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Abstract: Real-world systems interact with one another via dependency connectivities. Dependency
connectivities make systems less robust because failures may spread iteratively among systems via
dependency links. Most previous studies have assumed that two nodes connected by a dependency
link are strongly dependent on each other; that is, if one node fails, its dependent partner would
also immediately fail. However, in many real scenarios, nodes from different networks may be
weakly dependent, and links may fail instead of nodes. How interdependent networks with weak
dependency react to link failures remains unknown. In this paper, we build a model of fully
interdependent networks with weak dependency and define a parameter α in order to describe the
node-coupling strength. If a node fails, its dependent partner has a probability of failing of 1− α.
Then, we develop an analytical tool for analyzing the robustness of interdependent networks with
weak dependency under link failures, with which we can accurately predict the system robustness
when 1− p fractions of links are randomly removed. We find that as the node coupling strength
increases, interdependent networks show a discontinuous phase transition when α < αc and a
continuous phase transition when α > αc. Compared to site percolation with nodes being attacked,
the crossover points αc are larger in the bond percolation with links being attacked. This finding can
give us some suggestions for designing and protecting systems in which link failures can happen.

Keywords: complex networks; robustness; weak dependency; bond percolation; giant connected
component

1. Introduction

Many systems in the real world can be abstracted to nodes, and their relationships
can be characterized as links, such as in computer network systems, power systems,
transportation systems, etc. [1–3]. Network science has provided powerful tools [4,5]
that help us understand the universal patterns of complex systems [6–8]. The robustness
of networks is a key point to study because networks suffer from disturbances all the
time [9–11]. The initial removal of nodes or links may also cause other nodes to lose their
links and disconnect from the giant connected component. Scholars define the area under
the robustness curve or the value of the percolation threshold, pc, as the measurement of
robustness [12,13].

Increasing evidence shows that networks are coupled through dependency connectivi-
ties [3] and form interdependent networks or networks of networks [14–16]. Interdepen-
dency links make a system less robust, since the failures in one network could spread to
another one via interdependency links [2,17–19]. Buldyrev et al. [10] built a model of fully
interdependent networks and found that the interdependent networks showed a discontin-
uous (first-order) phase transition when a certain fraction of nodes were removed, which
was different from the continuous (second-order) phase transitions in single networks [7,20].
A discontinuous phase transition can be used to explain how the Italian blackout in 2003
happened. Since then, plenty of follow-up studies have been carried out to study the
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robustness of interdependent networks [14,15,21–23]. For example, Parshani et al. [23]
studied the robustness of partially interdependent networks; Gao et al. [14,15] developed a
general framework for analyzing the robustness in networks of networks; Liu et al. [24,25]
developed a theoretical tool for analyzing the breakdown phenomena in interdependent
directed networks.

As reviewed above, couplings between networks have a great impact on system
robustness [26–29]. Furthermore, different manners in the coupling between networks
also bring different behaviors of systems in response to external failures. For example, the
inter-similarity [30] or the degree correlations [19,31,32] between coupled networks could
improve a system’s robustness. Most of the related studies assume that a dependency
link implies a strong dependency relation between nodes, that is, if one node fails, its
dependent partner will also immediately fail. However, in reality, networks may be weakly
dependent, i.e., a node may survive even if its dependent partner fails in some cases.
Liu et al. [33] introduced the concept of weak dependency and defined a parameter α
as the node-coupling strength. If one node fails, its dependent partner would have a
probability of failing of 1− α. The parameter α can be tuned from zero to one. If α = 0, it
describes the strongly dependent case, and if α = 1, the networks are isolated from one
another. Otherwise, the nodes from two networks are weakly dependent.

In addition, there may be different forms of failure. Most of the studies mentioned
above focused on site percolation in which failures are injected into nodes. However, in
reality, link failures are common, such as in the breakdown of wires of power grids and
the cutting off of traffic [17,34–36]. The frameworks developed for site percolation cannot
be used to describe the bond percolation case, in which the initial failures are link failures.
To study bond percolation, Chen. et al. [37] developed an analytical tool for calculating
the percolation thresholds of interdependent networks under link failures and found that
the percolation threshold pc was smaller in the case of bond percolation compared to that
in the case of site percolation. However, how weakly interdependent networks behave in
response to link failures remains unknown.

To fill this gap, we built a weakly interdependent network model and developed an
analytical tool for studying how the system reacted to initial link failures. By applying the
analytical tool to Erdös–Rényi (ER) networks and scale-free (SF) networks, we found that
the tool could accurately predict the final giant connected component sizes of the model
after randomly removing a certain fraction of the links. Furthermore, we calculated the
critical percolation thresholds, pc, and the crossover points, αc, in order to measure the
robustness of the two coupled networks and found that compared to site percolation, the
crossover points αc were larger in the case of bond percolation with links being attacked.
These results can help in the understanding of system robustness and enable better design
of robust systems.

2. The Model of Interdependent Networks with Weak Dependency

The model consists of two networks, A and B, with the same number of nodes N. We
use the joint degree distribution PA(k) and PB(k) to describe their features, where k is the
degree of a given node and P(k) is the probability of finding that node in the network. For
simplicity and without loss of generality, networks A and B fully depend on each other. All
nodes in the two networks depend on a corresponding node according to the no-feedback
principle, that is, if node ai in network A has a dependency node bj in network B and bj
has a dependency node al in network A, then l = i.

In the beginning, we remove a fraction of 1− p links in network A. If a node loses all
of its links, it fails. If a node fails in network A, all of the links of its dependency node in
network B have a probability of failing of 1− α. The nodes that fail in network B have the
same effect on network A. This process continues until the two networks reach stability. A
schematic illustration of cascading failure in interdependent networks is shown in Figure 1.
Intuitively speaking, the parameter α represents the self-healing capacity of the nodes. α is
in the range of 0 and 1. When α is equal to 0, the networks are strongly coupled, and when
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α is equal to 1, the failures cannot spread, and the two networks are independent. Note
that we only remove links from one network to stress the effect of weak dependency, and
the two networks’ final states are different. Unlike in the mechanisms of spread that were
used previously, the failures propagate from links to links.

(a) (b) (c) (d)
Network  A

Network  B

Network  A Network  A Network  A

Network  B Network  B Network  B

Initial failure

Figure 1. Schematic illustration of cascading failure in interdependent networks. Network A and
Network B are fully dependent, as shown by the dependency links, which are represented as blue
lines in the figure. The nodes in both networks are initially functional. (a) Initial failures occur in
Network A. The red edges are failed edges. The red nodes failed because all of their links were
removed. (b) The failed nodes were removed, while the nodes’ links that depended on the failed
nodes of another network had a probability of failing of 1− α. (c) Nodes that were not located in the
giant components lost function. (d) The network eventually reached a stable state, and the remaining
nodes were all located in the giant connected components.

Thus, the connection links spread the failures in one network, and the dependency
links spread the failures between the networks. The networks break into fragments. As
mentioned above, only nodes in the giant connected components (GCCs) function well.
After working out the framework, we need to find out the relative size of the GCCs through
simulation and calculation. The values of the percolation thresholds are used to describe
the robustness of the networks as well.

3. Developing the Framework for Analyzing the Robustness in Interdependent
Networks with Weak Dependency

The main idea of developing this framework is to construct self-consistent equations
based on the definition of variables and their relations. We build the framework on single-
layer networks and extend them to double-layer networks by using constraint conditions.
The coupling strength parameter, α, is also added, which means that the failed nodes have
a probability of surviving of α.

3.1. Bond Percolation in Interdependent Networks with Weak Dependency

By using the self-consistent equations [38,39], we can calculate the size of the GCC after
an initial random attack and cascading failures. Firstly, we define two probability variables
(x,P∞) in order to solve the single-layer model. Suppose that there exists a network A
whose size goes to infinity. Let x be the probability that by following an arbitrary direction,
a randomly selected link in network A leads to the GCC. The degree distribution of A can
be expressed using the following generating function:

GA
0 (x) = ∑

k
PA(k)xk (1)

where PA(k) is the probability of finding a node with k links in A. The underlying branching
process of network A is represented by:

GA
1 (x) = ∑

k

PA(k) · k
〈k〉A

xk−1 (2)
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where 〈k〉A is the average degree of network A and PA(k)k/〈k〉A is the probability of
following a link to find a node with degree k.

From the above definition, we know that (1− x) is the probability that a randomly
selected link does not lead to the GCC. Then, (1− x)k−1 is the probability that all of the
k− 1 links of the node do not lead to the GCC, and 1− (1− x)k−1 is the probability that at
least one link leads to the GCC of that node. Thus, we construct the self-consistent equation
of x:

x = ∑
k

PA(k) · k
〈k〉A

[1− (1− x)k−1] = 1− GA
1 (1− x) (3)

We define P∞
A as the probability that a randomly selected node belongs to the GCC.

From the definition, we know that this is also the relative size of the GCC. This means that
at least one of its links must lead to the GCC. Thus, we get the following self-consistent
equation:

P∞
A = ∑

k
PA(k)[1− (1− x)k] = 1− GA

0 (1− x) (4)

where (1− x)k means that a node’s k links all fail.
An initial link attack means that we need to randomly remove a fraction of 1− p links

in network A. Thus, only a fraction of p links will remain. Based on Equation (3), aside
from the original probability x, the probability of a randomly selected link remaining needs
to be multiplied by p. For any given p, we can solve Equation (5) to get x and substitute it
into Equation (4) to get the final size of the GCC:

x = ∑
k

p · PA(k)k
〈k〉A

[1− (1− x)k−1] = p · [1− GA
1 (1− x)] (5)

With the fundamentals of the single-layer model, we convert into a fully interdepen-
dent two-layer model. GB

0 (y) = ∑k PB(k)yk and GB
1 (y) = ∑k PB(k)yk−1/〈k〉B represent the

generating function and the underlying branching process of network B, respectively. We
randomly attack a fraction of 1− p links in network A; when the system reaches the steady
state, the self-consistent equation is as follows:

x = p · [1− GA
1 (1− x)] · [1− GB

0 (1− y)] + α · p · [1− GA
1 (1− αx)] · GB

0 (1− y) (6)

There are two terms on the right-hand side of the equation. We divide the two terms
into three parts. Every part is a step in calculating the result of the two-layer model for the
first term :

1. p is the fraction of links remaining in network A after the initial failure.
2. 1− GA

1 (1− x) is the probability that the end node of the remaining links leads to the
GCC of network A.

3. 1− GB
0 (1− y) is the probability that the dependency nodes of the surviving nodes in

network A of network B belong to the GCC of network B.

Note that in the steady state, networks A and B have discrepant sizes because the
coupling strength parameter prevents symmetrical initial destruction. In the second term
of the right-hand side of Equation (6), the third part represents the fraction of failing nodes
in network B, but their dependency nodes in network A have the probability α of surviving
due to the node-coupling strength parameter. Thus, we need to multiply α to represent
the decreasing survival probability of their dependency nodes. Then, we add the two
terms to get a self-consistent equation. Similarly to the inference above, we can get the
self-consistent equation of y; the difference is that the failing of network B happens because
of the spread of network A’s destruction, and the fraction of remaining links is 1, so we
omit it in the following equation:

y = [1− GB
1 (1− y)] · [1− GA

0 (1− x)] + α · [1− GB
1 (1− αy)] · GA

0 (1− x) (7)
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For any given p, by substituting the results of x and y into the following formulas, we
can get the relative sizes of networks A and B in the final state:

P∞
A = [1− GA

0 (1− x)] · [1− GB
0 (1− y)] + [1− GA

0 (1− αx)] · GB
0 (1− y) (8)

P∞
B = [1− GB

0 (1− y)] · [1− GA
0 (1− x)] + [1− GB

0 (1− αy)] · GA
0 (1− x) (9)

Because we did not remove nodes, the initial survival probability of the nodes is 1.
The surviving nodes are divided into two parts: The dependency nodes of one survived
and the other’s dependency nodes failed. For the first part, they are strictly limited by the
two networks’ survival probabilities. The nodes in the second part survived because of
the coupling strength parameter α, although their dependency nodes failed. The survival
probability of the nodes in network A or B is added to the two terms.

3.2. Applying the Framework to Interdependent ER Networks

We apply our framework to two-layer ER networks whose degree distributions follow

the Poissonian distribution: PA(k) = e−〈kA〉〈kA〉k
k! and PB(k) = e−〈kB〉〈kB〉k

k! . For simplicity
and without loss of generality, we assume that 〈kA〉 = 〈kB〉. By substituting the degree
distribution into (6) and (7), we obtain:

x = p · [(1− e−〈kA〉x) · (1− e−〈kB〉y) + α · (1− e−〈kA〉αx) · e−〈kB〉y] (10)

y = (1− e−〈kB〉y) · (1− e−〈kA〉x) + α · (1− e−〈kB〉αy) · e−〈kA〉x (11)

For any given p between 0 and 1, after getting the values of x and y with the two
formulas in Equations (10) and (11), we substitute them into the following formulas to get
the final results:

P∞
A = (1− e−〈kA〉x) · (1− e−〈kB〉y) + (1− e−〈kA〉αx) · e−〈kB〉y (12)

P∞
B = (1− e−〈kB〉y) · (1− e−〈kA〉x) + (1− e−〈kB〉αy) · e−〈kA〉x (13)

The theoretical results are shown by the solid lines in Figure 2. We also obtained
experimental results through a simulation and present them as symbols. This shows that
the theoretical predictions were accurate. With the growth of α, the system became more
robust. On the one hand, the area under the percolation curves became larger. On the
other hand, the critical percolation transition points pc became smaller. Furthermore, we
observed that there was a critical point αc at which the transition form changed from a
first-order transition to a second-order transition. The size of network A’s GCC jumped
from 0 to a finite value when α = 0.5, but it changed continuously to a negative value when
α = 0.6. We could observe the phenomenon more directly in network B, since when α > αc,
the size of network B’s GCC was always a negative value.
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Figure 2. The sizes of the giant components P∞
A (left) and P∞

B (right) in coupled ER networks with
〈kA〉 = 〈kB〉 = 4 when a fraction of 1− p of the links were randomly removed from network A.
The solid lines represent the theoretical predictions. The symbols represent simulation results from
40 iterations on networks with 105 nodes.

3.3. Applying the Framework to Interdependent SF Networks

Another application was to a scale-free (SF) network; the normalized degree distribu-

tions were PA(k) = PB(k) =
∑kmax

kmin
[(k+1)(1−λ)−k(1−λ) ]

(kmax+1)1−λ−k1−λ
min

, where kmin = 2, kmax = 2000, and the

power law of these networks was λ = 2.7. The theoretical results and experimental results
also coincided well, as shown in Figure 3.

By substituting the degree distribution into Equations (6) and (7), we obtain:

x = p · [(1−
∑kmax

kmin
[(k + 1)(1−λ) − k(1−λ)] · (1− x)(k−1)

∑kmax
kmin

[(kmax + 1)1−λ − k1−λ
min ]k

) · (1−
∑kmax

kmin
[(k + 1)(1−λ) − k(1−λ)] · (1− y)k

(kmax + 1)1−λ − k1−λ
min

)

+α · (1−
∑kmax

kmin
[(k + 1)(1−λ) − k(1−λ)] · (1− αx)(k−1)

∑kmax
kmin

[(kmax + 1)1−λ − k1−λ
min ]k

) ·
∑kmax

kmin
[(k + 1)(1−λ) − k(1−λ)] · (1− y)k

(kmax + 1)1−λ − k1−λ
min

]

(14)

y = (1−
∑kmax

kmin
[(k + 1)(1−λ) − k(1−λ)] · (1− y)(k−1)

∑kmax
kmin

[(kmax + 1)1−λ − k1−λ
min ]k

) · (1−
∑kmax

kmin
[(k + 1)(1−λ) − k(1−λ)] · (1− x)k

(kmax + 1)1−λ − k1−λ
min

)

+α · (1−
∑kmax

kmin
[(k + 1)(1−λ) − k(1−λ)] · (1− αy)(k−1)

∑kmax
kmin

[(kmax + 1)1−λ − k1−λ
min ]k

) ·
∑kmax

kmin
[(k + 1)(1−λ) − k(1−λ)] · (1− x)k

(kmax + 1)1−λ − k1−λ
min

(15)

For any given p between 0 and 1, after getting the values of x and y with the two
formulas in Equations (14) and (15), we substitute them into the following formulas to get
the final results:

P∞
A = (1−

∑kmax
kmin

[(k + 1)(1−λ) − k(1−λ)] · (1− x)k

(kmax + 1)1−λ − k1−λ
min

) · (1−
∑kmax

kmin
[(k + 1)(1−λ) − k(1−λ)] · (1− y)k

(kmax + 1)1−λ − k1−λ
min

)

+(1−
∑kmax

kmin
[(k + 1)(1−λ) − k(1−λ)] · (1− αx)k

(kmax + 1)1−λ − k1−λ
min

) ·
∑kmax

kmin
[(k + 1)(1−λ) − k(1−λ)] · (1− y)k

(kmax + 1)1−λ − k1−λ
min

(16)
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P∞
B = (1−

∑kmax
kmin

[(k + 1)(1−λ) − k(1−λ)] · (1− y)k

(kmax + 1)1−λ − k1−λ
min

) · (1−
∑kmax

kmin
[(k + 1)(1−λ) − k(1−λ)] · (1− x)k

(kmax + 1)1−λ − k1−λ
min

)

+(1−
∑kmax

kmin
[(k + 1)(1−λ) − k(1−λ)] · (1− αy)k

(kmax + 1)1−λ − k1−λ
min

) ·
∑kmax

kmin
[(k + 1)(1−λ) − k(1−λ)] · (1− x)k

(kmax + 1)1−λ − k1−λ
min

(17)

Figure 3. The sizes of the giant components P∞
A (left) and P∞

B (right) in coupled SF networks with
kmin = 2, kmax = 2000 and λ = 2.7 when a fraction of 1− p of the links were randomly removed
from network A. The solid lines represent the theoretical predictions. The symbols represent the
simulation results from 40 iterations on networks with 105 nodes.

The theoretical results are shown by the solid lines in Figure 3. We also obtained
experimental results through a simulation and present them as symbols. This shows that
the theoretical predictions were also accurate.

4. The Crossover Points of Phase Transitions

In the previous section, we measured the robustness through percolation theory. We
obtained x and y through a dichotomy and substituted them into Equations (12) and (13)
to get P∞

A and P∞
B . As shown in Figures 2 and 3, when the remaining fraction of links

crossed over a value pc, a GCC emerged. In this section, we first calculate the value of the
percolation thresholds pc. Then, we calculate the crossover points that divide the first-order
phase transition and the second-order phase transition.

4.1. The Percolation Thresholds

We calculated pc for different values α by judging the sign of P∞
A and demonstrate the

results in Figure 4. In panels (a) and (b) of the figure, the pc values for bond percolation
are represented by solid lines, while the pc values for site percolation are represented by
dashed lines. The percolation thresholds for site percolation are larger, and we assume
that the robustness of bond percolation is better. We also validated our predictions by
comparing the robustness curves. In panels (c) and (d) of the figure, the area under the
robustness curves of bond percolation is larger with the same α, which means that the
networks are more robust to bond failures.
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(a) (b)

(c) (d)

Figure 4. A comparison of bond percolation and site percolation. (a) Percolation thresholds of ER
networks. The dashed lines represent site percolation, while the solid lines represent bond percolation.
Different colors of lines represent different average degrees 〈k〉 of the ER networks. (b) Percolation
thresholds of SF networks, the power law of which is λ = 2.7 and the maximum values of degrees of
which are kmax = 316. Different colors of the different lines represent different minimum degrees of
the SF networks. The crossover points for bond percolation are marked on the corresponding curves.
(c) Sizes of giant connected components after a fraction of 1− p sites or bonds are removed in ER
networks. The solid lines represent bond percolation and the dashed lines represent site percolation.
(d) Sizes of giant connected components after a fraction of 1− p sites or bonds are removed in SF
networks.

4.2. The Crossover Points

In order to find the critical point αc, we observe the graphical solutions of Equations
(10) and (11). Equation (11) is not affected by p, since we do not initially destroy network
B. In Figure 5, we present Equations (10) and (11) on the x, y plane and set α = 0.3 and
〈kA〉 = 〈kB〉 = 4. If the two curves have an intersection aside from the trivial solution
x = y = 0, the positive solutions make P∞

A > 0 and P∞
B > 0. By adjusting the parameter p,

Equation (10) moves from the left to the right of the plane. When p is equal to pc = 0.3919,
the two curves have a tangent point, which means that the value of P∞

A jumps from 0 to
a nonzero value and the phase transition is discontinuous. However, when α = 0.7, the
model undergoes a continuous phase transition, and the solution is unique when p is given.
With decreasing p, the solutions of Equation (10) decrease continuously to 0 and dx

dy ·
dy
dx 6= 1

when p = pc because the two lines cannot have a tangent. The differences between the
two conditions are shown in Figure 5. Thus, we can decide on the kind of phase transition
by finding the critical point pc and obtaining the relevant solutions of x, y to verify the
whether dx

dy ·
dy
dx = 1:

dx
dy

=
pGB′

0 (1− y) · [1− α− GA
1 (1− x) + αGA

1 (1− αx)]
1− pGA′

1 (1− x)[1− GB
0 (1− y)]− α2 pGA′

1 (1− αx)GB
0 (1− y)

(18)

dy
dx

=
GA′

0 (1− x) · [1− α− GB
1 (1− y) + αGB

1 (1− αy)]
1− GB′

1 (1− y)[1− GA
0 (1− x)]− α2GB′

1 (1− αy)GA
0 (1− x)

(19)
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(b)(a)

Figure 5. Bond percolation in interdependent networks with weak dependency. The red line repre-
sents Equation (11), and it is not affected by p when α is a constant value. The blue lines represent
Equation (10). (a) As p increases from 0 to 1 when α < αc, the two curves have a tangent point.
(b) However, when α > αc, the solutions of the two equations continuously decrease to 0.

We took 20 values evenly spaced between 0 and 1 to find the intervals of αc, whose
left endpoint was a first-order transition and whose right endpoint was a second-order
transition. Through dichotomy, we found the values of αc of ER networks with different
average degrees 〈k〉 and SF networks with different minimum degrees kmin. We marked
the results on the corresponding lines. With the increase in α, pc decreased from the value
of a strong coupling model to a single-layer model. When α was close to αc, the changes in
pc were more drastic. After going across αc, pI I

c gently decreased. Networks that had larger
percolation thresholds also had larger crossover points, as shown in Figure 4. However, the
crossover points for site percolation were smaller than those for bond percolation, while
the percolation thresholds were larger, as shown in Table 1. Thus, the crossover points
cannot become the measurement of robustness. Moreover, this phenomenon suggests that
link failure is more likely to lead to collapses of the networks even though they are more
robust than those in site percolation. Because removing links seems to reserve nodes in
networks, the average degree actually decreases. This makes the networks fragile, and a
small disturbance can thoroughly destroy the system.

Table 1. Values of αc for ER networks and SF networks.

ER Networks SF Networks
〈k〉 = 4 〈k〉 = 6 〈k〉 = 8 kmin = 2 kmin = 3 kmin = 4

bond percolation 0.6182 0.5076 0.4246 0.2978 0.2777 0.2471
site percolation 0.5737 0.4721 0.4056 0.2913 0.2536 0.2228

5. Conclusion

In this paper, we applied a weakly coupled mechanism to interdependent networks
based on bond percolation. In the framework that we constructed, sites only played the
role of a medium. The coupling strength parameter α controlled the spreading strength of
the dependency nodes’ failure. When α < αc, the coupling strength was strong, and with
the increase in α, pc decreased faster than when α > αc with the growth of α. That is to say,
after going through the crossover point αc, the system was always robust. Interestingly, we
know that the sizes of the GCCs were bigger and the values of the percolation thresholds
were smaller for bond percolation than those for site percolation. For the crossover points,
αc was greater, which means that the case in bond percolation was easier to break down.
This is because when we remove a fraction of the links, the average degree decreases, and
the networks become less robust. Thus, we need to improve the self-protection ability for
cases in which interdependent networks’ edges are continuously attacked, such as in the
breakdown of business relationships. Moreover, since attacks on links and nodes lead to
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different results, we need to make an effort to study the relationship between links and
nodes.
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