

â†

â

)
= R

(
b̂†

b̂

)
, R =

[
U∗ 0
0 U

][
cosh r∗ (eiθ sinh r)∗

eiθ sinh r cosh r

]
, (2)

from the representation of the excited-particle field operator in terms of the quasiparti-
cle creation and annihilation operators b̂† = (b̂†

1 , b̂†
2 , . . .)T and b̂ = (b̂1, b̂2, . . .)T to the

representation in terms of the bare-particle creation and annihilation operators, that is,

ψ̂ex(r) = ∑
k 6=0

φk(r)âk = ∑
j

(
uj(r)b̂j + v∗j (r)b̂

†
j
)
. (3)

Within the mean-field Bogoliubov–Popov approximation [51–53], adopted in the
present paper, a Bose–Einstein-condensed gas is described via the Hamiltonian given by a
quadratic form of the bare-particle creation and annihilation operators

Ĥ = ∑
k,k′

(
â†

k âk′ +
1
2

) ∫
φ∗k

(
− h̄2∆

2m
+ U(r)− µ + 2g

(
N0|φ0(r)|2 + nex(r)

))
φk′d

3r

+
gN0

2 ∑
k,k′

â†
k â†

k′

∫
φ∗k φ2

0φ∗k′ d
3r +

gN0

2 ∑
k,k′

âk âk′

∫
φk(φ

∗
0 )

2φk′ d
3r .

(4)

Here, ∆ is the three-dimensional Laplace operator, m is a particle mass, U(r) is an external
potential, g = 4πh̄2a/m is an interaction constant, a is a s-scattering length, µ is a chemical
potential, N0 is the mean number of particles in the condensate, nex(r) is the mean density
of the excited particle fraction (the noncondensate), and φ0(r) is a condensate wave function
normalized to unity,

∫
V |φ

2
0 |d3r = 1. The superscript * means complex conjugation. The
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Hamilton operator (4) can be equivalently rewritten in the matrix form via the (2× 2)-block
Hamiltonian matrix H as follows

Ĥ =

(
â†

â

)T

H
(

â†

â

)
, H =

[
K̃ K
K∗ K̃∗

]
. (5)

The Bogoliubov transformation (2) diagonalizes the blocks K responsible for the co-rotating
contributions â†

k âk′ or âk â†
k′ to the Hamiltonian and nullifies the blocks K̃ responsible for the

counter-rotating contributions â†
k â†

k′ or âk âk′ to the Hamiltonian,

RT HR =

[
0 E
E 0

]
, E = diag{Ej| j = 1, 2, . . .}. (6)

The point is that the quasiparticles are the eigenstates of the Bogoliubov Hamiltonian with
the eigenenergies {Ej| j = 1, 2, . . .}.

The multimode squeezing matrix [1,68–73] r = (rk,k′), which is a positive semi-definite
Hermitian matrix, as well as the unitary matrices U and eiθ , are calculated in [1]. Any
additional unitary transformation V to another complete orthonormal set of excited states
{φ′k(r)| k = 1, 2, . . .} in the single-particle Hilbert space,

φk = ∑
k′ 6=0

Vk′ ,kφ′k′ , (7)

results in the Bogoliubov transformation R′ which differs from the R in Equation (2) just by
replacement of the unitary U with the composite unitary transformation U′ = VU.

Clearly, the Bogoliubov transformation (2) is a superposition of the squeezing and
unitary transformations. In essence, their matrices r and U determine the complexity and
variability of the covariance matrix G, since the classical thermal occupations of quasi-
particles entering the matrix D are easy to compute. As a result, the ultimate reason for
the ]P-hardness (quantum advantage) of atomic boson sampling is an interplay between
the squeezing (found in [74]) due to the interparticle interactions and interference due to
the unitary mixing of bare-particle excited states. If either the squeezing or interference
vanishes, then the joint occupation probabilities can be computed classically in polyno-
mial time.

1.5. The Content of the Paper

Based on the main aspects of a truly hard for computing and innovative problem
of atomic boson sampling in a BEC trap explained in the Introduction (Section 1), we
formulate, in Section 2, general requirements for the BEC trap design facilitating testing
the quantum advantage of atomic boson sampling in a full, controllable and clear way.
A basic model of a multi-qubit BEC trap is devised in Section 3. In Sections 4 and 5,
we present the analytical and numerical results for the single-particle energy spectrum
and eigenstates in the one- and two-dimensional multi-qubit traps, respectively. The
corresponding solutions to the Gross–Pitaevskii equation for the condensate wave function
are presented in Section 6. In Section 7, they are employed in the analysis of the Bogoliubov
transformation and couplings for estimates of the multimode squeezing parameters. We
discuss also the multimode dimensionality, squeezing and interference, which determine
an asymptotic parameter for computational ]P-hardness of atomic boson sampling and
require analysis of the Bogoliubov–De Gennes equations for the quasiparticle spectrum
and eigenfunctions. The experimental aspects of atomic boson sampling are discussed in
Section 8. Section 9 contains concluding remarks.

2. General Requirements for the BEC Trap Design Facilitating Atomic
Boson Sampling

Although any general-case BEC trap can be employed for studying manifestations of
its potential quantum advantage over classical computing of boson sampling [1], in order
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to test this advantage in a controllable and unambiguous way, one should better use a
specially designed trapping potential (see an example in Figure 1).

The challenge of the BEC trap design is twofold. On the one hand, it is desirable to
have a trap with a finite (or even mesoscopic) number, M, of lower split-off excited states
or groups of states, which are predominantly populated and strongly coupled to each
other by means of Bogoliubov coupling. The atomic boson sampling could refer to the
so-called marginal statistics—the quantum statistics of the occupations of these excited
states irrespective to the occupations of all other states. It is especially informative if all of
the higher excited states are separated from such a split-off miniband or sub-miniband of
the selected M lower excited states or some groups of them by an energy gap ∆E wider
than the temperature T and are not significantly coupled to the lower energy states. Then,
these higher states are relatively poor populated, do not contribute to ]P-hard complexity
and can be skipped or accounted for as a kind of perturbation.

On the other hand, it is required to provide a way to simultaneously measure, that
is to sample, the occupations of those M excited particle states or groups of them, say,
by means of multi-detector optical imaging based on the light transmission through or
scattering from the atomic cloud. Each detector should measure an appropriate occupation
by projecting upon a prescribed state or group of states. Moreover, this subset of states or
groups of states should be variable and controllable by means of tuning the detectors.

The geometry of a 2D multi-qubit BEC trap, such as the one shown in Figure 1, looks
especially convenient for such boson sampling experiments since it allows one to implement
multi-detector imaging by means of the laser light passing through the trap perpendicular
to its plane. A controllable reconfiguration of the system of detectors aimed at varying
the states or groups of states prescribed for occupation sampling also looks easier in the
2D geometry.

Suppose we design a multi-qubit BEC trap with a confining potential U(r) supporting
a finite number Q of single-qubit cells, which form a 1D, 2D or 3D lattice and have two
split-off lower energy levels each. Those two levels appear when a twofold-degenerate
ground level is split by a certain perturbation. Then, such a lattice of single-qubit cells
should be placed on top of a slightly varying in space background potential with high walls
at the trap borders, and the inter-cell potential walls should be adjusted to be relatively
high but narrow enough to allow for a quantum tunneling of atoms between cells. All
this is necessary for establishment of the common to all cells nonuniform condensate
and significant interaction between atoms from different single-qubit cells. The last two
conditions are required for the existence of significant Bogoliubov coupling between a large
number of excited states without which the multimode squeezing as well as interference via
dressed quasiparticles are not well pronounced in the Bogoliubov transformation matrix R
in Equation (2) and, hence, the computational ]P-hardness disappears.

In fact, building a confining potential in the form of a single-qubit cell and duplicating
it into a lattice is a relatively straightforward enterprise since such potentials are reminiscent
of a double-well potential and an optical lattice potential, in which the BEC as well as the
Bogoliubov excitations had been studied a lot [35,43,44,75–81]. The size of the multi-qubit
trap depends on its dimensionality. In the 2D case of Figure 1, an overall dimension of the
BEC trap is about

√
Q µm, since each single-qubit cell has a scale of a de Broglie wavelength

∼1 µm.
The starting point of our analysis is the limiting case of infinitely high inter-cell barriers

and identical single-qubit cells, each with two single-particle eigenfunctions corresponding
to the first and second energy levels, e1 and e2. These eigenfunctions form a natural basis for
constructing the single-particle excited states of the actual trap. There are 2Q combinations
of these single-qubit states which are the eigenfunctions of the whole multi-qubit trap. Their
Q + 1 different energy levels {εq = (Q− q)e1 + qe2; q = 0, 1, . . . , Q} constitute a lower
energy miniband. Degeneracies of levels are given by binomial coefficients gq = (Q

q ). Their

sum coincides with the number of the single-qubit-state combinations: ∑Q
q=0 (

Q
q ) = 2Q.
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Those limiting-case eigenfunctions of the multi-qubit trap emerge adiabatically from
the wavefunctions of an empty flat box trap when the inter-cell potential barriers are
gradually introduced. This process can be easily understood within a 1D model of a flat
background potential and almost equally spaced delta-function potential barriers. Its
analysis shows that the limiting-case eigenfunctions of the finite lattice of independent
qubit cells correspond to some superpositions of the 2Q lower-energy eigenfunctions of
the whole trap with finite barriers. Hence, the 2Q lower-energy eigenfunctions ψn ≡ ψs,p
of order n = p + sQ, p = 1, . . . , Q, s = 0, 1, of the actual trap with finite barriers can be
considered as a system of the “generating” eigenfunctions constituting two bands (s = 0, 1)
and enumerated by the intra-band index p = 1, . . . , Q and the band index s = 0, 1, . . ..

Although one could consider all 2Q energy levels associated with Q qubits, it is more
convenient to operate with a smaller number of the single-particle energy levels M + 1
which constitute some miniband. In Sections 4 and 5, we show that it is possible to choose
the trap parameters in such a way that M + 1 = 2Q levels will form a lower miniband
separated from the higher energy levels by an energy gap ∆E wider than the temperature T.
Below, we mainly discuss the multi-qubit trap properties associated with such a miniband.

Analysis of the case when each cell has a larger number, d > 2, of the lower split-off
energy levels is very similar. Then, a finite lattice of such cells forms a multi-qudit trap.

In any case, the eigenfunctions ψs,p and energy levels of the actual trap with a finite
trapping potential can be easily controlled and varied in a wide range by means of control-
ling the background and barrier potentials as well as the dimensions of the single-qubit cells.
For instance, the relative occupations of cells, i.e., the relative wavefunction amplitudes in
different cells, within an eigenfunction of a given order can be individually controlled by
tuning the cell background potentials. The intra-cell qubit properties, including the energy
splittings δEj, j = 1, . . . , Q, can be addressed by adjusting the intra-cell barriers.

The ground-state properties also can be controlled in this way. Implementing also
control of the interparticle interactions via the Feshbach resonance [65], one can adjust
the condensate wave function as needed. Below, we consider a favorable for the atomic
boson sampling regime of a common condensate which is macroscopically occupied and
inhomogeneously spread over the entire trap at a low temperature T � Tc and a relatively
large number of trapped atoms N � Q. At certain conditions, a particular number M
(for example, M = 2Q− 1) of lower-miniband excited states can be considered as being
decoupled from the continuum of excited states of the total infinite-size Hilbert space and
constituting a finite-size Hilbert subspace. The situation could become especially clean and
favorable for atomic boson sampling experiments if, in addition, the Bogoliubov couplings
are adjusted to be spread over the whole lower miniband but not above the energy gap.

Apparently, the multi-qubit trap is capable of providing a whole series of other BEC
regimes [78], starting from a strongly correlated regime and a regime of anomalous fluc-
tuations in the critical region at T ≈ Tc to the regimes of fragmented condensates of
the individual single-qubit cells and a quasi-condensate. However, their discussion goes
beyond the scope of the present paper.

3. A Basic Model of a Multi-Qubit BEC Trap

The first step in designing the multi-qubit trap is to find its single-particle energy
spectrum {εn|n = 0, 1, . . .} and eigenstates {ψn}, given by the linear Schrödinger equation(

− h̄2

2m
∆ + U(r)

)
ψn(r) = εnψn(r), (8)

and adjust the trap parameters in order to fulfill the requirements on the split-off lower-
energy miniband formulated above. The energies may be counted from the energy ε0 of
a nondegenerate ground state n = 0. An integer n orders all eigenstates in increasing
energies ε0 < ε1 ≤ ε2 ≤ . . . . Solutions to the single-particle Schrödinger Equation (8)
provide a valuable starting point for the design of the multi-qubit trap—the zero-order
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approximation for the energies and wave functions of the excited states (n = 1, 2, . . . ) as
well as the wave function of the ground state (n = 0).

The second step is to find how the repulsive interparticle interaction modifies the
ground state, that is, to find the condensate wave function φ0(r) which obeys the Gross–
Pitaevskii equation (the nonlinear Schrödinger equation) [35,52,53](

− h̄2∆
2m

+ U(r) + gN0|φ0(r)|2 + 2gnex(r)− µ

)
φ0 = 0, g =

4πh̄2a
m

. (9)

The goal is to verify the presence of a non-fragmented condensate, which is common
for the entire trap and spreading over all single-qubit cells. A non-uniformity of the
condensate should be controllable by adjusting the trap parameters. Accurate knowledge
of the condensate wave function is necessary for calculating the Bogoliubov couplings

∆kk′ = g N0

∫
φ∗k (r) |φ0(r)|2 φk′(r) d3r, ∆̃kk′ = g N0

∫
φ∗k (r) φ0(r)2 φ∗k′(r) d3r (10)

between the preselected bare-particle excited states {φk| k = 1, 2, . . .} and making sure that
they are well pronounced for a large enough number of these states as per requirements
stated in Section 2. If most of atoms are in the condensate, N0 ≈ N, then a characteristic
length of a condensate inhomogeneity is equal to a so-called healing length

ξ =
h̄√

2mgN/V
=

1√
8πaN/V

. (11)

The Gross–Pitaevskii equation, as a mean field approximation, is valid if an average distance
d between atoms is small compared to the healing length,

d� ξ. (12)

The next step involves solving the Bogoliubov–De Gennes equations for the quasipar-
ticle spectrum and eigenfunctions as well as calculation of the Bogoliubov transformation
matrix, squeezing and other parameters describing the joint probability distribution of the
excited atom occupations and atomic boson sampling. We just briefly comment on this step
in Sections 7 and 8, since the analysis of quasiparticles goes beyond the scope of this article.

In the present paper, we limit ourselves to the first two steps and calculation of Bogoli-
ubov couplings responsible for interparticle interactions in the Bogoliubov Hamiltonian.

For the sake of clarity and simplicity, we consider only a simple basic model of the
multi-qubit BEC trap illustrated in Figure 2: namely, a one-dimensional (1D) or two-
dimensional (2D) array of a finite number Q of the single-qubit cells. In the case of a 1D
chain of the single-qubit cells, each q-th single-qubit cell includes two flat background
potentials U2q−1, U2q and a delta-function potential βqδ(x − xq) located near its center,
while the cells are separated by the delta-function potential walls {αqδ(x− Xq) ≥ 0| q =
1, 2, . . . , Q− 1} and ordered along the x axis so that 0 = X0 ≤ x1 ≤ X1 ≤ x2 ≤ X2 ≤ . . . ≤
xQ ≤ XQ = QL. The corresponding 1D trapping potential is modeled as follows

U(x) =
Q

∑
q=1
{U2q−1[θ(x− Xq−1)− θ(x− xq)] + U2q[θ(x− xq)− θ(x− Xq)]

+ βqδ(x− xq) + αqδ(x− Xq)} if x ∈ (0, QL);

U(x) = ∞ if x ≤ 0 or x ≥ QL.

(13)

The amplitudes of the background potentials {Uj| j = 1, . . . , 2Q} and all delta-function
potentials {αq}, {βq} as well as their locations {xq}, {Xq} could be different for different
single-qubit cells and constitute a set of controllable parameters of the multi-qubit BEC
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trap; δ(x) is the Dirac delta function, and θ(x) is the unit step function: θ(x) = 0 if x < 0,
θ(x) = 1 if x ≥ 0.

Figure 2. (4 × 4)-qubit BEC trap of a dimension 4L × 4L′ as per the 2D model (14) of trapping
potential U(x, y) consisting of the inter- and intra-cell walls atop a central pedestal. The infinite outer
walls of the entire box trap are not shown.

In the case of a 2D square Q1 ×Q1 array of Q = (Q1)
2 single-qubit cells, we adopt a

model potential U(x, y) = U(x) + U′(y) given by a sum of two 1D potentials along the
axes x and y, each of which being similar to the 1D potential in Equation (13):

U(x) =
Q1

∑
q=1
{U2q−1[θ(x− Xq−1)− θ(x− xq)] + U2q[θ(x− xq)− θ(x− Xq)]

+ βqδ(x− xq) + αqδ(x− Xq)} if x ∈ (0, Q1L);

U′(y) =
Q1

∑
q=1
{U′2q−1[θ(y−Yq−1)− θ(y− yq)] + U′2q[θ(y− yq)− θ(y−Yq)]

+ β′qδ(y− yq) + α′qδ(y−Yq)} if y ∈ (0, Q1L′).

(14)

Again, we set the potential to be infinitely high beyond the outer borders of the entire
multi-qubit trap: U(x) = ∞ if x ≤ 0 or x ≥ Q1L, U′(y) = ∞ if y ≤ 0 or y ≥ Q1L′. The am-
plitudes of the background potentials {Uj| j = 1, . . . , 2Q}, {U′j | j = 1, . . . , 2Q} and all delta-
function potentials {αq}, {βq}, {α′q}, {β′q} as well as their locations {xq}, {Xq}, {yq}, {Yq}
constitute a set of controllable parameters of the 2D multi-qubit BEC trap.

Modeling the confining potential by piecewise flat and delta-function potentials is
a well-justified textbook approach pertinent to the analysis of the effects of tunneling,
reflection and trapping of particles by potential barriers and walls on the wave functions
and energy spectrum in quantum mechanics (see, e.g., [82–85] and references therein). It
is consistent with the well-known facts that (a) the Rayleigh–Ritz characterization of the
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eigen energies involves only weighted averages of the potential and (b) the multiple-scale
perturbation theory yields the correct leading-order asymptotics within the piecewise-flat-
potentials approximation [86]. The main quantities in question for the analysis in the present
paper are the condensate wave function and Bogoliubov couplings, which determine the
ultimate result for the covariance matrix and statistics of atomic boson sampling. Their
representativeness and robustness with respect to the adopted modeling by the piecewise
flat and delta-function potentials are predetermined by the nature of the Bogoliubov
couplings (10) as the overlapping integrals which do not depend significantly on a jump in
the value of the first or second derivative of the wave function originated from the presence
of the delta- or step-function, respectively, in the external potential. Furthermore, the
actual potential in the Gross–Pitaevskii and Bogoliubov–de Gennes Equations (9) and (34)
is always curved by the interparticle–interaction contribution gN0φ2

0(r) proportional to the
continuous condensate occupation |φ2

0(r)|. Obviously, in an experimental setting, a non-flat
background potential will lead to qualitatively the same results.

4. One-Dimensional Multi-Qubit Trap: Single-Particle Eigen Functions and Energies

Consider a 1D trap with the model potential (13). The basic model adopted above
allows one to solve the 1D Schrödinger Equation (8),(

− h̄2

2m
d2

d2x
+ U(x)

)
ψn(x) = εnψn(x), (15)

analytically and easily find the single-particle energy spectrum and wave eigenfunctions.
In this section, we demonstrate the single-particle properties of the 1D multi-qubit traps in
a series of generic examples.

4.1. Asymmetric 1D Single-Qubit Trap: Explicit Solution for a Double-Well Trap

The solution to Equation (15) for the eigen functions and energies of an asymmetric
1D single-qubit trap described by the model (13) of a double-well trap with the intra-
cell delta-function potential of a magnitude β located at a position x1 = ηL, η ∈ (0, 1),
is elementary:

ψn(x) = A sin(knx) if 0 ≤ x ≤ ηL, ψn(x) =
A sin(ηknL)

sin[(1− η)knL]
sin[kn(L− x)] if ηL ≤ x ≤ L, (16)

sin(ηknL) sin[(1− η)knL] = − h̄2kn

2mβ
sin(knL), εn =

h̄2k2
n

2m
. (17)

Here, A is an appropriate normalization constant. The dependence of the first six eigen
wave numbers kn on the asymmetry parameter η ∈ (0, 1) is illustrated in Figure 3. Note a
very narrow energy splitting ε2 − ε1 � ε2 between the two lower excited states n = 1, 2
and a very wide energy gap ε3 − ε2 ≈ 3ε2 separating them from the next two excited
states n = 3, 4 in the case of the central, symmetric location of the intra-cell delta-function
potential, η = 1/2. With an increasing asymmetry, the energy ladder experiences a
significant restructuring. For example, if the asymmetry is η ≈ 1/3 or 2/3, then already,
the three lower (the lowest first, ε1, and two very close second and third, ε2 ≈ ε3) energy
levels are separated from the higher energy levels by an energy gap ε4 − ε3 ≈ 1.3ε3.
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Figure 3. The first six eigen wave numbers kn for the 1D asymmetric single-qubit trap of length
L as the functions of the position ηL of the intra-cell delta-function potential of the dimensionless
amplitude βmL/h̄2 = 2.5.

4.2. Symmetric 1D Two-Qubit Trap: Even versus Odd Eigenfunctions and Their Eigenenergies

Consider the symmetric two-qubit trap (13) with the central locations of the intra-cell
delta-function potentials of equal magnitude β1 = β2 ≡ β at x1 = L/2, x2 = 3L/2 and
the inter-cell delta-function potential of the magnitude α1 ≡ α at X1 = L in the absence
of the background potential, U1 = U2 = 0. The odd wave functions, which have the odd
spatial symmetry relative to the center of the trap, equal zero at the trap center and are not
affected by the inter-cell potential wall. Obviously, solutions for them are reduced to the
single-qubit trap solution (16) in each of two single-qubit cells. For example, the odd wave
function in the left single-qubit cell is

ψn(x) = A sin(knx) if 0 ≤ x ≤ L/2, ψn(x) = A sin[kn(L− x)] if L/2 ≤ x ≤ L. (18)

Hence, the dimensionless energy spectrum, ε̄n = (2mL2/h̄2)εn, of the odd eigenfunctions
is given by Equation (17), that is

knL cos(knL/2) + β̄ sin(knL/2) = 0, ε̄n = (knL)2; ᾱ =
αmL

h̄2 , β̄ =
βmL

h̄2 . (19)

A dimensionless parameter β̄ describes the effect of the intra-cell delta-function potential.
The solution to Equation (15) for the even eigenfunctions is more involved:

ψn(x) = A1 sin(knx) if 0 ≤ x ≤ L/2,

ψn(x) = A2 sin[kn(L− x) + ϕ] if L/2 ≤ x ≤ L,

ψn(x) = A2 sin[kn(x− L) + ϕ] if L ≤ x ≤ 3L/2,

ψn(x) = A1 sin[kn(2L− x)] if 3L/2 ≤ x ≤ 2L.

(20)

It includes two normalization constants A1, A2, the phase shift ϕ (such that tan ϕ = knL/ᾱ)
and depends on the inter-cell delta-function potential via the dimensionless parameter
ᾱ = αmL/h̄2. The energy spectrum ε̄n = (knL)2 of the even eigenfunctions is determined
by the eigen wave number kn that can be found from the explicit transcendental equation:

knL
[
knL cos(knL) + β̄ sin(knL)

]
+ 2ᾱ sin

( knL
2

)[
knL cos

( knL
2

)
+ β̄ sin

( knL
2

)]
= 0. (21)
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Figure 4 shows clearly the full structure of energy spectrum of a two-qubit trap. Firstly,
one can see the unperturbed energy level spread for an empty rectangular well when the
inter-cell and intra-cell potentials are zero. This behavior can be modulated in two ways, by
increasing either of the two potentials. There is almost a complete symmetry between how
these two potentials effect the energy level structure, with the only difference coming in
the even-numbered energy levels. While every fourth level is totally unperturbed by both
potentials, the other even energy levels only see the intra-cell potentials, as these functions
are zero at the center of the well. This leads to an asymmetry in the structure, which affects
the orange-colored energy levels in the figure.

Figure 4. The first eight single-particle energy levels of the 1D symmetric two-qubit trap in the
absence of a background potential as they depend on the inter-cell and intra-cell delta-function
potential barriers as per Equations (19) and (21). On the far left, the unperturbed energy levels can
be observed and compared to the energy levels on the far right, which show clearly the miniband
behavior, with a larger gap between the strongly grouped first four and second four energy levels.

In addition to this asymmetry, the overall structure of the two-qubit-trap energy
spectrum is largely determined by the formation of minibands. If either of the two potentials
are individually raised to be large, four sub-minibands are formed, while the raising of
both potentials leads to the formation of two minibands, with a large energy gap between
the first four and second four energy levels. This can be quantitatively measured by taking
the ratio of the energy separation between the first and second miniband with the energy
width of the first miniband (see Figure 5). This will demonstrate how easy it will be to set
the temperature such that the lower miniband is fully populated while the higher has little
to no occupation.This figure of merit must be balanced against the necessity that atoms are
still able to easily move between cells, requiring that the potential barriers not be too high.

5 10 15 20 25
α = β

2

4

6

8

10

Gap - to- bandwidth ratio

Figure 5. The ratio of the energy gap between the first and second minibands over the width of the
first miniband for the symmetric two- (solid) and four- (dashed) qubit traps (Figures 4 and 6) as a
function of the equal dimensionless amplitudes of the inter- and intra-cell delta-function potentials,
ᾱ = β̄.
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Figure 6. The first sixteen single-particle energy levels of the 1D four-qubit chain of identical
symmetric single-qubit cells in the absence of a background potential (Uj = 0 ∀j) as they depend on
the inter-cell and intra-cell delta-function potentials as per Equations (19), (21) and (24).

4.3. Four-Qubit Chain of Identical Symmetric Single-Qubit Cells: Hierarchy of
Even/Odd Solutions

The analysis presented in Section 4.2 can be easily generalized to the case of the
four-qubit trap (13) with similarly symmetric parameters αq = α, βq = β, xq = (q− 1/2)L,
Xq = qL, U2q−1 = U2q = 0 ∀q = 1, 2, 3, 4 and total length 4L. Again, the solutions for the
wave functions with the odd spatial symmetry relative to the center of the trap and their
energy spectrum are reduced to the solutions for the half trap, that is, for the two-qubit trap
and, hence, are given (say, for the left half of the four-qubit trap) by Equations (18)–(21).
The only novel element of the analysis is the solution for the even eigenfunctions. It has the
following form in the left half of the four-qubit trap

ψn(x) = A1 sin(knx) if 0 ≤ x ≤ L/2,

ψn(x) = A2 sin[kn(L− x) + ϕ2] if L/2 ≤ x ≤ L,

ψn(x) = A3 sin[kn(x− L) + ϕ3] if L ≤ x ≤ 3L/2,

ψn(x) = A4 sin[kn(2L− x) + ϕ4] if 3L/2 ≤ x ≤ 2L,

(22)

with the same form of equations being found reflected across the center of the trap at
x = 2L. Now, it includes four normalization constants A1, A2, A3, A4, three phase shifts
ϕ2, ϕ3, ϕ4 and the eigen wave number kn. The latter four quantities can be found from the
following four equations expressing a discontinuity of the wave-function derivative across
each delta-function potential barrier:

knL[cot(ϕ4) + cot(ϕ4)] = 2ᾱ,

knL[cot(ϕ3 + knL/2) + cot(ϕ4 + knL/2)] = −2β̄,

knL[cot(ϕ2) + cot(ϕ3)] = 2ᾱ,

knL[cot(knL/2) + cot(knL/2 + ϕ2)] = −2β̄.

(23)

Excluding the phase shifts, we arrive to the explicit transcendental equation,

(knL/2)3[β̄ sin(2knL) + knL cos(2knL)]

+ (knL/2)2(2ᾱ + β̄) sin(knL)[β̄ sin(knL) + knL cos(knL)]

+ ᾱ2 sin2(knL/2)[β̄ sin(knL/2) + knL sin(knL/2)]2

+ knLᾱβ̄ sin2(knL/2)[β̄ sin(knL) + knL cos(knL)] = 0, (24)
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for the eigen wave number kn which determines the dimensionless energy spectrum
ε̄n = (knL)2 of the even eigenfunctions.

The entire energy spectrum is illustrated in Figure 6 by dependence of the first sixteen
lower energy levels on the inter-cell and intra-cell delta-function potentials. As expected, it
is similar to the analogous dependence for the two-qubit trap shown in Figure 4. Again,
on the far left, the unperturbed energy levels can be observed and compared to the energy
levels on the far right, which show clearly the expected miniband behavior, with a larger
gap between the strongly grouped first eight and second eight energy levels.

Let us look again at the ratio of the energy gap between the first and second minibands
and the energy width of the first miniband in Figure 5. Although this ratio is smaller for
similar delta-function potentials of the two-qubit trap, the doubling of the available energy
levels is a strong advantage. The degradation is not significant, as to once again achieve
a ratio of about 3.5, we only need to go from a dimensionless delta-function potential
magnitude of 10 to about 12.

Apparently, the even/odd hierarchy of solutions revealed above is suggestive for an
extension to any 1D chain of Q = 2p, p = 1, 2, 3, . . ., identical symmetric single-qubit cells.

4.4. Multi-Qubit Chain of Q Identical Single-Qubit Cells: Asymptotics of Zeroes and Miniband of
2Q Energy Levels

Consider a 1D chain of Q identical symmetric single-qubit cells, each with a zero
flat potential and of length L, separated by delta-function potential walls of the same
amplitude αq = α. The system is placed inside an infinitely high box potential well of
length QL. Assume that each single-qubit cell contains a delta-function potential of the
equal amplitude, βq = β, placed at the center of the cell and perturbing its energy levels.

As was explained in Section 2, the eigenfunctions of the multi-qubit trap {ψs,p(x)| p =
1, . . . , Q; s = 0, 1, . . . } can be considered as arising adiabatically with increasing delta-
function potentials α and β from the sinusoidal wave eigenfunctions of a box trap with a
zero flat potential and of length QL,

ψ
(0)
n (x) =

√
2

QL
sin
(nπx

QL

)
, ε

(0)
n =

(h̄πn)2

2m(QL)2 , n = p + sQ; p = 1, . . . , Q; s = 0, 1, . . . . (25)

The index n is equal to the number of half-wavelength variations between the borders of the
entire box trap and orders the wave functions in accord with the linearly growing numbers
of zeroes, n− 1, and quadratically growing energies, ε

(0)
n . The index s = 0, 1, . . . enumerates

the bands. Each band consists of Q eigenfunctions enumerated by the intra-band index
p = 1, . . . , Q.

We find a general asymptotic rule: When αq → ∞, all Q eigenfunctions ψs,p within a
given s-band have exactly the same (equal to the band order s) number of zeroes inside
each single-qubit cell. The only exception constitutes such single-qubit cells and such
eigenfunctions ψs,p for which there is just one zero of the corresponding sinusoidal eigen-

function ψ
(0)
p+sQ located exactly at the center of a single-qubit cell. This is an exceptional,

degenerate case of a node frustration when neither of the two delta-function walls of the
single-qubit cell are able to shift the location of this zero toward (underneath) its (wall’s)
location with increasing delta-potential αq → ∞. The amplitude of this eigenfunction tends
to zero everywhere inside such an exceptional single-qubit cell.

The remarkable asymptotic behavior stated above is a consequence of the fact that the
eigenfunctions ψs,p(x) tend to zero at the positions of the inter-cell delta-potential walls
with increasing magnitude of the delta-function potential: ψs,p(x = jL) → 0 at αq → ∞
for j = 1, . . . , Q − 1. This occurs via two mechanisms. A delta-potential wall either
(i) gradually digs a deep dip forcing the eigenfunctions to approach zero at the wall location,
or (ii) gradually shifts the closest-to-the-wall zero of the sinusoidal wave eigenfunction
ψ
(0)
p+sQ to (underneath) the wall location. Accordingly, the eigenfunctions do not or do

change their sign across the delta-potential wall. It is illustrated in Figure 7(left), where both
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mechanisms of asymptotics formation are clearly represented. In particular, the inter-cell
delta-potential walls at the dimensionless positions x/L = 2 and x/L = 6 implement
the first mechanism on the eigenfunctions ψs,p=1 (blue) and ψs,p=2 (yellow), the second
mechanism on the eigenfunction ψs,p=3 (green), and do not affect the eigenfunction ψs,p=4

(red) whose sinusoidal counterpart ψ
(0)
4+sQ is already equal to zero at the wall locations.

Another situation when the above two mechanisms clearly manifest themselves is discussed
in the next Section 4.5 in regard to Figure 11.

1 2 3 4

x

L

-1.0

-0.5

0.5

1.0

ψs,p

Zero background potential

1 2 3 4

x

L

-1.0

-0.5

0.5

1.0

1 2 3 4

x

L

-1.0

-0.5

0.5

1.0

1 2 3 4

x

L

-1.5

-1.0

-0.5

0.5

1.0

1.5

ψs,p

Nonzero background potential

1 2 3 4

x

L

-1.5

-1.0

-0.5

0.5

1.0

1.5

1 2 3 4

x

L

-1.5

-1.0

-0.5

0.5

1.0

1.5

Figure 7. The first three bands, s = 0 (1st row), s = 1 (2nd row), and s = 2 (3rd row), of the
eigenfunctions ψs,p(x) (p = 1 in blue, p = 2 in yellow, p = 3 in green, p = 4 in red) for the 1D chain of
Q = 4 single-qubit cells. The inter-cell walls are the delta-function potentials of the same magnitude,
αq = 9h̄2/mL, located at the equally spaced dimensionless positions x/L = 1, 2, 3. There are no
intra-cell potentials. The left column of graphs: Identical single-qubit cells with zero background
potentials, Uj = 0. The right column of graphs: The single-qubit cells with different background
flat potentials, UjmL2/h̄2 = 0, 0, 10, 10, 20, 20, 0, 0. In both cases, the two mechanisms of the general
asymptotic rule (stated in Section 4.4) for a transition from the sinusoidal wave eigenfunctions (25) of
a uniform box trap to the eigenfunctions of a multi-qubit trap are clearly observable.

The sinusoidal wave functions ψ
(0)
n of the higher band orders s ≥ 2, i.e., n > 2Q,

have three or more zeroes at least within one, say j-th, single-qubit cell, that is, within the
interval x ∈ [qL, (q + 1)L]. So, at αq → ∞ ∀q, they turn into the eigenfunctions ψs,p, s ≥ 2,
which has the s (two or more) zeroes inside each single-qubit cell and cannot be associated
with the 2Q eigenfunctions of the multi-qubit lowest miniband that have no more than one
zero inside a single-qubit cell. Hence, only the first two bands of the eigenfunctions, ψ0,p
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and ψ1,p, are relevant to the wave function superpositions that asymptotically yield the 2Q

eigenfunctions of the multi-qubit trap (i.e., combinations of the single-qubit states with the
energies within the miniband).

Thus, we focus below on the analysis of the miniband of the first 2Q energy levels
corresponding to the first two bands, s = 0, 1, of the eigenfunctions ψs,p. In principle, we
can build a new system of Q qubits assigning an arbitrary pair of eigenfunctions ψ0,p and
ψ1,p′ to be the lower and upper energy states of any new qubit. The most natural system
of Q qubits will be formed by the pairs of eigenfunctions {ψ0,p, ψ1,p|p = 1, . . . , Q} with
equal indices p′ = p. Then, we again can consider their 2Q multi-qubit combinations of
the eigenfunctions of the miniband of the lowest 2Q energy levels in the multi-qubit trap
with arbitrary finite (not necessary infinite) inter-cell potential walls. These qubits are not
identical anymore, even if their lengths Lq, q = 1, . . . , Q are the same.

4.5. Multi-Qubit Chain of Significantly Different Single-Qubit Cells: Control of
Occupations, Energies

If the single-qubit cells in the multi-qubit chain are not identical, then the excited-
state wave functions become less symmetric. However, by controlling the background
flat potentials {Uj| j = 1, . . . , 2Q} in Equation (13), one can make the ground state more
uniform. A typical example of spatial profiles of the ground-state wave function and
three lower-energy excited-state eigenfunctions is shown in Figure 8. In this figure and
throughout the present paper as in Equation (19), a bar above a symbol of the potential or
other energy quantity denotes its dimensionless value in terms of the energy unit h̄2/(2mL2)
where L is the length of a typical single-qubit cell, that is,

Ūj = (2mL2/h̄2)Uj, ε̄n = (2mL2/h̄2)εn . (26)

1 2 3 4

x

L

-0.5

0.5

ψs=0,p

b

Figure 8. (a) An example of a four-qubit trap potential: Three inter-cell and four intra-cell delta-
function potential barriers are separating eight flat potential segments in the form of a central pedestal.
(b) The ground-state (blue) and first three excited-state eigenfunctions for the four-qubit trap (a).

Relatively large variations in the lengths, Lq, and background flat potentials, U2q−1, U2q,
of different single-qubit cells allow one to control and vary the trap eigenfunctions ψs,p and
energy levels in a wide range. Adjusting separately the flat potentials Uj in different single-
qubit cells allows one to control individually the relative amplitudes of eigenfunctions in
different cells, that is, in particular, the relative occupations of different single-qubit cells as
is illustrated in the right column of Figure 7.

The general structure and asymptotic behavior of the trap eigenfunctions described
above for the chain of identical single-qubit cells is robust (remains qualitatively the same)
with respect to small variations of the trap parameters. However, large variations change
the picture. In particular, the single-qubit cells of significantly different lengths could
acquire different numbers of eigenfunction zeroes per a single-qubit cell even within the
same band of eigenfunctions as is illustrated in Figure 9a.

At last, tuning the intra-cell delta-function potentials βq, q = 1, . . . , Q, provides one
more tool for controlling and varying the profile and energy spectrum of the multi-qubit
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trap eigenfunctions ψs,p(x). As is illustrated in Figure 9b, it affects the eigenfunctions in
the first, s = 0, band stronger than the eigenfunctions in the second, s = 1, band. Thus, it is
an efficient tool for controlling the intra-qubit properties, in particular, the qubit energy
splittings δEq, q = 1, . . . , Q.
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Figure 9. The eigenfunctions ψs,p(x) (p = 1 in blue, p = 2 in yellow, p = 3 in green, p = 4 in red)
for the chain of Q = 4 single-qubit cells with a zero background potential, Uj = 0, j = 1, . . . , 8. The
inter-cell walls are the delta-function potentials of the same magnitude, αqmL/h̄2 = 9, q = 1, 2, 3, 4.
(a) The eigenfunctions ψs=1,p(x) of the second band in the case of single-qubit cells of different lengths
Lq/L = 0.6, 1.2, 0.8, 1.4. Two mechanisms of the general asymptotic rule (stated in Section 4.4) for a
transition from the sinusoidal wave eigenfunctions (25) of a uniform box trap to the eigenfunctions of
a multi-qubit trap are clearly visible. Contrary to the case of identical single-qubit cells in Figure 7(left),
now the numbers of zeroes per a single-qubit cell in the eigenfunctions of the second band s = 1
are not all equal to unity but could be also zero, two or even three and different in the different
cells. (b) The eigenfunctions ψs,p(x) of the first (s = 0) and second (s = 1) bands in the case of
different delta-function potentials βqmL/h̄2 = 1, 2, 3, 0 at the center of single-qubit cells of equal
length L. A comparison with the case of identical single-qubit cells in Figure 7(left) shows that now,
the eigenfunctions of the band s = 0 are notably modified while the eigenfunctions of the band s = 1
stay almost intact.

One other possibility when constructing these multi-qubit traps is to place the inter-cell
and intra-cell delta potentials in such a way as to break the symmetry between each qubit
cell. This can act as yet another knob by which to control the diversity of the system along
with the heights of the delta potentials and the modulation of the background potential.
Delta-function potentials can be moved individually or following some group pattern. The
position of the potential can be represented by a number from 0 to 1, essentially what
percentage of the cell is traveled starting from the center of the cell before dropping down
the delta-function potential. Suppose the intra-cell barriers are shifted leftwards on the
left side of the four-qubit trap and an equal distance rightward on the right side. The
effect of this shifting on the energy levels of a four-qubit trap can be seen in Figure 10. It is
not symmetric and can be understood by observing where the delta-function potentials
are modulating the unperturbed wave functions for each energy level. For example, take
the ninth energy level seen in cyan in Figure 10. This energy level is maximized around
0.18 and minimized around 0.36. When the positions of the delta-function potentials are
overlaid on the unperturbed ninth eigenfunction, it becomes clear why this is the case. At
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the maximum effect, the delta-function potentials are positioned near the maxima of the
unperturbed function, while at the minimum effect, the delta potentials are placed instead
near the zeros of the unperturbed function, as seen in Figure 11. The latter figure illustrates
also the two mechanisms of a wave-function pertubation stated in Section 4.4. In the former
case, the first mechanism, namely, digging a dip in a function profile underneath the delta-
function potential, takes place. In the latter case, the second mechanism, namely, dragging
the nearest node underneath the delta-function potential, takes place. The respective effects
on the energy of the eigenfunctions are very different as is shown in Figure 11. Note that
the digging effect of the central inter-cell delta-function potential is the same in both cases.

0.2 0.4 0.6 0.8
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Energy, ε n

Figure 10. Left: The single-particle energy levels for a four-qubit trap with intra-cell potential barriers
of strength β̄ = 4 and inter-cell barriers of strength ᾱ = 5 for various symmetrically shifted positions
of the intra-cell potentials. Right: The specific trapping potential for the position marked by the red
line. Note the symmetry about the center of the trap.
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Figure 11. The unperturbed and perturbed ninth-energy-level eigenfunction, ψ
(0)
s=2,p=1 (in blue) and

ψs=2,p=1 (in purple), in the case of the intra-cell delta-function potentials at position 0.18 (left) and
0.36 (right) marked by red vertical lines. Note how on the right, the intra-cell delta-function potentials
act on the eigenfunction near zeros, reducing their effect on the eigenenergy, while on the left, the
intra-cell delta-function potentials act on the eigenfunction near two peaks, having a very large
impact on the eigenenergy ε̄n=9 shown in Figure 10.

5. Two-Dimensional Multi-Qubit Trap: Single-Particle Eigen Functions and Energies

Here, we describe a simple 2D model of the multi-qubit trap formed by a potential,
U(x, y) = Ux(x) + Uy(y), which is the sum of the two 1D potentials considered above. In
this case, the solution to the 2D single-particle Schrödinger Equation (8) is reduced, via a
factorization, to the solutions to the 1D Schrödinger equation described above.

As a generic example, let us consider the 2D symmetric four-qubit trap, in which both
the potential in the x and y plane are exactly the same. Both will share the same inter-cell
and intra-cell delta-function potential strengths. As the energy levels are known for the 1D
case (see, for example, Figure 6), constructing the energy levels for the 2D case is a simple
task, requiring only for the individual energies to be added in every possible combination.
A visualization of the energy levels created by combining the first nine energy levels in each
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dimension is shown in Figure 12 for the symmetric 2D (4× 4)-qubit trap. This fully covers
the first miniband of each dimension plus the first energy level in the second miniband.

Figure 12. The first 80 energy level combinations comprising the eigenenergies {ε̄n} for the symmetric
2D (4× 4)-qubit trap in the absence of a background potential (Uj = 0 ∀j). Compare this plot against
its 1D 4-qubit counterpart in Figure 6 and note how there are energy crossings near the origin of the
graph, and that there is a slight asymmetry in the inter-cell and intra-cell directions.

This structure is interesting. Firstly, let us understand why there is a noticeable
asymmetry between the effects of the inter-cell and intra-cell potentials. We see that for the
two different axes, the first set of energy levels that are bunched together contains either
nine levels for intra-cell potentials or 16 levels for inter-cell potentials. This comes from the
fact that for the 1D case of a large intra-cell potential with little inter-cell potential, there
is a splitting of the energy levels in the first miniband into two parts, one containing the
first three with the other containing the remaining five. These two sub-minibands have
a significant enough energy gap between them so that when the 2D plot is created, we
see the formation of three sub-minibands, one containing combinations consisting of only
energy levels in the first half of the sub-miniband, one containing the crossover terms, and
the final piece containing the combinations consisting of only energy levels in the second
half of the sub-miniband. Because there are nine possible combinations for the first half,
we see nine energy levels in the first band of the plot. However, for the case of the large
inter-cell potential, we instead see a 4–4 split of the energy levels in the miniband rather
than the 3–5 split in the intra-cell case. Thus, 16 possible combinations of the energy levels
in the first half of the miniband.

To understand why there is a difference in splitting of the energy levels depending
on if the inter-cell or intra-cell potentials dominate the trap, we need only to look at the
fourth energy level and how it is affected by each of the two different types of traps. The
easiest to understand is the inter-cell potential dominant traps. In this case, the fourth
eigenfunction is almost totally unperturbed by the delta-function potentials, as its natural
nodes are already placed at the locations of the inter-cell potential barriers, while the lower
three energy levels are pulled up toward the fourth. Likewise, the fifth, sixth, and seventh
energy levels are bought up to the totally unperturbed eighth, leading to the 4–4 split
structure we observe. However, in the case of the intra-cell potentials dominating the trap,
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the natural nodes of the fourth energy level wavefunction are placed directly between
two of the intra-cell potential walls. This, as described in Section 4.4, leads to a situation
where new nodes must be created to accommodate the large potentials. These new nodes
drastically increase the average derivative, bringing the energy level much further above
the third energy level below it, whose eigenfunction is able to shift its nodes to fall under
the existing large potentials without much effect to its energy level. This effect is illustrated
in Figure 13.
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0.5

ψs,p
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Figure 13. The eigenfunctions {ψn} for the third (blue), fourth (yellow), and fifth (green) energy
levels in the 1D multi-qubit trap of Q = 4 identical single-qubit cells for the inter-cell (left) and
intra-cell (right) dominant delta-function potentials αq = α and βq = β ∀q. The dominant delta-
function potential has a magnitude of 31h̄2/(mL) while the non-dominant potential has a magnitude
of 1 h̄2/(mL). Note how in the inter-cell-potential dominant case, the fourth eigenfunction is most
similar to the third, while in the intra-cell-potential dominant case, the fourth eigenfunction is most
similar to the fifth.

The last notable aspect of Figure 12 is the crossing of energy levels that can be seen
near this origin. This behavior arises from the fact that while initially, the energy levels
are approximately evenly spread, once the potentials start ramping up, there are some
significant gaps created in the miniband structure. Thus, for low potentials, the energy
level created by combining the first and fifth energy levels may be lower than that created
by the fourth energy level combined with itself. However, once the fifth energy level is
drastically raised by the introduction of the potentials, the combination of the first and
fifth levels will increase its total energy above that of the double fourth, at least for the
inter-cell dominant case where the fourth energy level is mostly unperturbed. This sort of
behavior is only seen near the origin where the energy levels change drastically with the
introduction of the delta-function potentials, as once the overall structure begins to form,
there is not a significant enough change to create more crossings.

One can also plot the occupation probability distribution for a specific single-particle
state in a 2D multi-qubit trap. The spatial profile of the occupation distribution for the
single-particle ground state is illustrated in Figure 14. This figure also demonstrates an
important property of the multi-qubit trap: namely, that the parameters for the background
potential and inter-/intra-cell walls can be tuned to achieve a desirable, in particular,
relatively uniform distribution of occupation probability over the entire trap.
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Figure 14. Occupation probability distribution in the single-particle ground state, |ψ0(x, y)|2, for the 2D
(4× 4)-qubit trap with delta-function potentials αq = 4h̄2/(mL), βq = 2h̄2/(mL) ∀q and a central flat
pedestal potential U = 8h̄2/(mL2) ranging from 0.5 < x < 3.5 and 0.5 < y < 3.5 as seen in Figure 2.

6. Controlling the Condensate in the Multi-Qubit Trap: The Gross–Pitaevskii Equation

In real interacting gases, the result for the macroscopic condensate wave function given
by the Gross–Pitaevskii Equation (9) significantly deviates from the single-particle ground
state of the linear Schrödinger Equation (8). A difference between the Schrödinger and
Gross–Pitaevskii equations originates due to a collective effect of interparticle interactions
described by the nonlinear self-interaction term gN0|φ0|2φ0 in Equation (9). The main
features of the condensate are correctly described already in an approximation neglecting
the interaction with the noncondensed fraction (the term 2gnexφ0 in Equation (9)) and
assuming N0 ≈ N. For simplicity’s sake, we adopt the above approximation and limit
discussion to 1D and 2D models of the multi-qubit BEC trap.

A 1D model implies a situation when atoms are tightly confined in the transverse to
the x axis directions, for example, in a cylinder of length L, (y, z)-cross-section area l2

⊥ with
a small transverse size l⊥ � L, and volume V = Ll2

⊥. Then, in view of the normalization
condition

∫
V |φ

2
0 |d3r = 1 and averaging φ2

0(x, y, z) over the small y, z cross-section, the
3D condensate wave function φ0(r) can be efficiently replaced by a 1D function φ0(x)/l⊥
that corresponds to a rescaled interaction parameter g1 = g/l2

⊥. Note that the mean-field
condition (12) for validity of the 1D model of the Gross–Pitaevskii Equation (9) remains the
same as in the usual 3D case,

8πa�
(V

N

)1/3
,

ξ

d
=

1√
8πa(N/V)1/3

, g =
4πh̄2a

m
(3D mean− field regime), (27)

only if the average distance between atoms is d = (Ll2
⊥/N)1/3, i.e., the volume density

of atoms in the trap is large enough: N/(Ll2
⊥) > 1/l3

⊥. Otherwise, the average distance
between atoms becomes equal to d = L/N and the mean-field validity condition (12)
imposes a requirement on the scattering length

8πa� Nl2
⊥/L,

ξ

d
=

√
Nl2
⊥

8πaL
, g1 =

g
l2
⊥

if Nl⊥ < L (1D mean− field regime), (28)

which is getting more stringent with a decreasing number of atoms. It is worth noting
that when aN � L, the system locally retains the original 3D character despite its 1D
geometrical appearance, L � l⊥. Only in the opposite case, when aN � L, the system
approaches the ground state in the transverse directions and enters the so-called 1D mean-
field regime (see [35] and references therein). In the low-density limit 8πa� Nl2

⊥/L, which
corresponds to the strong-coupling 1D limit g1 ≡ g/l2

⊥ → ∞ and is opposite to (28), the
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mean-field approach fails and the system becomes the so-called Tonks–Girardeau gas of
impenetrable bosons.

Similarly, a 2D model implies a situation when atoms are tightly confined just in
one, axial direction, say, along the z-axis within a small linear dimension lz, while the
cross-section area of the trap of volume V = LL′lz is relatively large, LL′ � l2

z . In this
case, the 3D condensate wave function φ0(r) can be efficiently replaced by a 2D function
φ0(x, y)/

√
lz that corresponds to a rescaled interaction parameter g2 = g/lz. The mean-field

condition (12) for validity of the 2D model of the Gross–Pitaevskii Equation (9) retains the
usual 3D form (27) only if the average distance between atoms is d = (LL′lz/N)1/3, i.e., the
volume density of atoms in the trap is large enough: N/(LL′lz)� 1/l3

z . Otherwise, that is
when Nl2

z < LL′, the average distance between atoms becomes equal to d =
√

LL′/N and
the mean-field validity condition (12) is reduced to the requirement on the scattering length

8πa� lz,
ξ

d
=

√
lz

8πa
, g2 =

g
lz

if Nl2
z < LL′ (2D mean− field regime), (29)

which is independent on the number of trapped atoms. Again, at extremely low densities,
when | ln (Nl2

z /LL′)| > lz/a, the mean-field approach fails, the interaction constant g2 =
g/lz should be replaced by the density-dependent parameter g̃2 = 4πh̄2/[m| ln (Nl2

z /LL′)|],
and the system enters the regime analogous to the Tonks–Girardeau 1D regime [35].

6.1. Single-Qubit Trap: 1D Analytical and 2D Numerical Solutions to the
Gross–Piraevskii Equation

The solution to the 1D nonlinear Schrödinger, that is Gross–Piraevskii, Equation (9) in
the stated simple model can be found similar to the solution to the 1D linear Schrödinger
Equation (15), described above, if one employs the elliptic Jacobi function sn(x|p) instead
of the exponential function exp(x). For simplicity’s sake, we adopt the Bogoliubov approx-
imation at very low temperature T → 0 assuming that practically all atoms are condensed,
N0 ≈ N, and the effect of the noncondensed atoms on the condensate is negligible.

Then, the condensate wave function in a box trap with zero potential, U(x) = 0, and
Dirichlet (zero) boundary conditions is given by the elliptic Jacobi function,

φ0(x) =

√
pK(p)

K(p)− E(p)
sn
(

2K(p) x
L

∣∣p)
√

L
,

L
ξ
=
√

8K(p)
(
K(p)− E(p)

)
. (30)

It varies from the half-period sine to an almost constant function (quickly decreasing to
zero just in the narrow boundary regions) with the interaction g increasing from zero to
the larger values. The characteristic scale of the condensate is determined by the healing
length (11). The solution includes complete elliptic integrals of the first and second kinds:

K(p) =
∫ π/2

0
(1− p sin2 θ)−1/2dθ, E(p) =

∫ π/2

0
(1− p sin2 θ)1/2dθ, (31)

According to Equation (30), the range of the parameter p is from 0 to 1. The chemical
potential is determined by the normalization condition

∫
|φ0(x)|2dx = 1 as follows

µ = 4(1 + p)K2(p)h̄2/(2mL2). (32)

The analytical solution in Equation (30) fully describes the effect of the interparticle
interaction on the condensate profile in each single-qubit cell if the inter-cell potential
walls are infinitely high, the background potentials are the same in both halves of each cell
and the intra-cell delta-function potentials are absent. It is illustrated in Figure 15 for the
single-qubit cell. When the healing length is much longer than the cell’s length, ξ � L, that
is, the interaction is very weak and the gas is almost ideal, the parameter p is very close
to zero. As a result, the condensate profile in each cell is very close to the ground-state
solution to the single-particle Schrödinger Equation (15), that is, a half of the sine function,
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φ0(x) =
√

2/L sin (πx/L), and µ ≈ π2h̄2/(2mL2). In the opposite case of a very short
healing length, ξ � L, the parameter p approaches 1 and the strong interparticle interaction
makes the condensate profile more flat and spread over the entire cell, except for narrow
boundary layers of thickness ξ near the walls. Obviously, a similar situation takes place in
each half of the single-qubit cells if the intra-cell potential walls are also infinitely high.
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Figure 15. The interparticle interaction makes the condensate more uniform and spread over the entire
single-qubit trap as is revealed by the analytical solution (30) to the Gross–Pitaevskii Equation (9)
in the case of infinitely high inter-cell potential walls and zero background and intra-cell potentials:
L
ξ = 0 (an ideal gas—solid green curve, p = 0), L

ξ = 5 (a moderate interaction—dot-dashed blue

curve, p ≈ 0.86), L
ξ = 20 (a strong interaction—dashed red curve, p ≈ 0.999996).

The effect of the repulsive interparticle interaction on the condensate profile in the
single-qubit box cell in 2D is shown in Figure 16. In the case of an ideal gas, the atoms con-
dense into the ground state ψ0(x, y) = 2

L sin πx
L × sin πy

L of the single-particle Schrödinger
Equation (15), as shown in Figure 16a. In the case of an interacting gas, the condensate pro-
file φ0(x, y) is given by the numerical solution to the 2D Gross–Pitaevskii Equation (9), as
shown in Figure 16b. Comparison of the two plots clearly shows that the particle repulsion
flattens the peak of the ground-state wave function and forces the condensate to spread
over the entire single-qubit cell. Just the boundary layers of a healing-length thickness
remain unoccupied by the condensate.

Figure 16. Two-dimensional (2D) single-qubit BEC trap with zero background and intra-cell po-
tentials. The interparticle interaction makes the condensate more uniform and spread over the
entire single-qubit cell as is revealed by comparing (a) the ground-state wave function ψ0(x, y) =
2
L sin πx

L × sin πy
L given by the single-particle Schrödinger Equation (15) in the absence of interaction

against (b) the condensate wave function φ0(x, y) in the presence of interaction, L
ξ = 5, computed via

an exact numerical solution to the Gross–Pitaevskii Equation (9). The plot (c) is an approximation of
the latter condensate wave function φ0(x, y) via a factorization (33) of the exact analytical solutions
for the 1D box trap, Equation (30), along the x and y axes. All three plots present the dimensionless
condensate wave function of the unity norm.
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These effects can be approximately described analytically by a product of the exact
analytical solution (30) to the Gross–Pitaevskii equation in the 1D box trap along the x-axis
and the similar solution along the y-axis,

φ0(x, y) ≈ pK(p)
[K(p)− E(p)]L

sn
(

2K(p)
x
L

∣∣∣p)sn
(

2K(p)
y
L

∣∣∣p). (33)

Such a 1D-factorization approximation is shown in Figure 16c. It takes into account the
interparticle interaction only partially via its separate manifestations along the x and y
dimensions. Comparing Figure 16b and Figure 16c, we conclude that the above approx-
imation slightly underestimates the effect of 2D nonlinear diffusion of the condensate
due to the self-interaction gN0|φ0(x, y)|2φ0(x, y), which is opposite to the phenomenon of
self-focusing of an intensive laser light beam in a nonlinear medium. Nevertheless, the
1D-factorization approximation represents the effect of the interparticle interaction on the
condensate profile in a box trap in a qualitatively correct fashion.

6.2. Condensate Wave Function vs. Single-Particle Ground State in a Multi-Qubit Trap

For a nontrivial multi-qubit BEC trap, due to the presence of the trapping potential
U(x) 6= 0, as shown in Equation (13), the Gross–Pitaevskii Equation (9), that is, the nonlinear
Schrödinger equation, needs to be solved numerically, for instance, by the method of an
imaginary-time evolution (see, e.g., [87]). It is illustrated in Figures 17 and 18 for the case
of a four-qubit 1D and 2D trap, respectively.
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Figure 17. The ground-state wave function according to the single-particle Schrödinger Equation (15)
(blue dotted curve) and the corresponding condensate wave function φ0 according to the Gross–
Pitaevskii Equation (9) in the presence of the moderate, L

ξ = 2, (red dashed curve) and strong,
L
ξ = 10, (green solid curve) interaction in the case of (a) symmetric (U(x) = 0) and (b) asymmetric

(U(x) = (4h̄2/(mL2))[θ(x− 0.5L)− θ(x− 2.5L)]) 1D four-qubit trap; αj = 1.5β j = 16h̄2/(mL) ∀j.

As a result of the interparticle repulsion, the condensate tends to spread more uni-
formly over all single-qubit cells. This tendency works against condensate fragmenta-
tion [78] and in favor of the formation of a common condensate occupying the entire BEC
trap. Moreover, with increasing interaction, the regions of low condensate occupation near
the inter- and intra-cell potential walls begin shrinking as well. Both of the above effects
significantly increase the number of Bogoliubov-coupled excited states and magnitude of
their Bogoliubov couplings in Equation (10) that favors manifestation of the ]P-hardness of
the atomic boson sampling as is explained in Section 2.

It is worth noting that such a considerable expansion of the condensate shown in
Figures 17 and 18 is provided by means of the interparticle interaction alone, without
employment of the background potential, which also allows one to control the condensate
profile in a similar direction via restructuring the ground-state wave function as is shown
in Figures 8 and 14.

Moreover, if the background potential makes the trap asymmetrical, the increasing
repulsive interaction tends to restore the trap’s symmetry by converting an asymmetrical
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single-particle ground state into a more symmetrical condensate wave function. Such
evolution of the condensate in the asymmetrical trap is illustrated in Figure 17b and should
be compared against the condensate evolution in the symmetrical trap shown in Figure 17a.
Clearly, a strong interparticle interaction makes the condensate profiles in both traps almost
indistinguishable, while the profiles of the ground state in these traps in the absence of
interaction are very different.

Figure 18. Two-dimensional (2D) (2× 2)-qubit BEC trap: (a) The ground-state wave function ψ0

according to the single-particle Schrödinger Equation (15) in the absence of interaction as well as
the condensate wave function φ0 according to the Gross–Pitaevskii Equation (9) in the presence of
(b) moderate, L

ξ = 5, and (c) strong, L
ξ = 20, interaction; αj = 8h̄2/(mL), α′j = 6h̄2/(mL), β1 = β′1 =

4h̄2/(mL), β2 = β′2 = 2h̄2/(mL), Uj = U′j = 0 ∀j (see Equation (14)).

7. Controlling Multimode Squeezing of Bogoliubov Transform via
Bogoliubov Couplings

In equilibrium, the statistics of the many-body system of atoms in the BEC trap is
determined by the independent fluctuations of quasiparticles which form the eigenstates
of the Bogoliubov Hamiltonian with the eigenenergies {Ej} and have the Bose–Einstein

occupation number statistics with an average occupation number n̄j =
(
e(Ej−µ)/T − 1

)−1.
The two-component quasiparticle wave function {uj, vj} determine the excited-particle
field operator (3) and obeys the Bogoliubov–de Gennes equations:

L̂uj + gN0 φ2
0(r) vj = +Ejuj,

L̂vj + gN0(φ
∗
0 )

2(r)uj = −Ejvj,
(34)

where

L̂ ≡ − h̄2∆
2m

+U(r) + 2g
(

N0|φ0(r)|2 + nex(r)
)
− µ; nex = ∑

j

[
|vj(r)|2 +

|uj(r)|2 + |vj(r)|2

exp(Ej/T)− 1

]
.

In essence, the Bogoliubov–de Gennes equations express the fact of diagonalization of the
Hamiltonian (4) by the Bogoliubov transformation to quasiparticle creation/annihilation op-
erators, as stated in the matrix form in Equation (6), in the form of differential equations for
the coefficients {uj, vj} in the expansion of the field operator (3) via the quasiparticle opera-
tors. The wave functions are normalized to unity:

∫
V |φ0|2d3r = 1,

∫
V
(
|uj|2 − |vj|2

)
d3r = 1;

j = 1, 2, . . .. For simplicity’s sake, hereinafter, we assume that all wave functions φ0, uj, vj
are real valued. Below, we again neglect by temperature-dependent, Popov’s corrections,
that is, skip the contribution due to the noncondensate density nex and assume N0 ≈ N.

The matrix R of the Bogoliubov transformation (2) can be found from the equation(
â†

â

)
= R

(
b̂†

b̂

)
=

[
A B∗

B A∗

](
b̂†

b̂

)
(35)
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that relates creation and annihilation operators â†, â describing bare particles to the opera-
tors b̂†, b̂ describing quasiparticles as per Equation (3). Since the Bogoliubov transforma-
tion (2) leaves the canonical Bose commutation relations invariant, it obeys the symplectic
property

RΩRT = Ω, Ω =

[
0 1

−1 0

]
. (36)

Another, equivalent to (35), representation of the Bogoliubov transformation (2) can be
written in terms of the wave functions, rather than the operators, determining the particle
field operator in Equation (3):(

φ
0

)
= R

(
u
−v∗

)
≡
[

A B∗

B A∗

](
u
−v∗

)
, (37)

RT
(

0
φ

)
≡
[

AT BT

B† A†

](
0
φ

)
=

(
v∗

u

)
. (38)

The column-vectors φ = (φ1, φ2, . . .)T and u = (u1, u2, . . .)T , v = (v1, v2, . . .)T are com-
posed of the excited states {φk} and quasiparticle wave functions {uj}, {vj}, respectively.

Projecting Equation (38) onto a set of the orthonormal excited states {φk| k = 1, 2, . . .}
which are also orthogonal to the condensate wave function φ0, we obtain the explicit
formulae for the entries of the Bogoliubov block matrices A = (Akj) and B = (Bkj),

Akj =
∫

u∗j (r)φk(r)d3r, Bkj =
∫

v∗j (r) φ∗k (r) d3r, (39)

as overlapping integrals between those bare-particle wave functions and the quasiparticle
wave functions given by the solution to the Bogoliubov–De Gennes equations (34).

The Bogoliubov matrix R can be expressed explicitly also via the Bogoliubov couplings
in Equation (10) by means of a pure algebraic diagonalization of the Bogoliubov Hamil-
tonian in the sense of the matrix Equation (6). Indeed, in any basis {φk |k = 1, 2, . . .} of
excited states, orthogonal to the condensate wave function and constituting the excitation
field operator ψ̂ex = ∑k 6=0 φk âk as in Equation (3), the blocks of the Hamiltonian matrix in
Equation (5) are explicitly given by the Bogoliubov couplings in Equation (10) as follows

K =
(

εkk′ − µδk,k′ + 2∆kk′
)

, K̃ =
1
2

(
∆̃kk′

)
, H =

[
K̃ K
K∗ K̃∗

]
. (40)

Here, εkk′ = 〈φk|ε̂|φk′〉 is the matrix of the single-particle energy operator ε̂ = −h̄2∆/(2m) +
U(r) which constitutes the single-particle Schrödinger Equation (8). In particular, the
basis {φk |k = 1, 2, . . .} can be constructed out of the excited-state eigenfunctions {ψn |n =
1, 2, . . .} of the Schrödinger Equation (8) by means of the standard Gram–Schmidt or-
thonormalization starting from making these functions orthogonal to the condensate wave
function φ0. Then, by means of the symplectic property (36), Equation (6) determining the
Bogoliubov transformation can be rewritten as the following equation

ΩHR = R
[

E 0
0 −E

]
, E = diag{Ej| j = 1, 2, . . .}. (41)

It states that the j-th column of the Bogoliubov matrix, Rj = {A1j, A2j, . . . , B1j, B2j, . . .}T , is
the eigenvector of the matrix ΩH corresponding to the quasiparticle eigenenergy Ej, that is

ΩH Rj = EjRj , ΩH =

[
K∗ K̃∗

−K̃ −K

]
. (42)

(There is also the nonphysical eigenvector counterpart R(−)
j = {B∗1j, B∗2j, . . . , A∗1j, A∗2j, . . .}T

corresponding to the negative eigenenergy −Ej < 0.)
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After calculating the Bogoliubov transformation matrix R as per Equation (6), one
can find the multimode squeezing parameters [1,68–73] from Equation (2). Quantum
statistics of the many-body fluctuations in a BEC trap and, in particular, the computational
complexity of the atomic boson sampling are determined by two fundamental sets of
eigenvectors and eigenvalues associated with the diagonalization of (a) the squeezing
matrix and (b) the Bogoliubov Hamiltonian, as is explained in Sections 1 and 2. Both of
those sets of eigenvectors and eigenvalues are determined by the Bogoliubov couplings
(10) via the Bogoliubov transformation matrix R. Thus, the key problem is to calculate the
Bogoliubov couplings and understand how many of them can be essentially nonzero and
controllable in a wide range within the multi-qubit BEC trap suggested and described in
this paper.

Knowing the condensate wave function from the solution to the Gross–Pitaevskii
equation outlined in Section 6 and choosing the bare-particle excited states, for example,
as the purely harmonic, sine functions or the solutions to the single-particle Schrödinger
Equation (8) (see Sections 4 and 5), made orthogonal to the condensate and each other
via the standard Gram–Schmidt orthonormalization, it is straightforward to calculate the
integrals constituting the Bogoliubov couplings (10) and analyze their set for the multi-
qubit BEC trap. The related numerical results are illustrated for the cases of symmetrical
and asymmetrical 1D four-qubit traps in the plots shown in Figures 19 and 20, respectively.

First, comparing Figure 20 against Figure 19 makes it clear that the trap asymmetry
greatly enlarges the number of Bogoliubov-coupled bare-particle excited states. Indeed,
in the asymmetrical trap, the essentially nonzero couplings spread much further from the
main diagonal of the Bogoliubov-coupling matrix ∆k,k′ than in the symmetrical trap where
only narrow lanes of entries around the main diagonal and anti diagonal are essentially
nonzero. In addition, the degeneracy of zero coupling between the bare-particle excited
states of exactly odd and even spatial parity in the symmetrical trap (Figure 19), that results
in exactly zero values of all entries in each diagonal of an odd number parallel to the main
diagonal, is essentially broken in the asymmetrical trap (Figure 20). It is restored only in
the limit of a very strong interparticle interaction.

Figure 19. Matrix of Bogoliubov couplings (10) between the first sixteen excited states in the case
of the symmetric 1D four-qubit trap shown in Figure 17a; αj = 1.5β j = 16h̄2/(mL), Uj = 0 ∀j.
The excited states are obtained via the Gram–Schmidt orthogonalization from the condensate wave
function φ0 and (upper row) the sine functions sin(kπx/(4L)), k = 1, . . . , 16, or (lower row) the first
sixteen eigenfunctions of the single-particle Schrödinger Equation (15) in the presence of (the first
column) vanishing, L

ξ → 0, (the second column) moderate, L
ξ = 2, and (the third column) strong,

L
ξ = 10, interaction.
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Figure 20. Matrix of Bogoliubov couplings (10) between the first sixteen excited states in the case
of the asymmetric 1D four-qubit trap shown in Figure 17b; αj = 1.5β j = 16h̄2/(mL) ∀j, U(x) =

(4h̄2/(mL2))[θ(x − 0.5L) − θ(x − 2.5L)]. The excited states are obtained via the Gram–Schmidt
orthogonalization from the condensate wave function φ0 and (upper row) the sine functions
sin(kπx/(4L)), k = 1, . . . , 16, or (lower row) the first sixteen eigenfunctions of the single-particle
Schrödinger Equation (15) in the presence of (the first column) vanishing, L

ξ → 0, (the second column)

moderate, L
ξ = 2, and (the third column) strong, L

ξ = 10 interaction.

Second, the maximum spread of essentially nonzero couplings occurs at a moderate
interparticle interaction L

ξ ∼ 1 corresponding to the healing length ξ being on order of the

single-qubit cell length L. Much stronger interaction, L
ξ � 1, tends to localize nonzero

couplings just onto the main and anti diagonals. Both these effects are seen in each row of
plots in Figures 19 and 20 where the interaction strength is increasing from left to right.

Third, changing the bare-particle excited states, chosen for the simultaneous atom-
number detecting within the atomic boson sampling, from the set generated by the
Gram–Schmidt orthonormalization out of the sine functions (the upper rows in
Figures 19 and 20) to the set generated out of the solutions to the single-particle Schrödinger
equation (the lower rows in Figures 19 and 20) greatly affects the structure of the Bogoliubov-
coupling matrix both in the symmetrical and asymmetrical traps.

All of the above observations confirm that the inference the multi-qubit BEC trap
provides is an excellent opportunity for controlling the Bogoliubov couplings and, hence,
the multi-mode squeezing and interference of bare-atom excited modes in a very wide
range. Obviously, the more chaotic, messy, dense and wide the distribution of the essentially
nonzero elements over the Bogoliubov-coupling matrix (10), the more favorable the set of
trap’s parameters and bare-atom excited states chosen for detection of atom numbers for
testing manifestations of the computational ]P-hardness of atomic boson sampling. Among
patterns shown in Figures 19 and 20, the one in the center of the lower row in Figure 20 is
the most representative picture of such a complexity.

The asymptotic parameter of this complexity is determined by the Bogoliubov trans-
formation via a multimode dimensionality of the subspace of the excited-states involved
in the squeezing-matrix eigenvectors with essentially nonzero squeezing parameters (see
Equation (2)) and the Hamiltonian-matrix eigenvectors with low enough eigenenergies
corresponding to quasiparticles with essentially nonzero populations (see Equation (42)).
In general, this asymptotic parameter increases as the number of groups of excited states
chosen for occupation sampling via multi-detector imaging is growing. However, for a
given experimental setup with a BEC trap of a finite size, there is a maximum number M of
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modes/channels started from which a further increase of the number of sampled/detected
occupations would not essentially increase the complexity of boson sampling.

8. Toward Experiments on Atomic Boson Sampling in a BEC Trap

Suppose one has an appropriate BEC trap. (A possible model/example of such a trap
is discussed in the previous sections.) Then, as is explained in Sections 1.1 and 1.2, the
excited atoms, by themselves, naturally fluctuate and stay in the squeezed states inside the
trap even at thermal equilibrium due to interactions with each other. This allows one to
eliminate any nonequilibrium processes or dynamics, such as a precise time-dependent
control of system parameters and gates or any other type of processing usually associated
with quantum computers or simulators, as well as the sophisticated external sources of
squeezed or single bosons (required for photonic sampling) from the atomic sampling
experiments. It remains just to split the noncondensate into fractions based on the groups
of excited states and to measure the distribution of atom numbers over the chosen groups
of excited states by means of appropriate detectors.

For instance, one can divide the volume of the trap into a system of spatial cells.
Another possibility is to separate atoms in accord with their velocities, that is, to deal
with the cells in the momentum space. Anyway, the measurement of atom numbers could
be completed by means of a multi-detector imaging. In a BEC destruction scheme, one
switches off the confining trap and allows the cloud of trapped atoms to expand freely. In
this case, following a standard time-of-flight measuring technique, it is required to take
a few successive images of the expanding cloud and properly interpret them in terms of
kinetic equations for expansion. In this way, different spatial or momentum subsets of
atoms could be separated from each other, and sampling of their occupation numbers could
be obtained.

The imaging technique implies an illumination of the atomic cloud with a laser pulse
and measuring its transmitted or scattered components by multiple detectors. The transmit-
ted signal carries information on the absorption, dispersion and polarization transformation
of light caused by an atomic cloud [33,75,88–90]. The signal due to scattering and fluo-
rescence [91] could be controlled and structured by employing special external cavities
and laser sources that support light modes which mimic the excited states preselected for
sampling. The optical imaging for atomic boson sampling has much in common with the
experiments on the local atom-number fluctuations in BEC traps [47,48,88,90–94].

The spatial or momentum cells/modes represent groups of excited states selected
for detection/sampling. Of course, the excited states can be described/composed via an
arbitrary basis in the single-particle Hilbert space. Accordingly, the analytical formulae for
their joint occupation probability distribution ρ({nk}) and characteristic function, derived
in [1], have a universal form, i.e., are valid for any choice of such a basis. A transition from
one basis to another one just adds an extra unitary transformation (7) to the Bogoliubov
matrix R in Equation (2). Moreover, the universality of the general result for the character-
istic function obtained in [1] extends to the so-called marginal or coarse-grained statistics
of occupations of any groups of excited states, that is, to the occupation statistics evaluated
irrespective to the occupations of all other excited states. The corresponding “incomplete”
experiments on atomic boson sampling are the ones to be devised and implemented in
reality. Obviously, the condensed atoms, which constitute the macroscopic condensate
wave function φ0(r) orthogonal to the excited states φk(r), should not be countered during
the sampling procedure.

A computational complexity of atomic boson sampling depends on the number M
of groups of excited atomic states which are resolved by the multi-detector imaging and
are subject to interference due to mixing through the quasiparticles and to squeezing due
to interparticle interaction. This number M plays a part of the number of channels in
the optical interferometer. A mean occupation of the groups of excited states scales as
(N− N0)/M. Obviously, by increasing the total number N of atoms loaded in the trap and,
therefore, the number N − N0 of atoms in the noncondensate, one can make larger and,
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hence, easier for detection the number of atoms in each of M groups of preselected excited
states. Note, however, that the asymptotic parameter responsible for the ]P-hardness of
atomic boson sampling is not proportional to any of the numbers N, N − N0 or M.

Modern technology allows one to measure the number of atoms in a specified volume
or subset of atoms with nearly single atom resolution [91,93–95]. Yet, achieving the single
atom accuracy is not absolutely necessary. In particular, the ]P-hardness of boson sampling
exists even in the case of the threshold detecting scheme in which an outcome of the
measurement is just zero or non-zero occupation in each preselected group of excited
states [16,24,25].

Finally, an experimental setup should provide the means to reconfigure detectors for
projecting upon a vastly varying set of groups of excited states, i.e., to accumulate statistics
of joint occupations for numerous different subsets of groups of excited states. Only in
this way can the quantum advantage be demonstrated at the most challenging level of the
average case.

9. Concluding Remarks

We introduce the multi-qubit BEC trap for studying manifestations of the quantum
many-body statistical phenomena which are ]P-hard for computing. In particular, we
describe the basic properties of the multi-qubit trap, including the single-particle excited
states and their energy spectrum via the single-particle Schrödinger Equation (8), the
condensate wave function versus the single-particle ground state via the Gross–Pitaevskii
Equation (9), and the Bogoliubov couplings (10) between excited states responsible for
the formation of quasiparticles and multimode squeezing via the Bogoliubov–de Gennes
equations (34). It is completed within the 1D and 2D models, as shown in Equations (13)
and (14).

We show that the multi-qubit BEC trap offers a convenient and thoroughgoing control
of the many-body system parameters essential for the interplay between excited states’
interference and squeezing. This interplay can be revealed via an apropriate decomposition
of the Bogoliubov-transformation matrix in Equation (2) and is responsible for the compu-
tational ]P-hardness which is the basis for a potential quantum advantage of atomic boson
sampling over classical computing [1].

It would be very interesting to study experimentally various phenomena associated
with the atomic boson sampling. The BEC trap is a boson-sampling platform alternative
to a photonic interferometer. Both systems provide the output multivariate statistics
which shows computational ]P-hardness associated with the hafnian of complex-valued
matrices. The proposed multi-qubit trap design discussed in the present paper allows
one to vary those matrices and, hence, the output statistics over a wide range. Thus, the
latter, major requirement for testing quantum advantage is fulfilled by the multi-qubit
BEC trap. The remarkable fact is that classical computing of the hafnian of even relatively
low-dimensional matrices corresponding to the number of sampled modes/channels of
the order of M = 8× 8 = 64 is already inaccessible to modern supercomputers. Especially
promising are boson-sampling experiments with the multi-qubit BEC trap containing a
finite number M of lower-miniband split-off excited states or groups of them (see Figure 1).

The case of a few single-qubit cells with a relatively small number of sampled oc-
cupations M = 2, 3, 4, . . . promises the discovery of new quantum effects similar and
beyond a particle analog of the simple Hong-Ou-Mandel interference effect. It can be
accomplished by means of the current magneto-optical trapping and detection technology.
The value of such experiments for the comprehension of the fundamental aspects of the
many-body quantum systems responsible for their computational ]P-hardness is difficult
to overestimate.

The conclusive experiments with an asymptotically large numbers of single-qubit cells,
Q � 1, and sampled excited states or groups of them, M � 1, addressing the computa-
tional ]P-hardness of quantum many-body processes are very challenging. Yet, they seem
to be within reach and could hit convincing manifestations of quantum advantage.
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