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Abstract: We focus on the problem that the Grover algorithm is not suitable for the completely
unknown proportion of target solutions. Considering whether the existing quantum classifier used by
the current quantum neural network (QNN) to complete the classification task can solve the problem
of the classical classifier, this paper proposes a binary quantum neural network classifical model
based on an optimized Grover algorithm based on partial diffusion. Trial and error is adopted to
extend the partial diffusion quantum search algorithm with the known proportion of target solutions
to the unknown state, and to apply the characteristics of the supervised learning of the quantum
neural network to binary classify the classified data. Experiments show that the proposed method
can effectively retrieve quantum states with similar features. The test accuracy of BQM retrieval
under the depolarization noise at the 20th period can reach 97% when the depolarization rate is
0.1. It improves the retrieval accuracy by about 4% and 10% compared with MSE and BCE in the
same environment.

Keywords: binary classification; Grover algorithm; QNN

1. Introduction

The Internet has many different kinds of data and information that are intersected
and stored on social networks, prompting many different research fields to start to pay
attention to social networks. Users on social networks obtain the resources that they need
by visiting web pages [1–4]. The key to studying social networks is to analyze how these
social networks are used. The data analyzed can be used to improve the social network
itself, making it more convenient for users to browse the data required. They can also be
used to analyze users’ preferences to deliver advertisements at designated points. They can
also be used to analyze user behavior and to predict the transactions that users participate
in [5,6]. One of the main ways to analyze these results is to perform extensive data analysis
on the weblogs of these sites [7,8]. Every time a user requests a page or some of the
resources on that page, such as video, sound, etc., a new record is added to the weblog of
the site [9]. This information contains information about the user’s favourite pages (i.e., the
most frequently visited pages), the sequence of visits to ordinary pages, and even hints at
the user’s characteristics. This information analysis method can be called web page using
data mining (WUM) based on weblog information [10–12]. To use WUM, a sequence of
interactions between a single user and a web page needs to be extracted. The resulting file
should contain at least the following fields: the user’s IP address, timestamp, requested
resource, code for the result of the operation, the previous web address before entering the
web page, and the browser used [13,14]. Using and analyzing this sequence, the pattern of
the user’s access to the web page can be obtained.

The value of big data is essentially reflected as follows: it provides new thinking and
means for a human to understand complex systems. In theory, a virtual digital image of
the natural world can be constructed by digitizing the real world on a sufficiently small
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scale of time and space that carries the running rules of the real world. On the premise of
sufficient computing power and efficient data analysis methods, an in-depth analysis of
this virtual digital image will make it possible to understand and to discover the existing
complex system’s operation behavior, state, and law. Big data provides a new way of
thinking and a new means for exploring objective laws and for transforming nature and
society for human beings. Due to the high and increasing demand for big data mining and
analysis work, the era is forced to gradually use more efficient quantum scientific research
technology [15] to meet the gap of technology improvement means, and then to improve
the efficiency of information extraction work and to promote the progress of more scientific
research. In view of the above requirements and improved thinking, this paper makes
use of the special advantages of quantum algorithms compared with traditional iterative
algorithms [16], as a new field of quantum neural network, and studies the neural network
autonomous learning scheme [17] for network log information extraction, which highlights
the high-value prospects of the quantum field in big data mining and analysis.

This search hassle can be carried out in O(N) with the use of Grover’s quantum
search algorithm. Grover’s quantum search algorithm [18] makes use of the amplitude
amplification approach in quantum computing to attain quadratic acceleration in unsorted
search problems. Grover’s quantum search algorithm has been efficiently applied on
classical computer systems with the usage of a quantum laptop language (QCL). For an
unordered database search, the Grover algorithm achieves quadratic acceleration compared
with the classical algorithm. Then, analysis, induction, and variant research are carried
out [19,20]. Except for the lower bound, Grover’s methodology can be used for the case
where the λ fraction of the target term is unknown. The fixed point strategy and the trial
and error method are the two quantum search strategies that can be implemented.

The Binary QNN Model in this paper is a kind of model based on the Grover algorithm
and the QNN supervised learning algorithm. First of all, this is based on the traditional
Grover algorithm being analyzed and improved, using Younes’ algorithm to improve the
search algorithm efficiency, inserting this into the iterative learning process of the quantum
neural network [21,22], and using quantum processes to promote the efficiency of the
algorithm and neural network to realize multiple network synchronization searching and
learning [23,24] for each iteration algorithm to improve the efficiency of solutions [25]. The
quantum neural network learning scheme in this paper can be applied to quickly find the
user’s IP address in massive weblogs, and then accurately and efficiently identifying and
classifying relevant and valuable information such as the IP addresses of network logs. The
results can be sorted according to the number of search categories to identify and analyze
user behavior accurately. It can not only quickly discover the person’s record of specific
interests, but also can divide the session of a single user, which ensures the accuracy of
person document identification and improves the effectiveness of user activity queries.

This article is structured as follows. Section 2 introduces the trial-and-error method
(Younes’ algorithm) used in this paper, and the basic principles of the QNN supervised
learning division task. Section 3 describes our binary QNN model. Section 4 describes
the evolution process of the original dataset, and provides entropy analysis to show the
advantages of this model. Section 5 summarizes and discusses the role of the proposed
model in the development of user behavior pattern prediction.

2. Basic Conception
2.1. Supervised Learning Classification of QNN

Quantum Neural Network (QNN) is a new research field formed by the intersection
of quantum physics, mathematics, computer science, information science, cognitive science,
complexity science, and other disciplines. As the natural evolution of the traditional
neural computing system, it makes full use of the great power of quantum computing to
improve upon the information processing capacity of neural computing. By introducing
the idea of the superposition of quantum states into the traditional feedforward neural
network, QNN can train the quantum interval and quantify the uncertainty of the input
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data of training samples. Different data will map to different magnitudes. A multi-layer
excitation function is used to increase the fuzziness of the network, and to improve the
accuracy and certainty of network pattern recognition [26]. Therefore, the research on
the quantum neural network provides beneficial support for the combination of quantum
computing and neural computing. The potential of quantum neural networks is that they
take advantage of both quantum computing based on coherent superposition and neural
computing based on parallel processing. For example, running a deep neural network
(DNN) model on a device with limited computing power can be challenging because of the
large computational power and memory requirements on the device. However, to solve
this problem, a quantum neural network (QNN) has greater potential, which can save
computing costs while ensuring the accuracy of DNN training.

QNN comprises quantum state preparation subcircuits and optimization tasks per-
formed by classical controllers [27]. The fact that variable-component subcircuits utilized in
QNN produce probability distributions that cannot be efficiently simulated is part of the ev-
idence supporting the claim [28,29]. QNN’s main application, similar to DNN’s, is to tackle
categorization tasks [30]. Practical challenges, such as recognizing handwritten digits and
the features of many living creatures, can be categorized as categorization scenes [31,32].

A dataset is given

T = {(xi, yi)}N−1
i=0 ∈ (RN×M, {0, 1}N) (1)

According to N examples and M elements in the examples, a QNN is led to research
fθ(·) to predict the label of a facts set T

min
θ

N−1

∑
i=0

Iyi 6= fθ(xi)
(2)

where θ is the trainable parameter, and Iz is an indicator function whose value is 1 when
the condition z is met; otherwise, it is zero. The quantum classifier realizes the data
tag prediction function according to specific rules through the filtered data, and its basic
principle is shown in Figure 1. We use quantum classifiers in the research section to specify
a QNN for completing the classification task defined in Formula (2). Considering the binary
task, it is necessary not only to find a decision rule in Formula (2), but also to output the
index j satisfying the pre-determined black box function. Given a trained classifier fθ(·),
both classical algorithms and previous quantum classifiers require at least O(T) query
complexity to find j.

The dataset T is constructed from a given qubit with adjustable interactions, where
the qubit composition is represented by xi and yi. We learn the interaction from a given
training set of each input–output relationship based on the classical backpropagation rule
fθ(·), and taking xi as the input to its rule, where the input–output relation is the data
pair (xi, yi) that constitutes the dataset T. This learning process of qubits is viewed as the
desired output algorithm behavior, that is, the quantum network “learns” an algorithm.

A notable theoretical result concerning quantum classifiers is the tradeoff between the
computational cost and the training performance shown [33].
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Figure 1. Basic principles of the quantum classifier. xi randomly generated by the RN×M matrix,
and yi, which can only be 0 or 1, forms N data pairs and then generates the dataset T. According
to the classic backpropagation rule fθ(·), xi is taken as the input to this rule. The qubit obtains the
input–output relationship from the data pair (xi, yi) in the constructed dataset T, and learns the
interaction in the training set of the relationship. In other words, the purpose of the quantum neural
network is to use xi as an input to learn fθ(·) rules.

2.2. Younes’ Algorithm

The methodology presented by Younes, Rowe J., and Miller J. [34] in Younes’ algorithm
is used to carry out the quantum search by exploiting the local diffusion operator to
overcome the souffle problem in the Grover algorithm. It demonstrates that regardless
of whether the number of matches is known, the entire range of 1 ≤ M ≤ N can be
consistently handled. It lays the theoretical foundation of the binary QNN model.

In the |0〉 and |1〉 states, part of the diffusion operator Qi system subspace of the
entanglement in additional qubit workspace performs about the inverse operation of the
mean, and the inverse operation of the phase shift is −1. H is the Hadamard Gates denoted

by H = 1√
2

[
1 1
1 −1

]
. The diagonal representation of Qi applied to the n + 1 qubit

system is:

Qi = (H⊗n ⊗ I1)(2|0〉〈0| − In+1)(H⊗n ⊗ I1) (3)

asthe |0〉 length is 2n+1, I1 is the unit of a 2× 2 matrix.
Generally, quantum structures of the well-known size n + 1 can be expressed as:

|ψ〉 =
N−1

∑
p=0

αp(|p〉 ⊗ |0〉) +
N−1

∑
p=0

βp(|p〉 ⊗ |1〉) (4)

Applying Qi to |ψ〉 bits, we obtain

N−1

∑
p=0

(
2
N

N−1

∑
p=0

αp − αp)(|p〉 ⊗ |0〉)−
N−1

∑
p=0

βp(|p〉 ⊗ |1〉) (5)
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where
1
N ∑N−1

p=0 αj means the mean amplitude of subspace ∑N−1
p=0 αp(|p〉 ⊗ |0〉). That is, the

operator Qi only performs the inversion of the means in the subspace and only changes the
sign of the amplitude.

The H gate is utilized to the first n qubits to produce 2n values to characterize the list.
Then, we iteratively observe the Oracle feature U f to map the goal in the list to 0 or 1, and
we retail the outcomes such as U f |x, 0〉 → |x, f (x)〉; the partial diffusion operator Qi is
applied, and this step is repeated q times. Finally, the first n qubits are measured.

The variety of iterations q has to be an integer to locate a healthy shut to the change
in measurements.

Setting q =
⌊

π
2θ

⌋
,as |q− q̄| ≤ 1

2 , 0 < θ ≤ π
2 . As cos(θ) = 1− M

N , we can find

θ ≥
√

2NM−M2

N
(6)

q =
⌊ π

2θ

⌋
≤ O(

√
N
M

) (7)

It is proven that the algorithm can be handled in the range of 1 ≤ M ≤ N using the O(
√

N
M )

fixed operator.

3. The Binary QNN Model

We simulate the creation of a binary analysis algorithm that uses quantum states
to process information, as shown in Figure 2. The algorithm proposed in this paper is
uniformly represented as a BQM field in the following content. As shown in Figure 2, BQM
uses a specified variable component subcircuit Uc, and an H gate to replace the Oracle U f .
The variable component subcircuit Uc, based on the training data, can conditionally flip
a flag qubit. The tagged qubit is then used as part of the H gate to guide a Grover search
algorithm to identify the index of the specified example; i.e., the state of the tagged qubit,
such as “0” or “1”, determines the probability of success in identifying the target index.
BQM optimizes the trainable parameters of the variable component subcircuit Uc. When
the corresponding training instance is positive, the success probability of sampling a target
index is maximized. Otherwise, BQM minimizes the probability of the success of sampling
target indicators. The design of our algorithm has some advantages in terms of query
complexity by inheriting attributes from the Grover search algorithm and performing binary
classification tasks on these attributes while allowing the setting of search constraints [35].
Under the above observation, a quantum classifier must have certain advantages [36–38].

3.1. Pretreatment Stage of a Dichotomous Task

In the pretreatment stage, a dichotomous task uses the dataset T defined in Equation (1)
as the extended dataset T̂.

To apply the Grover search algorithm to obtain index i = K− 1, for K ∈ [N], the Kth

pair data training rules Tk are as follows.

TK= [(x(0)k , y(0)k ), (x(1)k , y(1)k ), . . . , (x(K−1)
k , y(K−1)

k )] (8)

The pair of data in Tk is like the Kth pair of T̂; this means that (x(K−1)
k , y(K−1)

k ) = (xk, yk).

The first K− 1 pair of Tk = {(x(i)k , y(i)k )}K−2
i=0 uniformly samples from a subset of T̂, when

every label {y(i)k }
K−2
i=0 is the opposite of yk.

yk ∈ {0, 1}, T̂(0) and T̂(1) are constructed, which contain only those examples of T̂
with the labels ’0’ and ’1’, respectively. When yk = 0, the pair samples before K from T̂(1); it
is same as for the situation where yk = 1, in which the pair samples before K from T̂(0).
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Various quantum classifiers encode Tk into quantum states in different ways [39]. For
the sake of notation, we indicate that |Φk〉 that analogously connects with the Kth example is

|Φk〉 = Udata|0〉 =
K−1

∑
i=0

1√
K
|g(xi)〉|i〉 (9)

as g(·) is a coding operation.

Figure 2. The paradigm of BQM. (A) The first K-1 loop uses U, defined in Equation (12), which
consists of unitary operators (namely Udata, Uc, H, and Qi). (B) The last cycle uses the unitary
operation UE defined in Equation (13). The qubit interacts with Uc and Qi to form the feature register
and data register.

3.2. The Training Process of the Learning Plan

Compared with the traditional Grover algorithm, combining the variational learning
method and the Grover search algorithm produces quantum advantages [40–44]. The
adopted variable component subcircuit Uc is designed to find a hyperplane to keep the last
pair in the Tk away from the pair of samples before K.

For the variational quantum circuits Uc(θ) in BQM, a NISQ device scheme consists of
a trainable single-qubit gate and two-qubit gates such as CNOT or CZ, which implement
generation and discrimination tasks using variational hybrid quantum-classical algorithms.
Uc is denoted as Uc = ∏C

c=1 U(θc), where each layer U(θc) contains O(poly(N)) parameter-
ized single-qubit gates and at most, O(poly(N)) fixed two-qubit gates with the same layout.

In the optimal situation, given a initial state|Φk〉 defined in Equation (9), Uc is applied
to obtain the following goals:

1. If the pair of samples before K as Tk analogously connects with the label yk = 0, the
expected state is

(Uc ⊗ I)(Udata|0〉)yk=0 =
K−1

∑
i=0

1√
K
|0〉|i〉 (10)
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2. If the pair of samples before K as Tk analogously connects with the label yk = 1, the
expected state is

(Uc ⊗ I)(Udata|0〉)yk=1 =
K−1

∑
i=0

1√
K
|1〉|i〉 (11)

The label yk = 0 (or yk = 1) as the quantum state of the RF characteristics register
the first qubits |0〉 (or |1〉). As shown in Figure 2A, state (Uc ⊗ II)Udata|0〉 was prepared.
Our binary QNN model iteratively applied the H door to register by the characteristics of
the first qubit and index on the index register control, using the Udata register and the Uc
calculation characteristics, and to finish the first cycle, it applied the diffusion operator Qi
to the index register. All quantum processes, such as U, are part of a period.

U = Qi ◦U†
data ◦ (Uc ⊗ I)† ◦ H ◦ (Uc ⊗ I) ◦Udata (12)

Define Qi = I⊗ ( 2
K ∑i |i〉〈i| − II). Except on a loop, the binary QNN model is repeat-

edly in the initial state |0〉 to U, and the application of the unitary operation is replaced with

UE = Qi ◦ H ◦ (Uc ⊗ I) ◦Udata (13)

The brown shade in Figure 2B shows this. According to the traditional Grover search
algorithm [45], before making quantum measurements, the binary QNN model polls U
and UE for a total of O(

√
K) times.

3.3. The Evolution of the Quantum State

We analyze how quantum states evolve under yk = 0 and yk = 1:

• After interaction with unitary Uc ⊗ I, using the Equation (10) input state Φk(yk = 0),
this state can be converted to 1√

K ∑i=0 |0〉|i〉. For all computing in i ∈ [K − 1], this

means that the quantum operation Qi ◦U†
data ◦ (Uc ⊗ II)

† does not change state.

1√
K
(H⊗n ⊗ I)(2|0〉〈0| − In+1)(H⊗n ⊗ I)

K−1

∑
i=0
|0〉|i〉 =

K−1

∑
i=0

1√
K
|0〉|i〉 (14)

When we measure the indicator register of the output state, the sampling i ∈ [K− 1]
for calculating the base i is distributed.

• After interaction with unitary Uc ⊗ I using the Equation (11) input state Φk(yk = 1),
this state can be converted to 1√

K ∑i=0 |1〉|i〉.
Mathematically, the result state is generated after interaction with H

H ◦ (Uc ⊗ I)(Udata|0〉)yk=1 =
1√
K
|0〉∑K−2

i=0 |i〉 −
1√
K
|1〉|i∗〉 (15)

where |i∗〉 for calculating the base |K− 1〉. The calculation operation U†
data ◦ (Uc ⊗ I)†

and the diffusion operation Qi are used to increase |i∗〉 probability.
After the first cycle, the generated state is generated

U(Udata|0〉)yk=1 =
(K− 4)
K
√

K
|0〉∑K−2

i=0 |i〉+
3K− 4
K
√

K
|0〉|i∗〉 (16)

where Equation (12) defines U. According to Grover’s algorithm, the chance of

sampling i∗ will increase to (3K−4)2

K3 .

3.4. The Loss Function

With the observation above leading to Theorem 1, the proof is given above:
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Theorem 1. For BQM, under the optimal setting, if the label of the last item of Tk is yk = 1, the
probability of the sampling resulting in i∗ = K− 1 is asymptotically 1.

Proof of Theorem 1. We discussed the case where the last entry in Tk has labels yk = 1 and
yk = 0.

In the instance of yk = 0, assuming that the label of the final item in Tk is yk = 0, it is
possible to determine from Equation (14) that after the first cycle, the generation state of
BQM is

Uc|Φk(yk = 0)〉 = U|0〉 =
K−1

∑
i=0

1√
K
|0〉|i〉 (17)

The chance of picking any index when U (apply to |0〉) is the same, according to the
formula above. After U is applied to |0〉 via induction, with the migration with time n, the
state changes as

N

∏
i=0

Ui|0〉 =
K−1

∑
i=0

1√
K
|0〉|i〉 (18)

where the given N is any positive integer, and the probability of sampling |i∗〉 is 1
K . In the

last loop, the quantum operation UE defined in Equation (13) is applied to state
N
∏
i=0

Ui|0〉

and the resulting state is

UE

N

∏
i=0

Ui|0〉 = Qi ◦ H ◦ (Uc ⊗ I) ◦Udata

K−1

∑
i=0

1√
K
|0〉|i〉

=
K−1

∑
i=0

1√
K
|0〉Λ

(19)

where the first equality uses Equation (18); the second equation uses Equation (15) and
exploits the application of the diffusion operator Qi = (H⊗n ⊗ I1)(2|0〉〈0| − In+1)(H⊗n ⊗
I1), then Λ = 1√

K−1 ∑K−2
i=0 |i〉+ |i

∗〉.
In the instance of yk = 1, assuming that the label of the last item in Tk is yk = 1, it is

possible to determine from Equation (16) that after the first cycle, the generation state of
BQM is

Uc|Φk(yk = 1)〉 = |0〉 ⊗ (
(K− 4)
K
√

K
∑K−2

i=0 |i〉+
3K− 4
K
√

K
|i∗〉) (20)

The chance of picking any index when U (apply to |0〉) is the same, according to the
formula above. After U is applied to |0〉 by induction, with the migration with time n, the
state changes as follows:

n

∏
i=0

Ui|0〉 = |0〉 ⊗ 1√
K

[
h̄ ∑K−2

i=0 |i〉+λ̄|i∗〉
]

(21)

where given that n is any positive integer, h̄ = cos(2nα)− 1√
K−1

sin(2nα), sin α = 1√
K

,

λ̄ =
√

K− 1 sin(2nα) + cos(2nα). In the last loop, the quantum operation UE defined in
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Equation (13) is applied to state
N
∏
i=0

Ui|0〉, and the resulting state is

UE

N

∏
i=0

Ui|0〉 = Qi ◦ H ◦ (Uc ⊗ I) ◦Udata|0〉 ⊗
1√
K

h̄ ∑K−2
i=0 |i〉+λ̄|i∗〉)

= Qi

[
h̄|0〉∑K−2

i=0 |i〉+λ̄|1〉|i∗〉
]

√
K

=

[
(K− 2)h̄|0〉∑K−2

i=0 |i〉+ 2
√

K− 1λ̄|1〉|i∗〉
]

√
K3

(22)

where the first equality uses Equation (21) and the second equation uses Equation (16) to
design the feature register. It uses H to flip the phase of |i〉 whose first qubit of the feature
register is |1〉, and the last equation comes from the application of the diffusion operator Qi.

According to Equation (22), in the ideal situation, the probability of sampling i∗ is near
to 1 when n ∼ O(

√
K), and then (K− 1) sin(2nα) +

√
K− 1 cos(2nα) is close to 1.

The result of Equation (19) shows that when yk = 0, the probability of sampling
i∗ never increases. Thus, we can follow that the sampling probability of the result i∗

asymptotically approaches one if and only if the label of the last term of Tk is yk = 1.

According to Theorem 1 of the BQM’s special property, the output distribution is
different for different labels of the input Tk while performing the binary classification task.
According to the analysis of Theorem 1 mentioned above, the calculation basis i = K− 1
will be present in the output state of the BQM; that is, UEUO(

√
K)|0〉, which corresponds to

yk = 1, and its probability is close to 1. The matching output state for yk = 0 will, however,
include the same computational foundation i ∈ [K− 1].

According to the mechanism of the Grover search algorithm, the loss function of BQM
is deduced as

min
θ

L(θ) = s(
1
2
− yk)Tr((|1〉〈1|)⊗ H ⊗ (|i∗〉〈i∗|)∆θ) (23)

where s(·) is the sign function, ∆θ = UEU(θ)O(
√

K)|0〉〈0|(UEU(θ)O(
√

K))
†
, and U(θ) is

defined in Equation (12).
The success probability of sampling i∗ and obtaining the first feature qubit as ’1’(’0’)

is maximized (minimized) when yk = 1 (yk = 0), when faced with the challenge of
minimizing the loss function L(θ).

3.5. Gradient-Based Parameter Optimization

The optimization method in this paper uses a multiple-layer parameterized quantum
circuit (MPQC), according to the principle that the arrangement of quantum gates in each
layer is the same [46], and the operation formed by the layer c is expressed as U(θc),
produced by quantum states produced by MPQC

|ω〉 =
C

∏
c=1

U(θc)|0〉⊗N (24)

where C is the total number of layers. BQM uses MPQC to construct Uc

Uc(θ) =
C

∏
c=1

U(θc) (25)

The circuit layout of U(θc) at layer l is shown in Figure 3. When the number of layers is C,
the total number of trainable parameters of BQM is 2MC.
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Figure 3. The realization of the lth layer U(θc). It is assumed that the lth layer U(θc) interacts with M
qubits. Three trainable parameterized gates RZ, RY , and RZ are first applied to each qubit, followed
by the M− 1 CNOT gates.

The update rules of BQM at the jth iteration are as follows

θ(j+1) = θ(j) − ζ
L(θ(j), Tj)

∂θ
(26)

where ζ is the learning rate. Given the explicit form of L(θ) in the defined Equation (23),
the gradient of L(θ(j), Tj) can be rewritten as

∂L(θ(j), Tj)

∂θ
= s(

1
2
− yj)

∂Tr(∏ ∆θ(j))

∂θ
(27)

where yj is the label of the last item in Tj, s(·) is the symbol function, and ∏ is the measure-
ment operator.

BQM employs a gradient-based method, according to the parameter displacement rule,

to obtain the gradient
∂Tr(∏ ∆

θ(j) )

∂θ , to optimize θ. The parameter shift rule [47] iteratively
calculates each gradient entry under its guiding principle.

For e ∈ [2NC], only the eth parameter is rotated by ±π
2 , i.e.,

θ
(j)
± = [θ

(j)
0 , . . . , θ

(j)
e−1, θ

(j)
e ±

π

2
, θ

(j)
e+1, . . . , θ

(j)
2NC−1] (28)

Combining Equations (26)–(28), the update rule of BQM at the eth iteration of the e item is

θ
(j+1)
e = θ

j
e − ζs(

1
2
− yj)

∂Tr(∏ ∆
θ
(j)
±
)

2
(29)

where ∆
θ
(j)
±

= UEU(θ+
(j))

O(
√

K)
|0〉〈0|(UEU(θ−

(j))
O(
√

K)
)

†
.

3.6. Circuit Implementation of Label Prediction

After the training of BQM is completed, the trained Uc can use the corresponding
circuit (as shown in Figure 4) to predict the label of an instance with O(1) query complexity.

Denoting the new input as (x, y), we encode a into quantum states using the same

encoding method used during training; i.e., |
∼
χ〉 = |g(x)〉, then we apply the trained Uc

to |
∼
χ〉.

When the size of the dataset loaded by the binary QNN model is K, a well-trained

binary QNN model can obtain the index with O(
√

K
MT2 ) query complexity.
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Figure 4. Circuit implementation of BQM prediction. Use g(·) as in the training process. The
encoding method prepares the state |g(x)〉 and applies the trained variable component subcircuit Uc

to |
∼
χ〉.

3.7. Synthetic Construction of Datasets

Given the training example xi = (α(j), β(j)) ∈ R2, the embedded function f (α(j), β(j))
used to encode xi into a quantum state is represented as

f (α(j), β(j)) = (R(γ(α(j), β(j)))⊗ R(γ(α(j), β(j))))|0〉⊗2 (30)

where γ(α(j), β(j)) = (α(j), β(j))2 is a specified mapping function. The above formula means
that g (xi) can be converted into a series of quantum operations, the implementation of
which is shown in Figure 5a. To encode multiple training examples into quantum states
simultaneously, we should treat f (xi) as a controlled version, the implementation of which
is shown in Figure 5b.

3.8. The Details of BQM

The implementation of GBLS is shown in Figure 5c. In it, the data encoding the unitary
Udata consists of a controlled set of f (xi) quantum operations. The implementation of
encoding unity Udata depends on the size of the batch B. For the quantum kernel classifier
with BCE loss and MSE loss (B = M), it can be seen from Formula (30) that the unitary
encoding is

Udata = R(γ(α(j), β(j)))⊗ R(γ(α(j), β(j))) (31)

For a quantum kernel classifier with MSE loss (B = M/4), the implementation of encoding
unitary Udata is the same as that of BQM, as shown in Figure 5.
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Figure 5. Implementation of BQM in numerical simulation. (a) The circuit implementation of the
encoded unitary Udata corresponding to the feature map f (xi) is illustrated. (b) The realization of
quantum operation f (xi). (c) The implementation of BQM, given input Tk = {xi, xj, xm, xn}.

4. Results

We will analyze the security of the proposed BQM, intuitively express the evolution
and generation process of the dataset by using the dot plot, and evaluate the algorithm’s
performance through entropy analysis and testing [48–50].

4.1. Dataset Evolution

This algorithm’s dataset generation process is shown in Figure 6. It uses the top K− 1
pair and the Kth pair in the original dataset for label classification and uniform sampling. It
divides all data pairs into sub-datasets labeled as 1 (or 0) according to the y value of 0 (or 1).

The yellow cube in the figure represents the data point in the data pair whose value of
y is 1, the blue cube represents the data point in the data pair whose value of y is 0, and the
point whose circle in red represents the Kth data point. The specific rules are as follows:

1. Represents the original dataset when yk = 1 as the ‘A’ cube or when yk = 0 as the ‘B’
cube in the Kth pair of data (xk, yk);

2. Represents the uniform sampling from the sub-dataset labeled 1 in Figure 6a to
generate a new dataset in Figure 6b;

3. Represents the uniform sampling from the sub-dataset labeled 0 in Figure 6a to
generate a new dataset in Figure 6c.

4.2. Stability and Convergence Analysis

Define a utility-bound R as a utility measure to evaluate the distance between the
optimization result and the stationary point in the optimized environment.

R = E[||∇θ L(θ(j))||]2 ≤ ε(j) (32)

For the BQM quantum classifier with a depolarization noise setting, the utility bound
of output θ(j) ∈ Rl after j iterations is

ε(j) = O(poly(
l

j(1− P)d ,
l

BK(1− P)d ,
l

(1− P)d )) (33)

where P is the depolarization rate, l is the total number of trainable parameters, K is the
number of measurements to estimate the quantum expected value, d is the circuit depth of
the variable component sub-circuit, and B is the number of batches.



Entropy 2022, 24, 1783 13 of 18

We use the decay rate of log(ε(j)) to define the asymptotic convergence rate of this
optimization algorithm [51,52]. According to Equation (33), the attenuation rate of log(ε(j))
is slower than that of −j, which proves that this algorithm has a sublinear convergence rate.

When B = M, we input each sample Tj in turn to variable component subcircuits to
obtain ∇L(θ, Tj). Once the set {∇L(θ, Tj)}M

j=1 is collected, the gradient ∇L(θ, T) can be

estimated by 1
M ∑M

j=1∇L(θ, Tj). Assuming that the number of measurements required to
estimate the derivative of the JTH parameter θj is K, the total number of measurements
obtained is MK for 1

M ∑M
j=1∇L(θ, Tj). Therefore, the estimate of∇L(θ, Tj) with l parameters

requires MKl measurements.
For the above definition of utility bound R, the results show that a large number of

lot B can guarantee a better realization of utility bound R by increasing the total number
of measurements.

Figure 6. Dataset evolution. The yellow cube in the figure represents the data point in the data pair
whose y = 1, the blue cube represents the data point in the data pair whose y = 0, and the point circle
in red represents the Kth data point. (a) The traditional dataset when defined as T, which is defined in
Equation (1). (b) When Kth = 1 (that is, the red grid labeled A), according to the generation formula,
Kth is combined with the first K− 1 labels with y = 0, and the resulting dataset. (c) When Kth = 0
(that is, the red grid labeled B), according to the generation formula, Kth is combined with the first
K− 1 labels with y = 1, and the resulting dataset.

4.3. Performance Analysis under Depolarization Noise

We employ depolarization channels to mimic the system noise, since the number of
measurements and the quantum system’s noise are both constrained. We next examine
how well BQM performs in the presence of depolarization noise [53].

If a quantum state is ω, we define the depolarizing channel vP acting on this quantum
state as

vP(ω) = (1− P)ω + P
Il
l

(34)

where P is the depolarization rate, and l is the total number of trainable parameters.
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We compare the performance of BQM and two other quantum kernel classifiers when
quantum system noise and measurement delays are considered. Among them, BQM stands
for a binary classification quantum neural network model based on the optimized Grover
algorithm proposed in this paper. The two classifiers compared with BQM are defined as
“BCE” and “MSE”, respectively. “BCE” stands for the quantum kernel classifier with binary
cross-entropy loss, and “MSE” means the quantum kernel classifier with the mean square
error loss (B = N). We simulated the statistics for each of the three classifiers by repeating
the values 10 times. Figure 7 illustrates the simulation findings. After 20 periods, BQM,
BCE, and MSE quantum classifiers achieve the same performances. It can be observed
that the quantum classifiers with MSE loss have lower convergence speeds and larger
variances than the BQM and BCE classifiers. This phenomenon reflects that using BQM
for classification tasks with different batches is meaningful. In Table 1, we compare the
average training and testing accuracies of the BQM, BCE, and MSE quantum classifiers
in the last stage. Considering the measurement error and quantum gate noise, BQM still
achieves a stable performance because of its minimal variance.

(a) Train Accuracy P = 0.1. (b) Test Accuracy P = 0.1.

(c) Train Accuracy P = 0.3. (d) Test Accuracy P = 0.3.

Figure 7. The performance of different quantum classifiers at the different depolarization rates
(P = 0.1, 0.3). Depolarizing noise models extracted from quantum hardware are applied to the
trainable unitary Uc(θ) of these three classifiers. The labels ‘BQM’, ‘BCE’, and ‘MSE’ refer to the
proposed Grover-based quantum classifier, the quantum kernel classifier with BCE loss, and the
quantum kernel classifier with mean square error loss. (a,b) shows the variation of the train and test
accuracies of BQM and the quantum kernel classifier with BCE loss with a P value of 0.1. (c,d) show
the variation of the train and test accuracies of BQM and the quantum kernel classifier with BCE loss
when the P value is 0.3. Vertical bars reflect the variance of the train and test accuracy at each iteration.

The binary QNN model based on Grover, quantum kernel classifier BCE loss, and
quantum kernel classifier mean square error loss is reflected by the labels ‘BQM’, ‘BCE’,
and ‘MSE’. The train and test accuracies of the BQM quantum classifier are shown in the
left and right figures. The vertical bar represents the train and test accuracy variation at
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each iteration, where all hyperparameter settings are the same as those used in the above
numerical simulation.

According to the numerical simulation results of the three quantum classifiers in
Figure 7, BQM can obtain a good utility boundary R through some tests. When they
achieve basically comparable performances, BQM reduces the number of measurements
required by K = 4 times compared to quantum classifiers with BCE losses and MSE losses
(B = N). This result shows that when N is larger, there is a large separation of computational
efficiency between BQM and the previous B = N quantum classifier.

The above data demonstrate that, when BQM is compared to the other two quantum
classifiers, the number of measurements required by BQM is decreased by four times,
demonstrating BQM’s efficacy.

Table 1. The average training and testing accuracies of BQM, BCE, and MSE quantum classifiers in
the last stage. The value ‘a ± b’ means that the average precision is a and its variance is b. The labels
‘BQM’, ‘BCE’, and ‘MSE’ refer to the proposed Grover-based quantum classifier, the quantum kernel
classifier with BCE loss, and the quantum kernel classifier with mean square error loss.

Algorithm’s
Name P = 0.1 (Train) P = 0.1 (Test) P = 0.3 (Train) P = 0.3 (Test)

BCE 0.883± 0.034 0.871± 0.071 0.924± 0.042 0.799± 0.061
MSE 0.941± 0.017 0.938± 0.008 0.929± 0.034 0.917± 0.011
BQM 0.977± 0.011 0.971± 0.007 0.951± 0.027 0.949± 0.010

4.4. Complex Comparsion Analysis

After receiving the encoded data in the variable component subcircuit of the quantum
classifier, the measurement operator defines a query as one measurement. The iterative
process of this algorithm is shown in Figure 8. According to the quantum classifier’s
training mechanism, calculating the total number of measurements for variable component
subcircuits is comparable to the query complexity of obtaining the gradient in a time frame.

Figure 8. The iterated process of BQM algorithm. After receiving the encoded data in the vari-
able component subcircuit of the quantum classifier, the measurement operator defines a query as
one measurement.

The next step is to derive the number of measurements required for a quantum kernel
classifier with BCE loss in one period. For the dataset T, the BCE loss is generated

LBCE = − 1
N

N−1

∑
i=0

yi log(P(yi)) + (1− yi) log(1− P(yi)) (35)

where yi is the label of the ith example, and P(yi) is the prediction probability of the label
yi; the output of its quantum circuit is

P(yi) = Tr((|1〉〈1|)⊗ H ⊗∇ (36)
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where ∇θ = |i∗〉〈i∗|)Uc(θ)|0〉〈0|Uc(θ)†, Uc(θ) is defined in Equation (25), and (|1〉〈1|)⊗
H ⊗ (|i∗〉〈i∗|) = Π is the measurement operator. According to the parameter displacement
rule, the derivative of BCE loss is satisfied

∂LBCE

∂θe
=

1
N

N−1

∑
i=0

ρ
Tr(Π∇θ+)− Tr(Π∇θ−)

2
(37)

where θ± is defined in Equation (28), ρ = 1−yi
1−P(yi)

− yi
P(yi)

. To obtain the gradient of BCE loss
according to the above equation, we need to give each training example to the quantum
kernel classifier to estimate P(yi), and then calculate the coefficient ρ.

BQM uses the superposition property of the loss function L defined in Equation (17)
to obtain the gradient ∂L

∂θe
. According to Equation (23), the gradient of BQM satisfies

∂L(θ, Tk)

∂θe
=

s
2

(
1− yk(Tr

(
Π∇

θ
(k)
+

)
− Tr

(
Π∇

θ
(k)
−

)
)

)
(38)

where yk refers to the label of the last pair in the training example Tk. The gradient of Tk may
be calculated using 2K measurements, where the first K measurement aims to approach

Tr
(

Π∇
θ
(k)
−

)
and the last K measurement aims to approximate Tr

(
Π∇

θ
(k)
+

)
, according to

the equation above.
Complex comparison analysis determines the effect of the dataset size on the binary

QNN model in this paper. The standard Grover search algorithm’s search complexity is
O(
√

Kl) for information data entries of size K and the total number of trainable parameters

l. The optimal algorithm classification complexity value is O(
√

Kl
MT2 ), as can be shown in

the following Table 2. The reduced query complexity of BQM implies a potential quantum
advantage in completing the classification task.

Table 2. Query complexity in several algorithms. The notations T, K, M, and l refer to the batch size
range, the wide variety of measurements used to estimate quantum expectation value, the complete
variety of education examples, and the total number of trainable parameters.

Algorithm’s Name Query Complexity

Grover O(
√

Kl)
Younes’ algorithm O(

√
Kl
M )

BCE O(KMl)
MSE O(KMl)
BQM O(

√
Kl

MT2 )

5. Conclusions

As an essential source of information for value-added social media websites, user
behavior patterns are the key to fast and accurate identification through session division to
realize extensive data analysis. In this paper, based on the trial-and-error method of the
Grover search algorithm, combined with the binary classification task of QNN supervised
learning, the advantages of the Grover quantum algorithm are brought into play in the
quantum classifier of the quantum neural network. The data are preprocessed by analyzing
the network search data to realize the construction of the BQM algorithm. They lay the
foundation for the development of user behavior pattern prediction. The experimental data
show that the application effect of this algorithm has a more apparent accurate recognition
rate than the other two classifiers, and it still has a prominent effect in the depolarized
noise environment. It can play a supervisory role in the security detection of future users’
network search behaviors.
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