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Abstract: Under the background of information overload, the recommendation system has attracted
wide attention as one of the most important means for this problem. Feature interaction considers
not only the impact of each feature but also the combination of two or more features, which has
become an important research field in recommendation systems. There are two essential problems
in current feature interaction research. One is that not all feature interactions can generate positive
gains, and somemay lead to an increase in noise. The other is that the process of feature interactions
is implicit and uninterpretable. In this paper, a Hierarchical Dual‑level Graph Feature Interaction
(HDGFI) model is proposed to solve these problems in the recommendation system. The model re‑
gards features as nodes and edges as interactions between features in the graph structure. Interaction
noise is filtered by beneficial interaction selection based on a hierarchical edge selection module. At
the same time, the importance of interaction between nodes is modeled in two perspectives in order
to learn the representation of feature nodes at a finer granularity. Experimental results show that the
proposed HDGFI model has higher accuracy than the existing models.

Keywords: personalized recommendation; feature interaction; graph structure; dual‑level graph
feature interactions

1. Introduction
Personalized recommendation has been widely used in advertising [1], point of inter‑

est [2], e‑commerce [3], and so on because it can solve the problem of online information
overload. The core idea is to predict users’ preferences for items based on their historical
purchase or click records [4]. Based on numerous user profiles, item attributes, and contex‑
tual information, feature interaction has become an important paradigm for recommenda‑
tion systems. Learning the joint gain between features from complex feature interactions
attracted a lot of attention both in industry and academia.

In order to separate feature interaction from complexmanual settings, a series ofmeth‑
ods have been proposed recently. Factorization machine (FM) [5] is a classic model that
learns second‑order feature interaction for the recommendation via the inner product of
pairwise features. Thismodel has triggered the proposal of a series of second‑order feature
interaction models. Attentional factorization machines (AFM) [6] and Field‑aware factor‑
ization machines (FFM) [7] were constructed based on FM, which get a better performance
compared with FM. These FM‑based models can only capture second‑order interactions
and do not take into account the nonlinear higher‑order interactions, which affect the per‑
formance of the models.

Deep neural networks (DNN) have the property of fitting any function and were
widely used in themodeling of complex nonlinear problemswith the development of deep
learning. DNN‑based models, such as deep factorization machine (DeepFM) [8], neural
factorization machine (NFM) [9], and Wide&Deep [10], have been proposed to extend the
low‑order feature interactions to higher orders. However, although these models consider
higher‑order interactions between features, the interaction process between features is still
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implicit and uninterpretable. Moreover, they consider all feature interactions (including
closely or negatively correlated), which can easily lead to important interactions being ob‑
scured by negatively correlated interactions. At the same time, the aggregation strategy
models with deep learning represented by automatic feature interaction (AutoInt) [11],
interpretable hierarchical attention interaction (InterHAT) [12], feature interaction graph
neural network (Fi‑GNN) [13], and graph factorization machine (GraphFM) [14] produce
satisfactory results. They update the representation of field features and model higher‑
order interactions through aggregation strategies. However, aggregation strategy models
also have two drawbacks. One is that they tend to select the last layer of feature represen‑
tation or implicitly integrate the prediction results of different orders into the final predic‑
tion results without directly reflecting the influence of different orders on the final results.
Second, although the attention mechanism can selectively convey or discard aggregated
information, it still aggregates gain for some negative interactions, introducing noise to
make training difficult.

To address these issues, we propose a hierarchical dual‑level graph feature interaction
recommendation model that adaptively selects the connections between nodes in different
layers and explicitly generates the final recommendation results based on the graph rep‑
resentation of each layer. Firstly, the features of each sample are considered as nodes in
the graph, and two connected nodes by an edge indicate that the two features interact.
Secondly, because the interaction between features is not fixed, we adopt a hierarchical
edge selection strategy for feature interaction selection, which can also be regarded as a
graph‑level dropout operation. Interactions with strong predictive gains are retained, and
some unnecessary connections are filtered out. Thirdly, we design a local‑level message
passing and aggregation strategy for each layer’s graph structure and a global squeeze‑
excitation network (SENet) to capture representation fusion at different levels and itera‑
tively obtain high‑order feature interaction information. Finally, a graph‑level representa‑
tion is obtained to generate the final prediction score. The contributions of this paper are
as follows.

• We consider several shortcomings of existing feature interaction models and use graph
structure to model the interaction process between features, which increases the inter‑
pretability of feature interaction and improves the recommendation results of the model.

• We drop out the edges of the feature graph hierarchically, preserving the feature in‑
teractions that are most useful to the target node. The feature interaction process is
modeled from local and global perspectives to obtain high interaction gain.

• We conducted experiments on three public datasets. The results show that our pro‑
posed model outperforms similar algorithms in terms of AUC and Logloss metrics.

2. Related Works
2.1. Feature Interaction Recommendation Model

Feature interaction, also known as feature combination, is a nonlinear transforma‑
tion of the sample space by combining two or more features to achieve the goal of ef‑
fective prediction for different feature combinations. Traditionally, feature interactions
need to be generatedmanually, which requires specialized domain knowledge and is time‑
consuming and labor‑intensive. FM [5] combines linear regression and feature decompo‑
sition models to learn both first and second‑order interactions, which opens up a series
of studies to automatically capture feature interactions. AFM [6] discriminates the impor‑
tance of different feature interactions and introduces an attention module to extract the
importance of different feature interactions on the final results. FFM [7] takes a feature do‑
main perspective. Features of the same nature are grouped into one domain for modeling
separately. Nevertheless, these FM‑based models only consider second‑order interactions
and ignore higher‑order interactions between features, limiting the predictive performance
of the models.

With the development of deep learning, fusing DNN for feature interactions has grad‑
ually become a mainstream approach since DNN can fit arbitrary polynomials, which also
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contain polynomials of higher‑order feature combination terms. Factorization‑machine
neural networks (FNN) [15] learn the higher‑order feature interactions by connecting mul‑
tiple fully connected layers using pre‑trained FM as initialization parameters. DeepCross‑
ing [16] adds multiple residual units to the multi‑layer perceptron (MLP) layer to cross‑
combine the various dimensions of the features so that the model obtains more nonlin‑
ear and combinatorial feature information. Wide&Deep [10] is a combined linear regres‑
sion and deep neural network model that can both learn high‑frequency low‑order fea‑
tures with a small number of parameters andmake predictions for non‑occurring samples.
DeepFM [8] addresses the shortcoming that FM can only obtain second‑order interactions
but not higher‑order interactions. DeepFM combines DNN and FM in parallel, where the
higher‑order feature interactions are performed in the DNN part, and the lower‑order fea‑
ture interactions are performed in the FM part. The bilinear feature interaction network
(FiBiNET) [17] uses the SENet to dynamically learn the importance of features and uses a bi‑
linear function to better model cross features. AutoInt [11] is inspired by Transformer [18]
and uses a multihead self‑attention mechanism to model the feature interaction process,
which can capture higher‑order feature crossover explicitly. InterHAT [12] adds residuals
to AutoInt by adding residual connectivity and hierarchical attention to capture higher‑
order feature interactions.

2.2. Graph Neural Networks and Recommendation
The graph is a widespread data structure that can model a set of nodes and their

relationships. Graph neural networks (GNN) is a deep learning representation model
designed from graph structure, whose main idea is “aggregation” and “update.” “Ag‑
gregation” means collecting information from neighboring nodes as an aggregated rep‑
resentation of the neighborhood; “update” means using the neural network to update
the representation of the nodes. Many variants of graph neural networks have been pro‑
posed recently, andwe present some representativeworks. Graph convolutional networks
(GCN) [19] consider the structural information of the graph and employs the convolutional
aggregator to operate the first‑order neighborhood. Graph sample and aggregate (Graph‑
SAGE) [20] uses neighbor sampling for large‑scale graphs and three new types of aggrega‑
tors in the aggregation stage. Graph attention network (GAT) [21] concerns the differences
between neighbors and uses attention‑weighted aggregation to learn node representations.
Gated graph neural networks (GGNN) [22] add a gated recurrent unit (GRU) to the update
step to ensure convergence. The recommendation algorithm based on a graph neural net‑
work shows good application prospects due to the natural graph structure characteristics
of the recommendation task.

Recently, GNN has been widely used in recommendation systems. Neural graph
collaborative filtering (NGCF) [4] treats the collaborative relationship between users and
items as a bipartite graph, which explicitly encodes higher‑order collaborative signals.
Knowledge graph attention network (KGAT) [23] combines the user‑item graph with the
knowledge graph, using a graph convolutional neural network to obtain the final node
representation. Fi‑GNN [13] used GNN in modeling feature interactions to aggregate in‑
formation about neighboring nodes at first and then a GRU unit to update the node repre‑
sentation for more interpretability of the interaction process.

However, the simple node aggregation method and fully connected graph structure
method limit the capability of feature interactions.

Our work attempts to model feature interactions from a finer granularity and select
beneficial interactions to improve the expressiveness of the model.

2.3. Graph Structure Learning
The success of GNN is attributed to the use of graph structure and node attributes

to learn downstream tasks. In many cases, the graph structure is incomplete and noisy.
No natural graph structure can be used. From the perspective of representation learning,
GNN computes node embedding by iteratively aggregating information from neighboring
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nodes. This mechanism may gradually process some noise in the original graph in the re‑
cursive process, worsening the representation quality of many nodes. In order to provide
the best graph structure for downstream task learning, much graph structure learning has
been carried out in recent years. The aim is to jointly learn and optimize the graph struc‑
tures and corresponding graph representations. Graph structuremodeling is an important
core step in graph structure learning. It models edge connections, selects important edges
to retain, and filters noisy edges. The current graph structuremodelingworks can be classi‑
fied into three types: (1) Metric‑based approaches. According to the network homogeneity
assumption, edges tend to connect similar nodes [24]. Metric‑based methods use a kernel
function to compute the similarity between pairs of nodes. Adaptive graph convolutional
neural networks (AGCN) [25] proposes a general andflexible graph convolutional network
to learn a task‑driven adaptive graph representation using distance metrics for different
input graphs. Iterative deep graph learning (IDLG) [26] iteratively learns the graph struc‑
ture and graph embedding to make the graph structure close enough to the downstream
prediction task. (2) Neural approaches. Neural approaches use a deep neural network
to infer edge weights. Graph learning‑convolutional networks (GLCN) [27] obtain edge
relationships between pairs of nodes through a single‑layer neural network. Parameter‑
ized topological denoising network (PTDNet) [28] uses a multilayer perceptron to learn
an adjacency matrix and remove task‑independent edges to improve the robustness and
generalization ability of GNN. (3) Direct approaches. In this way, the adjacency matrix is
treated as a trainable parameter and optimized by backpropagation. Graph learning neu‑
ral networks (GLNN) [29] adapts the graph topology to the input data by mixing efficient
adjacency matrix properties sparsity and feature smoothness into the loss.

The graph feature interaction model represented by Fi‑GNNmodels the relationship
between feature fields as a fully connected graph without considering the interaction be‑
tween feature node pairs. In this work, we use metric‑based approaches to learn the graph
structure and filter out the effective feature combination.

3. Proposed Model
3.1. Problem Definition

We formulate the recommendation task with necessary notations. U = {u1, u2, . . . , uM}
and V = {v1, v2, . . . , vN} are the sets of M users and N items. A =

{
A1, A2, . . . , AJ},

B =
{

B1, B2, . . . , BK} and C =
{

C1, C2, . . . , CF} are the sets of J fields of user attributes,
K fields of item attributes, and F fields of context, respectively. The user‑item interactions
are denoted as a matrix YM×N , which yuv = 1 means user u has interacted with item v
before, otherwise yuv = 0. Each user and item is associated with a list of attributes Au ∈ A
and Bv ∈ B. In addition to user and item attributes, we denote a list of Cuv ∈ C as context
features. An instance can be represented as:

x = [u, v, Au, Bv, Cuv]. (1)

The purpose of the recommendation task is to design a prediction model which can
be given an input sample x, the model can output a prediction probability ŷ that the target
user interacts with the candidate item.

3.2. Overview
The proposed Hierarchical Dual‑level Graph Feature Interaction model is shown in

Figure 1. Nodes are constructed for feature fields, and edges are constructed for inter‑
actions between features in the feature graph. The HDGFI model is composed of three
main modules.

(1) Constructing Feature Graph Module. This module maps a high‑dimensional and
sparse raw feature to a low‑dimensional dense vector representation. Each feature
field is regarded as a node in the graph, and the edge connected with the node rep‑



Entropy 2022, 24, 1799 5 of 16

resents the interaction between features. A metric‑based method is used to calculate
the weight of edges and select important edges for connection.

(2) Dual‑level Node and Graph Representation Generation Module. This module con‑
structs two levels of feature interaction and fusion processes, which includes two com‑
ponents. One component is a local‑level feature interaction that uses edge weights
to update the node representation, and the other is a SENet component that captures
important features at the global level.

(3) Prediction Module. This module uses the obtained feature interactions after each
layer of node representation to calculate the final click probability.
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3.3. Constructing Feature Graph Module
3.3.1. Feature Graph Node Embedding

In the feature interaction recommendation task, the raw input features are multifield
sparse features. For example, there are some feature fields in the instance of movie rec‑
ommendation, such as {Language: English, Director: Christopher Nolan, Movie Genre:
action movie, sci‑fi movie . . . }. These multifield features cannot be directly input into
DNN‑basedmodels. A conventional approach is to encode these fields into binary vectors,
represented as:

x = [x1, x2, . . . , xm] = [1, 0, ...0,︸ ︷︷ ︸
f ield1

. . . , 1, . . . , 1, 0︸ ︷︷ ︸
f ieldm

], (2)

where x is an input instance with an m field, xm is the m‑th filed encoding representation,
andm is the number of fields. Due to the large total number of features, the binary vector is
high‑dimensional and sparse, and the computational efficiency is not efficient. We convert
the binary vector to a dense low‑dimensional through a feature embedding layer to obtain
feature embeddings.

ei = Wemb
i xi, (3)

where Wemb
i is an embedding matrix for field i that contains only one value and xi is a one‑

hot vector. Formulti‑valued feature fields such asmovie genre, we extendEquation (3) and
use the average of corresponding feature embedding vectors to represent the multi‑valued
feature field.

ej =
1
q

Wemb
j xj, (4)

whereWemb
j is an embeddingmatrix for multi‑valued field j, q is the number of values, and

xj is the multi‑hot vector for the feature field. We can obtain the embedding vectors of
these feature fields in an input instance:

E = [e1, e2, . . . , em], (5)
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where em ∈ Rd is the embedding representation of the m‑th feature field and d is the di‑
mension of the embedding layer. We treat the embedded field embeddings as node repre‑
sentations in the feature graph, which also contains the first‑order interaction information
about the features.

3.3.2. Hierarchical Edge Selection Layer
Previous work has constructed a fully connected graph by converting features into

nodes and interactions between features into edges. However, not all interactions are use‑
ful for the final prediction, and some interactions can even play a weakening role. In order
to capture the interaction pair with strong interaction gain and avoid the noise generated
by unnecessary feature interaction, we learn the graph structure at each layer to predict
the connection between feature nodes. However, the adjacency matrix is discrete, either
connected or not connected. This makes it difficult to backpropagate the gradient. In or‑
der to solve this problem, inspired by an explicit sparse transformer [30], we generate a
top‑k beneficial adjacency weight matrix Al for each layer, where Al

ij represents the con‑
nection probability of node i and node j at layer l. Based on the rule of top‑k selection, only
the elements with the largest contribution are assigned probabilities in the architecture of
hierarchical edge selection.

First, we express the similarity between node pairs as a score matrix P, which is
mapped to a scalar through a two‑layer fully connected network:

Pl
ij = σ2(Ws

2σ1(Ws
1(e

l
i ⊙ el

j) + b1) + b2), (6)

where Ws
∗ and bs

∗ are trainable parameters; ⊙ is the element‑wise product; σ1 and σ2 are
LeakyReLU and Sigmoid activation functions, respectively.

Then,weperform top‑k selection on the attention scorematrix via amasking operation
M(·, ·), as shown in Figure 2. In this way, the most important k feature interactions are
preserved, while other irrelevant information is deleted. Calculate the beneficial adjacency
matrix of the hierarchy using Equation (3):

Al
ij = M(Pl , k)ij =

{
Pl

ij Pl
ij ≥ ti

0 Pl
ij < ti

, (7)

where ti is the t‑th largest value of row i of attention score matrix P; the k is the hyper‑
parameter that controls the number of neighbors at each layer.
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We keep the top‑k values in the P matrix that are large and setting other values to 0
means that there is no interaction between the two features in the current layer.

3.4. Dual‑Level Node and Graph Representation Generation Module
In this subsection, we use the feature graph constructed in the previous subsection to

perform feature interaction between nodes.

3.4.1. Local‑Level Attention Messaging and Aggregation
In the previous section, the interaction of two beneficial feature nodes is represented

by an edge. We capture the higher‑order interactions between features layer by layer
through a graph attention network that captures the propagation and updates between
information. The propagation process is shown in Figure 3a. Only the beneficial neighbor
nodes of the target node of the current layer are propagated, which is different from the
full‑graph node propagation.
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The attention coefficients can be computed as follows:

c(l)ij = LeakyRelu
(

aT
(

el
i ⊙ el

j

))
, (8)

where c(l)ij indicates the importance of node vj at l layer, LeakyRelu is the activation function
and a ∈ Rd is the weight vector. After obtaining the importance of different neighboring
nodes to the central node, we normalize the importance coefficients by the softmax function:

αij =
exp(cl

ij)

∑j∈Nei{i} exp(cl
ij)

, (9)

where Nei(i) denotes the neighborhoods of node i, which is the set of beneficial interactions
for node i; αij is the attention weight when aggregating neighbor node j.

After obtaining the attention weights of the central node to the neighboring nodes,
we use a multi‑head attention fusion mechanism to update the representation of the target
node, which is calculated as follows:

hl
loci

=
U
||

u=1
σ
(
∑j∈Ni

Al
ijα

u
ijW

u
(

el
i ⊙ el

j

))
, (10)

where || is the concatenation; u is the number of the attention heads; αu
ij is the attention

score of the u‑th head; W∗ is the linear transformation matrix. After the above operations,
we can obtain the node’s local‑level representation Hl

loc =
[

hl
loc1

, hl
loc2

, . . . , hl
locm

]
.
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3.4.2. Global‑Level Squeeze and Excitation
The local‑level node fusion module focuses on the interaction between node pairs

but does not pay attention to the importance of nodes in the entire feature field. Different
feature fields have different importance to the target task. In film recommendation, gender,
age, and genre are usually more important than user occupation and region. We hope
to dynamically increase the weight of important features while reducing the weight of
unnecessary features. SENet has achieved great success in image classification tasks, and
it can model the interdependence between convolutional feature channels to improve the
representation ability of the network. In order to retain the previously learned combined
features and dynamically capture the importance of feature fields, we design a squeeze
and excitation module at the global level for residual connection, as shown in Figure 3b.

Squeeze. The step requires summary statistics of the embeddings fused at the local
level for each field. We use average pooling to convert the representation of a node to
a scalar.

si =
1
d′

d′

∑
t=1

el
i , (11)

where si represents the global information about the i‑th feature representation. We com‑
press the representation of each field into a statistical vector S = [s1, s2, . . . , sm].

Excitation. This step uses two fully connected layers, one for dimensionality reduc‑
tion and one for dimensionality increase, through a reduction ratio hyper‑parameter. The
dynamic global weight of each feature field can be calculated as follows:

attglo = σ3

(
Wg

2 σ3

(
Wg

1 S
))

, (12)

where attglo is the global‑level attention score; Wg
1 ∈ Rm× m

r and Wg
2 ∈ Rm

r ×m are the
learning parameters; σ3 is the Tanh activation functions.

Reweight. The last step is a reweight step which is called re‑scale in paper [31]. We
recalculate the node vector of global influence by the global attention score as follows:

Hl
glo = attglo ⊙ El = [attglo1 · el

1, attglo2 · el
2, . . . , attglom · el

m]. (13)

3.4.3. Dual‑Level Node Embedding Fusion
Once obtained the node representations at the local level and global levels, we used

a bilinear‑cross aggregation function to improve the representation of node interactions
as follows:

el
i = W l

φ[hloci
⊕ hgloi

, hloci
⊙ hgloi

], (14)

where⊕ and⊙ are the elementwise addition and theHadamard product, andW l
φ is the train‑

able matrix. The elementwise addition operation can convey more information from similar
features, and the sum operation can highlight features with larger accumulated values.

3.4.4. Graph Representation Readout
After the above operations, the node representation has been updated. In other words,

each feature field node is neighborhood aware. We design a readout operation of graph repre‑
sentation to dynamically capture the graph embedding of each layer after the interaction. The
readout operation is shared by all time steps. For all nodes in the graph, the average pooling
is used to represent global graph message vectors. The formula is as follows.

ml
G =

1
m

m

∑
i=1

el
i . (15)
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Then, the current layer global message vectors ml
G and graph vectors of the previous

layer readout operation hl−1
G are sent to the GRU to update the graph feature hl

G:

hl
G = GRU(ml

G, hl−1
G ). (16)

Initialized graph features h0
G is the sum of the initial embedding addition. Through

the readout operation, the graph features are updated at each time step.

3.5. Prediction and Optimization
Following the feature graph dual‑level node and graph representation generation

module, we can obtain the graph vector of the last layer. We employ a fully connected
layer parameterized by θ and the sigmoid activation function to obtain final predictions
as follows:

ŷ = sigmoid(θT · hL
G). (17)

To train our model, we define the loss function as the cross‑entropy of the prediction
and the ground truth.

L = − 1
N

N

∑
i=1

(yi log(ŷi) + (1 − yi) log(1 − ŷi)), (18)

where yi is the ground‑truth value of the i‑th training instance, ŷi is the prediction of our
model, and N is the number of training instances. At the same time, we use backpropaga‑
tion to continuously update the trainable parameters.

4. Experiments
4.1. Experiment Setup
4.1.1. Datasets

To evaluate the performance of our proposedmodel, we chose three publicly available
datasets. The statistics of the datasets are summarized in Table 1.

Table 1. Statistics of the datasets.

Dataset Num of Fields Num of Features Instances

KKBox 13 92,247 7,377,418
Frappe 10 5382 288,609

MovieLens‑1M 10 22,100 1,149,238

The dataset KKBox is a professional digital music information service software. Each
user can find their favorite music in the shortest time. The features of the data set in‑
clude 13 feature domain information such as song ID, songwriter name, user gender, and
user age.

The dataset Frappe is a context‑aware app discovery tool. Each record contains the
user ID and APP ID, as well as eight context information, including weather, city, etc. A
target value of 1 indicates that the user has used an APP under context information.

The dataset MovieLens‑1M is a dataset of the user ratings of movies. We expanded
the dataset by collecting information on the directors, actors, tags, etc., of the movies from
the IMDB website. We consider samples with more than three ratings as positive ratings.

4.1.2. Evaluation Metrics
We use the following two metrics for model evaluation: AUC (Area Under the ROC

curve) and Logloss (cross‑entropy).
AUC is the area bounded by the coordinate axis under the ROC (Receiver Operating

Characteristic Curve). It ranges from 0 to 1 and is a performance indicator to measure the
quality of a classifier. A classifier with a larger AUC has better results.
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Logloss is themost important classificationmetric based onprobability. For any given
problem, a lower value of Logloss implies a better prediction.

4.1.3. Baselines
We compare the proposed model with four types of baselines: (1) A. Linear models

for modeling first‑order Raw Feature Interactions. (2) B. FM and FM‑based second‑order
feature interaction model. (3) C. Deep learning‑based models capable of capturing higher‑
order interactions. (4) D. Graph‑based models for characterizing features and feature in‑
teractions with nodes and edges.

LR (A) [32] refers to linear logistics regression, which can only model linear interactions.
FM (B) [5] is one of the classical models for an attribute‑aware recommendation based

on modeling the interaction of each feature with an inner vector product.
AFM (B) [6] is a variant of FM that uses attentional mechanisms to distinguish the

importance of feature interactions.
FFM (B) [7] adds the concept of the field on the basis of FM, taking into account the

similarities and differences between different features.
NFM (C) [9] captures second‑order feature interactions using feature interaction pool‑

ing instead of splicing operations and captures higher‑order interactions with DNNs.
DeepFM (C) [8] uses FM to feature low‑order combinations while using MLP part to

feature high‑order combinations.
FiBiNet (C) [17] combines the importance of features and designs a new way of bilin‑

ear feature interaction between feature fields.
Fi‑GNN (D) [15] constructs each sample into a feature graph, with each node as a

feature field, and models the feature interactions using a graph neural network.
GraphFM (D) [14] uses a graph neural network to solve the defects of FM and treats

feature interaction from the perspective of graph structure learning.

4.1.4. Hyper‑Parameter Settings
All the experiments are performed on the Pytorch platform and each is randomly split

each dataset into training, validation, and test sets with a ratio of 6:2:2. All model feature
field dimension vectors are set to 16, and the number of hidden units is 32. The learning
rate is set to 0.001 for KKBox and MovieLens‑1M and 0.005 for Frappe datasets. The L2
regularization factor is 0.0001. For Autoint, Fi‑GNN, and GraphFM models, we set three
layers. We use binary cross‑entropy loss as a loss function and use Adam to optimize
these models.

To ensure a fair comparison, we run all experiments by five folds cross‑validation
and report the averaged results. We perform statistical significance test results (through
Wilcoxon signed rank test) to verify the statistical significance in comparing our method
with the best baseline methods.

4.2. Overall Performance
Based on the experimental setup described above, we compared HDGFI with other

baseline models. As illustrated in Table 2, we observed the following results:
(1) LR showed theworst performance as a linearmodel to capture the first‑order inter‑

actions of features. Higher‑order interactions andnonlinear relationships between features
are very important for prediction tasks.

(2) The effect of the second‑order feature interaction model based on FM is better
than that of LR, which indicates that pairwise feature interactions can improve prediction
accuracy. AFM outperforms the baseline model FM, showing that attention can avoid the
noise caused by the addition of useless feature intersections.

(3)Higher‑order interactionmodels based ondeep learning performbetter than lower‑
order interaction models, demonstrating that DNNs can capture higher‑order implicit fea‑
ture interactions.
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(4) Graph‑based feature interactionmodels generally outperform low‑order and deep
interaction models. The reason is that the graph structure enables feature interaction in an
explicit way, transforming the interaction into message propagation and representation
update between feature graph nodes. At the same time, the graph structure is also ex‑
planatory of the interaction between features.

(5) Our proposed HDGFI model shows the best performance on both datasets, with
the p‑value of all metrics rejecting the null hypothesis with a level of significance α = 5%.
More precisely, HDGFI has the highest AUC values (0.82278, 0.97894, and 0.91113) and the
lowest Logloss values (0.51555, 0.16495, and 0.37871) on KKBox, Frappe, and MovieLens‑
1M. Previous works [8,11] have demonstrated that improvements in AUC metrics at the
0.001 level are important for click‑through rate prediction tasks. The possible reason why
HDGFI is superior to the baseline model is that we have conducted hierarchical beneficial
interaction selection and filtered out unnecessary noise interactions. Meanwhile, the node
interaction at the local pair‑wise level and the feature importance selection at the global
graph level are considered.

Table 2. Overall accuracy comparison in the three datasets and significance test. The bold value
marks the best one in each column.

Dataset
Model

KKBox Frappe MovieLens‑1M

AUC Logloss AUC Logloss AUC Logloss

LR(A) 0.76647 0.57593 0.93565 0.28721 0.86949 0.43775
FM(B) 0.78961 0.55487 0.96571 0.20912 0.89104 0.42229
AFM(B) 0.79868 0.54858 0.96534 0.21947 0.88224 0.42861
FFM(B) 0.79758 0.54323 0.96871 0.19901 0.89563 0.40881
NFM(C) 0.80979 0.53088 0.97283 0.20717 0.89975 0.40351
DeepFM(C) 0.81439 0.52556 0.97551 0.18532 0.90617 0.38856
FiBiNet(C) 0.81783 0.52207 0.97554 0.18061 0.90628 0.39021
Fi‑GNN(D) 0.81831 0.52033 0.97541 0.18431 0.90668 0.38755
GraphFM(D) 0.82013 0.51872 0.9764 0.17824 0.90782 0.38378
HDGFI(ours) 0.82278 0.51555 0.97894 0.16495 0.91113 0.37871

p‑value 2.82% 2.82% 0.9% 0.9% 0.9% 1.62%

4.3. Hyper‑Parameter Study
We conduct two hyper‑parameter experiments to evaluate the model, including the

number of neighbor samples and the global‑level reduction ratio. The hyper‑parameter
results based on the division proportion 6:2:2 of the raw dataset are shown in this section.

4.3.1. Influence of Neighborhood Sampled Size
The number of neighbor samples at each layer is an important hyper‑parameter for

our model. We fixed the number of samples in the first layer as the number of feature
fields, which means that we established a fully connected graph. Because in the first layer,
we used to capture the interaction relationship between each node pair asmuch as possible.
When a different number of samples in the second and third layers is selected, the results
are shown in Figure 4. k2 and k3 are the number of neighbor samples of the target node in
the second and third layers, respectively. On the KKBox dataset, we can observe that the
performance is optimal when the k2 = 10, k3 = 6, and suboptimal when k2 = 6, k3 = 2. The
performance is the worst when one neighbor node is selected at each layer. On the Frappe
dataset, the model performance peaks with k2 = 6, k3 = 2, or 6. On the MovieLens‑1M
dataset, the best effect is achieved when k2 = 8 and k3 = 4.
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4.3.2. Influence of Reduction Ratio
As shown in Figure 5a–c, the best reduction ratio for KKBox and Frappe is 3. Movie‑

Lens dataset achieves the optimal results of logloss andAUC on 2 and 3, respectively. Con‑
sidering that there is little difference in the number of feature fields between the three
datasets, we can infer that squeeze from the original number of feature fields to 30–40%
and excitation is the best effect.
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4.4. Ablation Study
In this section, we investigate the impact of different components in the model on

performance. Our proposedmodel has twomajor improvements: (1) We use local‑level at‑
tentionmessaging to capture feature interactions between pairs of beneficial feature nodes.
(2) We use the global‑level squeeze and excitation module to retain the feature combina‑
tion information learned in the previous layer. To evaluate the effectiveness of these two
levels, we created two variant models to perform ablation experiments.

HDGFI_L: HDGFI without local‑level feature interaction, i.e., uses DNN to capture
high‑order interactions.

HDGFI_G: HDGFI without global‑level dynamic importance selection.
As shown in Table 3, the performance of the two variant models degraded compar‑

ing with the HDGFI model, which indicates that both the global level and local level are
necessary.

Table 3. Performance comparison of HDGFI with HDGFI_L and HDGFI_G.

Dataset
Variants

KKBox Frappe MovieLens‑1M

AUC Logloss AUC Logloss AUC Logloss

HDGFI_L 0.80779 0.53411 0.97331 0.19246 0.90016 0.39976
HDGFI_G 0.81679 0.52293 0.97598 0.17051 0.90914 0.38133
HDGFI 0.82278 0.51555 0.97894 0.16495 0.91113 0.37871

In order to explore the influence of more details on the model, we conducted ablation
experiments about edge selection strategy and bilinear fusion.

HDGFI_E: HDGFI, without hierarchical edge selection, construct a completely con‑
nected feature interaction graph.

HDGFI_B: HDGFI without bilinear‑cross aggregation.
The following conclusions can be drawn from Table 4.
(1)HDGFI_L comparedwithHDGFI. Pair‑level interactions between nodes can reflect

the importance of local interaction. Compared with the DNN implicit capture high‑order
interaction method, modeling features as nodes and iteratively updating the node repre‑
sentation can better explicitly model the interaction between features.

(2) HDGFI_G compared with HDGFI. The global‑level feature interaction can adap‑
tively capture the importance of node features learned in previous layers in a residual way
so that each layer can learn more accurate node representation. This can help to better
perform the interactive feature selection of the next layer and learn the feature graph rep‑
resentation of the current layer.

(3) HDGFI_E compared with HDGFI. The feature field nodes are modeled as fully
connected graphs, and the edge weights are fixed from the beginning. This approach pre‑
serves all feature interactions to a certain extent, but unnecessary interactions have a nega‑
tive impact on the final prediction results. The edge selection operation can only focus on
strong feature interactions, thus filtering out relatively unimportant interactions.

(4) HDGFI_B compared with HDGFI. The bilinear‑cross aggregation function cap‑
tures the fine‑grained interaction between the two levels of node representation better than
simple vector concatenation.

Table 4. Performance comparison of HDGFI with HDGFI_E and HDGFI_B.

Dataset
Variants

KKBox Frappe MovieLens‑1M

AUC Logloss AUC Logloss AUC Logloss

HDGFI_E 0.82149 0.51716 0.97741 0.16437 0.90939 0.38051
HDGFI_B 0.82111 0.51738 0.97738 0.17088 0.90975 0.38025
HDGFI 0.82278 0.51555 0.97894 0.16495 0.91113 0.37871
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5. Conclusions
Due to the increasing maturity of deep learning technology, automatic feature engi‑

neering instead of manual feature engineering receivedwide attention. Automatic capture
of fine‑grained feature interactions has become one of the focuses of recommendation sys‑
tems, which attracted extensive attention from academia and industry. In this paper, we
propose a hierarchical dual‑level graph feature interaction recommendation model. The
proposedmodel uses a hierarchical edge‑selectionmodule to filter out unnecessary interac‑
tions and reduce the interference of noise interactions on prediction. At the same time, the
modules of local message passing, and global important feature selection are proposed to
capture the interaction relationship between features from two perspectives. Experimen‑
tal results proved that the HDGFI model is effective and outperforms other state‑of‑the‑art
baselines in terms of accuracy on three public datasets. In the future, we will explore adap‑
tive learning of the most beneficial number of feature interactions for each layer and more
advanced ways to model feature interaction graphs.
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