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Abstract: The gravitational search algorithm is a global optimization algorithm that has the advan-
tages of a swarm intelligence algorithm. Compared with traditional algorithms, the performance in
terms of global search and convergence is relatively good, but the solution is not always accurate, and
the algorithm has difficulty jumping out of locally optimal solutions. In view of these shortcomings,
an improved gravitational search algorithm based on an adaptive strategy is proposed. The algorithm
uses the adaptive strategy to improve the updating methods for the distance between particles, gravi-
tational constant, and position in the gravitational search model. This strengthens the information
interaction between particles in the group and improves the exploration and exploitation capacity of
the algorithm. In this paper, 13 classical single-peak and multi-peak test functions were selected for
simulation performance tests, and the CEC2017 benchmark function was used for a comparison test.
The test results show that the improved gravitational search algorithm can address the tendency of
the original algorithm to fall into local extrema and significantly improve both the solution accuracy
and the ability to find the globally optimal solution.

Keywords: gravitational search algorithm; swarm intelligence algorithm; adaptive strategy; particle
information interaction

1. Introduction

With the progress of science and technology as well as the development of production
and management, optimization problems cover almost all aspects of human life and produc-
tion, becoming an important theoretical basis and indispensable method of modern science.
The main solutions to optimization problems include traditional optimization methods and
modern optimization methods. Traditional optimization methods are based on single-point
optimization, and the main approaches are enumeration methods, numerical methods, and
analytical methods. Modern optimization methods use swarm intelligence algorithms, in-
spired by the stimulation of biological evolution, that simulate the structural characteristics,
evolutionary laws, thinking structures, and behavior patterns of human, natural, and other
biological populations. Typical swarm intelligence algorithms include the evolutionary
algorithm, artificial immune algorithm, memory algorithm, particle swarm optimization,
shuffled frog leaping algorithm, cat swarm optimization, bacterial foraging optimization,
artificial fish school algorithm, ant colony algorithm, and artificial bee colony algorithm.
Traditional optimization methods have strict requirements for the optimization problems
in practical projects, and the calculation speed is slow and the convergence is poor when
solving large-scale complex problems. Often, the solution to the problem cannot be found
in an acceptable time. Modern optimization methods have loose requirements for solving
problems, and have good adaptability, robustness, and global search ability.

The gravitational search algorithm (GSA) was proposed by Raahedi et al. in 2009.
It is a swarm intelligence global optimization algorithm that is simple to implement and
achieves relatively good performance in global search and convergence. It is widely used in
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path planning [1,2], image classification [3–5], neural networks [6,7], data prediction [8–10],
scheduling and parameter estimation [11–17], and other fields. However, the solution
accuracy is not high, and the algorithm finds it difficult to jump out of locally optimal
solutions in the later stages. To solve the shortcomings of this algorithm, scholars have
improved the GSA algorithm with respect to the following three aspects: improvements
to the adaptive strategy, integration with other swarm intelligence algorithms, and the
introduction of other improvement strategies.

To address the first aspect, the authors of [18] proposed an adaptive GSA called SGSA
in which an exponential decay model was introduced to the gravitation constant so that the
algorithm can adjust the relevant parameters as required by the algorithm as the iteration
proceeds. This also improves the exploration ability of the algorithm. An adaptive strategy
based on population density was proposed for the distance between particles to prevent
the algorithm from degenerating into random motion and to accelerate the convergence
speed. The authors of [19] designed a new dynamic inertial weight and velocity position
trend factor to improve the GSA, so that the inertial mass of particles has a certain trend as
the iterations progress. This gives the change in position of each particle randomness and
stability and gives the algorithm a certain degree of adaptability.

To address the second aspect, the authors of [20] combined the GSA with an immune
algorithm, which introduces antibody diversity and immune memory characteristics into
GSA and improves its global search ability. To overcome the problems of slow iterations
and tendency to fall into local minima during the optimization of the standard GSA, one
study [21] introduced the speed update mechanism of particle swarm optimization into the
position update of GSA, combining the exploitation ability of particle swarm optimization
and the exploration ability of GSA, and effectively solving the abovementioned problems.
Another study [22] combined the free search differential evolution algorithm with the GSA
to make full use of the exploration ability of GSA and the exploitation ability of the free
search differential evolution algorithm, and to avoid the premature convergence of GSA.
The authors of [23] combined the GSA with the sperm swarm optimization algorithm,
which combines the advantages of both algorithms. Through testing, the hybrid method
was found to have a better ability to avoid local extrema, and its convergence speed is
relatively fast.

Finally, several studies have addressed the third aspect. The authors of [24] introduced
a mutation operator to GSA and performed the mutation operation on particles with poor
fitness values in the population. The particles were reinitialized, effectively preventing
the algorithm from falling into locally optimal values, and the improved algorithm was
successfully applied to an economic load scheduling problem. Another study [25] proposed
the rotation GSA, which optimizes the selection of the k best in GSA by introducing a
rotation operator so that unincluded particles have the opportunity to affect the motion
of other particles and to enhance the exploration ability of the algorithm. The study [26]
proposed a GSA based on Levy flight and chaos theory. The Levy distribution was used
to improve the diversity of the population search space, and chaos search was used to
strengthen candidate solutions to achieve global optimization. The authors of [27] proposed
an improved GSA based on mutation strategy and reverse evaluation mechanism. The
reverse learning bidirectional evaluation mechanism proposed by Tizhoosh was used to
initialize and update the population so that particles were better distributed. In addition,
the best individual and particles with poor fitness were cross-mutated using a mutation
strategy to avoid premature convergence.

In summary, the key to improving the performance of the GSA is to balance the diver-
sity and convergence of particles and prevent the algorithm from falling into local extreme
values too early. Among the above three aspects of improvement, the adaptive strategy has
a better effect and obtains the best performance. However, scholars have only used two
adaptive strategies at most to improve the algorithm performance. Hence, there is room for
further improvements in the algorithm’s performance. In this paper, a new adaptive GSA
is proposed in which three adaptive strategies for population density, gravitation constant,
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and location update are used in combination to improve the optimization accuracy and
convergence of the GSA. The organizational structure of this paper is as follows: Section 2
outlines the basic GSA, Section 3 introduces the three adaptive improvement strategies,
Section 4 describes the idea and steps of the improved GSA and analyzes the space–time
complexity and convergence performance. Finally, Section 5 evaluates the performance of
the improved GSA through experiments, and Section 6 summarizes the conclusions.

2. Basic GSA

The universal GSA treats all particles as objects with mass. During the optimization
process, all particles move unimpeded. Each particle is affected by the gravity of the other
particles in the solution space and generates acceleration to move toward the particles with
greater mass. Because the mass of the particles is related to their fitness, particles with
large fitness will have greater mass. Therefore, particles with small masses will gradually
approach the optimal solution in the optimization problem in the process of approaching
particles with large masses. The GSA is different from other swarm intelligence algorithms.
In the GSA, particles do not need to perceive the environment through environmental
factors but realize information sharing through the interaction of the gravitational forces
between individuals. Therefore, without the influence of environmental factors, particles
can also perceive the global situation to conduct a global search in the environment, thus
realizing the global optimization of the problem.

In a GSA, we assume that a D-dimensional search space contains N objects, and the
position of the i-th object is

Xi = (x1
i , x2

i , x3
i , ..., xk

i ...xD
i ), i = 1, 2, ..., N (1)

In Equation (1), xk
i represents the position of the i-th object in the k-th dimension.

2.1. Inertial Mass Calculation

In the GSA, the inertial mass of each particle is directly related to the fitness value
obtained from the particle location. At time t, the mass of particle Xi is expressed by Mi(t).
Because the inertial mass M is calculated according to its corresponding fitness value, the
particles with larger M values are closer to the optimal solution in the solution space, and
they exert a greater attraction on other objects.

Particle mass Mi(t) is calculated according to
mi(t) =

f iti(t)−worst(t)
best(t)−worst(t)

Mi(t) =
mi(t)

N
∑

j=1
mj(t)

(2)

Here, f iti(t) represents the fitness of particle Xi, best(t) represents the best solution at
time t, worst(t) represents the worst solution at time t, and the calculation is as follows:

best(t) = max f it(t)
i∈{1,2,...,N}

worst(t) = min f it(t)
i∈{1,2,...,N}

(3)

It can be seen from Equation (2) that mi(t) normalizes the fitness of particles to the
range [0, 1] and then takes its proportion in the total mass as the mass Mi(t) of the particles.
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2.2. Gravitational Calculation

At time t, the calculation of the gravitational force of object j subjected to object i in the
k-th dimension is as follows:

Fij
k(t) = G(t)

Mai(t)×Maj(t)
Rij (t) + ε

(xk
j (t)− xk

i (t)), (4)

where ε represents a very small constant, Maj(t) represents the inertial mass of the action
object j, and Mai(t) represents the inertial mass of the action object i. Furthermore, G(t)
represents the constant of universal gravitation transformed over time, where its size is
related to the number of iterations, and its calculation is

G(t) = G0 × e−αt/T . (5)

In Equation (5), G0 represents the value of G at time t0, where G0 = 100, α = 20, and
T is the maximum number of iterations. Finally, Rij(t) represents the Euclidean distance
between objects Xi and Xj, and is calculated as

Rij(t) = ||Xi(t)− Xj(t)||2. (6)

At time t, the force acting on Xi in the k-th dimension is equal to the sum of the forces
exerted on it by all other particles around as follows:

Fk
i (t) =

N

∑
j=1,j 6=i

randjFk
ij(t). (7)

2.3. Location Update

When a particle is subjected to the gravitational action of other particles, it will generate
acceleration. According to the gravity calculated in Equation (7), the acceleration obtained
by object i in the k-th dimension is the ratio of its force to inertial mass. The calculation is
as follows:

αk
i (t) =

Fk
i (t)

Mi(t)
. (8)

In each iteration, the algorithm updates the speed and position of object i according to
the calculated acceleration. The update method is

vk
i (t + 1) = randi × vk

i + αk
i (t), (9)

xk
i (t + 1) = xk

i (t) + vk
i (t + 1). (10)

The basic GSA implementation steps are as follows:

1. Initialize the position and acceleration of all particles in the algorithm, and set the
number of iterations and parameters.

2. Calculate the fitness value for each particle, and update the gravitation constant
according to the formula.

3. The mass of each particle is calculated according to the calculated fitness value, and
the acceleration of each particle is calculated using Equations (2)–(8).

4. Calculate the speed of each particle according to Equation (9) and then update the
particle position according to Equation (10).

5. If the termination condition is not met, return to step 2; otherwise, output the optimal
solution of the algorithm.
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3. Adaptive Strategies
3.1. Adaptive Population Density Strategy

The distance between particles in the basic GSA is the Euclidean distance. Through
a large number of experiments in [18], it was found that a constant fixed distance is
better than the Euclidean distance, but the fixed distance value has obvious shortcomings:
First, when the population is divided, the distance between particles is large and the
interaction force is very small, and hence, the GSA degenerates into random motion.
Second, when the population is dense, the distance between particles is very small, and
the interaction force is very large. The particles in the algorithm will oscillate at a high
frequency near the optimal solution and reduce the convergence speed. The population
density is an indicator for evaluating the distance between particles, and it is the median
of the average distance of all particles in the population. A smaller population density
means the population is more concentrated; by contrast, a higher population density means
the population is more dispersed. To solve the above two issues, balance the exploration
and exploitation abilities of the algorithm, adjust the search ability of the algorithm, and
propose an adaptive strategy based on population density, we dynamically adjust the
distance between particles according to the GSA population density. That is, when the
population density is relatively large, the population is relatively dispersed, reducing the
particle distance between populations, promoting information exchange between particles,
and preventing random movement between particles. When the population density value
is small, the population is dense. We hence increase the distance between population
particles appropriately to speed up the convergence of the algorithm. The calculation of
population density δ is as follows:

δ =
1
N

N

∑
i=1

disi, (11)

where N is the number of particles, D is the dimensionality of the particles, and disi is the
average distance between the i-th particle and all other particles, calculated as follows:

disi =
1

N− 1

N

∑
j=1,j 6=i

√√√√ D

∑
k=1

(xk
i − xk

j )
2. (12)

The gravitational force calculated in the basic universal GSA is modified as follows:

Fij
k(t) = G(t)

Mai(t)×Maj(t)

Rij
Rp(δ)(t) + ε

(xk
j (t)− xk

i (t)). (13)

The calculation of Rp(δ) is

Rp(δ) =
{

Rpmin + (Rpmax − Rpmin)e1−1/δ δ < 1
Rpmin + (Rpmax − Rpmin)e1−δ δ ≥ 1

, (14)

where Rpmax and Rpmin are the maximum and minimum values of the given fixed distance,
respectively, and δ is the population density.

3.2. Adaptive Gravitational Constant Strategy

Gravitational constant G is an important variable that transforms over time. Its change
directly affects the magnitude of resultant force and acceleration, as well as determines
the current step size and convergence speed of particles in the algorithm. The reasonable
selection of parameters G0 and α plays an important role in the size of the iterative steps
in the algorithm and determines whether the algorithm can jump out of local optima
and determine the direct factor of optimal accuracy. If the original gravitational constant
decreases quickly at the beginning of the algorithm, the algorithm can converge quickly,
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but it also tends to fall into the local optima and is difficult to jump out. To improve the
exploration ability of the algorithm, prevent the algorithm from falling into locally optimal
solutions, and improve the accuracy of the solution, an adaptive strategy for the universal
gravitational constant is proposed. The adaptive gravitational constant G is expressed
as follows:

G(t) =
G0

1+eα(t−tc)/T
0 ≤ tc < T (15)

Here, G0 is the initial value of the universal gravitational constant, α is the parameter
of the decay rate, T is the total number of iterations, and tc is a constant value in the interval
[0, T).

3.3. Adaptive Location Update Strategy

A position in the basic GSA is updated according to the current speed of the algorithm
and the position in the last iteration. In each iteration, if the current update speed of
particles is small, the change in position will also be small, the convergence ability of
the algorithm will be reduced, and the algorithm will tend to fall into local extrema. By
contrast, if the current update speed of particles is too large, the change in position will
also increase, and the algorithm will move far from the global optimum. To address these
defects, the improved strategy in [3] is adopted in this study to make the position of the
particles change with respect to the iterative evolution. In the early stages of the algorithm,
each particle moves with a large step size so that the algorithm can quickly converge to the
vicinity of the optimal solution; in the later stages of the algorithm, the particle update step
is smaller, and the particle depth search is near the optimal value. The expression of the
adaptive position update is

xk
i (t + 1) = α× xk

i (t) + β× vk
i (t + 1), (16)

where α is calculated by
α = e(−dim∗(t/Tmax)

ω) (17)

and β is calculated by

β = 1− t
Tmax + betarnd

, (18)

where dim is the dimension; ω is an integer in the range [1, 50]; T is the current number of
iterations of the algorithm; Tmax is the maximum number of iterations set for the algorithm;
and betarnd is the random number generated by the [0, 1] beta distribution. The range of α
is (0, 1) and the range of β is (0, 1).

4. Improved GSA Based on Adaptive Strategies
4.1. Basic Concept

To improve the low solution accuracy and difficulty of jumping out of the locally
optimal solutions of conventional GSA, the parameters for the distance between particles,
gravitational constant, and position update in GSA are improved using adaptive strategies
to strengthen the information interaction between particles and improve the exploration
and exploitation capabilities of the algorithm.

The steps of the proposed algorithm are as follows.

Step 1: The proposed adaptive GSA is initialized to generate the initial particle swarm.
Set the size of algorithm particle swarm N and the maximum number of iterations NCMax,
search space dimension XDim, maximum distance Rpmax, minimum distance Rpmin, gravi-
tational constant, attenuation rate, constant value, and other parameter values.
Step 2: Check the particle boundary in the population, and calculate the fitness value of
particles in the population.
Step 3: Use Equation (3) to calculate best(t) and worst(t).
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Step 4: The inertial mass Mi(t) of the particles is obtained according to best(t), worst(t), and
Equation (2).
Step 5: Update the gravitational constant G according to Equation (15).
Step 6: Calculate the distance between particles according to Equations (6), (11), and (14).
Step 7: Calculate the gravitational and resultant forces around particles according to
Equation (13).
Step 8: Calculate the acceleration of the particles according to Equation (8).
Step 9: Update particle speeds and positions according to Equations (9) and (16)–(18).
Step 10: Return to the iteration cycle in step 2 until the number of cycles or accuracy
requirements are met.
Step 11: Exit the loop and output the algorithm results.

4.2. Temporal and Spatial Complexity Analyses
4.2.1. Time Complexity Analysis

The time complexity of the algorithm is the time spent executing the algorithm, which
is equal to the cumulative number of times the algorithm performs basic operations such as
addition, subtraction, multiplication, division, and comparison. Assuming that the particle
swarm size of the proposed adaptive GSA is N, the time complexity of the algorithm is
analyzed according to the steps of the algorithm execution using the method in [28].

In step 1, the initialization of the particle swarm of the proposed adaptive GSA requires
N operations, and the initialization operations of the other parameters are a constant; thus,
the time complexity of step 1 is O (N).

In step 2, the particle boundary check requires N operations, the fitness calculation
requires N operations, and hence, the time complexity of step 2 is O(N) + O(N).

In step 3, it takes one operation to calculate the best fitness value best(t) and one
operation to calculate the worst fitness value worst(t), and hence, the time complexity of
step 3 is O(1) + O(1).

Calculating the inertial mass Mi(t) of particles in step 4 requires N operations; thus,
the time complexity of step 4 is O(N).

Updating the gravitational constant G in step 5 requires one operation; thus, the time
complexity of step 5 is O(1).

In step 6, calculating the average distance of all particles requires N × (N − 1)
operations, calculating the population density requires one operation, and calculating
the particle distance requires one operation, and hence, the time complexity of step 6 is
O(N × (N − 1)) + O(1) + O(1).

In step 7, calculating the gravity of particles in the population requires N operations,
and calculating the resultant force of particles in the population requires N operations; thus,
the time complexity of step 7 is O(N) + O(N).

In step 8, calculating particle acceleration requires N operations, and calculating parti-
cle velocity requires N operations, and hence, the time complexity of step 8 is O(N) + O(N).

Updating particle positions in step 9 requires N operations; thus, the time complexity
of step 9 is O(N).

In step 10, evaluating the termination condition requires one comparison operation,
and terminating the algorithm requires one assignment operation; thus, the time complexity
of step 10 is O(1) + O(1).

After the above steps, the proposed adaptive GSA performs NCmax iterations. The
time complexity the proposed adaptive GSA after the maximum number of iterations is
O(NCmax × (N × N)).

4.2.2. Spatial Complexity Analysis

Space complexity is a measure of the storage space occupied by the algorithm during
execution. Assume that the population size of the proposed adaptive GSA is N, the
number of iterations of the algorithm is NCmax, and the dimensionality of the optimization
function is D. We perform spatial complexity analysis according to the steps of algorithm
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execution. In the proposed adaptive GSA, X [N] [D] is used to store the value of initialization
independent variable, Y [1] [N] is used to store the fitness value of initialization function,
Xm [1] [N] is used to store the inertial mass value of population particles, Xd [1] [N] is used
to store the average distance between population particles, Xf [N] [D] is used to store the
resultant force value around each particle in the population, Xa [N] [D] is used to store the
acceleration value of each particle in the population, and Xv [N] [D] is used to store the
velocity value of each particle in the population. Therefore, the space complexity of the
whole GSA based on adaptive strategy improvement is 4 × O(N × D).

4.2.3. Analysis of Algorithm Convergence

The convergence of the proposed adaptive GSA is proven using the contraction
mapping theorem. For the relevant concepts and theorems in space compression theory,
we refer readers to the definitions in [28].

Theorem 1. As the time tends to infinity, the proposed adaptive GSA is convergent.

Proof : The state of the proposed adaptive GSA in the optimization process is represented
by set X. The mutual transformation of states in set X is actually the embodiment of the
whole optimization process of the proposed adaptive GSA. Therefore, the optimization
process of the proposed adaptive GSA is a self-mapping process. If f is an optimization
process mapping from X to X, then Xk+1 = f (Xk). Suppose ∃ρ : X× X → R is the distance
between two points in metric space (X, ρ) and {xn} is any optimization sequence in (X, ρ).
�

The proposed adaptive GSA is a continuous iterative process. Under the action of
gravity, individuals in the algorithm attract each other, forcing small mass individuals to
constantly move to larger mass individuals to determine the optimal solution X∗. Therefore,
in metric space (X, ρ), for any ε, there exists an N, where n > N, such that ρ(xn, X∗) < ε is
true. According to its definition, the optimization sequence {xn} converges to X∗. Moreover,
{xn} is a Cauchy sequence, and (X, ρ) is a complete metric space. Let ε be a random number
in the range [0, 1]. Since the proposed adaptive GSA is a continuous optimization process,
individuals are constantly approaching the optimal value, and hence, it is a convergent
process. Then, there must be ρ( f (x), f (y) ≤ ε ∗ ρ(x, y) in the metric space (X, ρ), and f is a
compression mapping. According to Theorem 4.2 in [28], x∗ = lim

k→∞
f ∗(x0) is true, where

x∗ ∈ X is the only fixed point in the compressed mapping f . Hence, the proposed adaptive
GSA is convergent, and Theorem 1 is proven.

5. Experimental Analysis
5.1. Performance of the Algorithm Improvement Strategies

This section evaluates and analyzes the combinations of the three adaptive improve-
ment strategies in the algorithm: the adaptive population density strategy, adaptive gravi-
tational constant strategy, and adaptive location update strategy. For the convenience of
description, we refer to the GSA based on the adaptive population density strategy as the
RGSA. Similarly, we call the GSA based on the adaptive gravitational constant strategy the
GGSA, and the GSA based on the adaptive position strategy is called the LGSA. The GSA
based on the adaptive population density and gravity constant strategies is the RGGSA,
the GSA based on the adaptive population density and location update strategies is the
RLGSA, the GSA based on the adaptive gravity constant and position update strategies is
the GLGSA, and the GSA based on all three adaptive population density, gravity constant,
and location update strategies is the RGLGSA. In the experiment, we tested the convergence
of the basic GSA and the GSA with the seven different adaptive strategies on benchmark
functions f1 to f15.
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5.1.1. Test Functions

Table 1 lists the test functions. Among the 15 standard test functions, the minimum
value 0.397887 is obtained at points (π, 12.275), (π, 2.275), and (9.42478, 2.475), and the
other functions obtain the minimum value 0 at point (0, 0, ..., 0). The functions f1, f2, f3, f7,
f8, f10, and f13 are unimodal test functions. These functions only have one globally optimal
solution, and are mainly used to test the solution accuracy and development ability of the
algorithm. Functions f4, f5, f6, f9, f11, f12, f14, and f15 are multimodal test functions. These
functions have many local extrema. The GSA is prone to premature convergence or falling
into local extrema. To determine the optimal values for these test functions, the algorithm
must have the ability to jump out of local extrema, avoid premature convergence, and have
strong global exploration ability.

Table 1. Test function set.

Function No. Test Function Value Range

1 f1(x) =
n
∑

i=1
x2

i
xi ∈ [−100, 100]

2 f2(x) =
n
∑

i=1
|xi|+

n
∏
i=1
|xi| xi ∈ [−10, 10]

f3(x) = max|xi| xi ∈ [−100, 100]

4 f4(x) = −20 exp[−0.2

√
1
n

n
∑

i=1
x2

i ]− exp( 1
n

n
∑

i=1
cos(2πxi)) + 20 + e xi ∈ [−32, 32]

5 f5(x) =
n
∑

i=1
| xi sin(xi) + 0.1xi| xi ∈ [−10, 10]

6 f6(x) = (x2 − 5.1
4π x2

1 −
5
π x1 − 6)

2
+ 10× (1− 1

8π ) cos x1 + 10 xi ∈ [−10, 10]

7 f7(x) =
n
∑

i=1
(

i
∑

j=1
xj)

2
xi ∈ [−100, 100]

8 f8(x) =
n
∑

i=1
ix4

i + random[0, 1] xi ∈ [−1.28, 1.28]

9 f9(x) = 1
4000

n
∑

i=1
x2

i −
n
∏
i=1

cos( xi√
i
) + 1 xi ∈ [−600, 600]

10 f10(x) =
n
∑

i=1
xi

2 + (
n
∑

i=1

i
2 xi)

2
+ (

n
∑

i=1

i
2 xi)

4
xi ∈ [−32, 32]

11 f11(x) = x2 + y2 + 25(sin2 x + sin2 y) xi ∈ [−5.14, 5.14]
12 f12(x) =

n
∑

i=1

[
x2

i − 10 cos(2πxi) + 10
] xi ∈ [−5, 5]

13 f13(x) =
n
∑

i=1
(bxi + 0.5c)2 xi ∈ [−100, 100]

14 f14(x) = cos(2π

√
n
∑

i=1
x2

i ) + 0.1(

√
n
∑

i=1
x2

i ) + 1 xi ∈ [−100, 100]

15 f15(x) = 0.5 + (sin
√

x2
2+x2

1)
2
−0.5

(1+0.001(x2
2+x2

1))
2

xi ∈ [−10, 10]

5.1.2. Data Analysis

We set the initial parameters of the algorithms as follows: for the basic GSA, G0 was
100 and α was 20; for RGSA: G0 was 100, α· was 20, tc was T/4, Rpmax was 1.5, and Rpmin
was 0.5; for GGSA: G0 was 50 and α· was 30; for SGSA: G0 was 100, α was 20, and ω was 10.
The parameter settings of the other GSAs were consistent with those of the previous three
GSAs. The population size for all algorithms was 50, the number of algorithm iterations
was 1000, the test dimensions were 30 and 50, functions f6 and f11 were two-dimensional
tests, and the number of independent algorithm runs was 30.

The following observations can be inferred from the simulation test results of Tables 2–16.
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Table 2. Test results for f 1(x).

D Algorithm Worst Best Mean SD

30

GSA 3.1784 × 10−17 1.1678 × 10−17 2.0655 × 10−17 4.9762 × 10−18

RGSA 5.7262 × 10−33 4.1402 × 10−34 1.0540 × 10−33 1.0033 × 10−33

GGSA 7.8267 × 10−20 1.6952 × 10−20 4.2861 × 10−20 1.5505 × 10−20

LGSA 1.1171 × 10−27 7.0551 × 10−31 1.0968 × 10−28 2.3663 × 10−28

RGGSA 2.4777 × 10−38 2.4197 × 10−39 8.1763 × 10−39 4.6307 × 10−39

RLGSA 4.3833 × 10−48 4.9380 × 10−51 3.9451 × 10−49 9.0845 × 10−49

GLGSA 2.2316 × 10−29 2.3715 × 10−34 9.0465 × 10−31 4.0589 × 10−30

RGLGSA 1.1227 × 10−53 1.3115 × 10−56 1.8360 × 10−54 3.3730 × 10−54

50

GSA 1.0370 × 10−16 4.2637 × 10−17 7.1477 × 10−17 1.8306 × 10−17

RGSA 7.9678 × 10−32 4.0968 × 10−33 1.7587 × 10−32 1.6047 × 10−32

GGSA 3.1420 × 10−19 7.4754 × 10−20 2.0370 × 10−19 6.3958 × 10−20

LGSA 7.8808 × 10−28 4.8414 × 10−31 8.3115 × 10−29 1.5517 × 10−28

RGGSA 1.2945 × 10−35 1.7729 × 10−37 1.5203 × 10−36 2.7454 × 10−36

RLGSA 3.2260 × 10−48 1.9879 × 10−50 6.0257 × 10−49 7.9558 × 10−49

GLGSA 2.6738 × 10−30 2.0636 × 10−33 2.3400 × 10−31 5.0105 × 10−31

RGLGSA 1.4061 × 10−53 3.6091 × 10−56 2.1920 × 10−54 3.3828 × 10−54

Table 3. Test results for f 2(x).

D Algorithm Worst Best Mean SD

30

GSA 2.9944 × 10−8 1.8259 × 10−8 2.3354 × 10−8 2.8498 × 10−9

RGSA 3.7319 × 10−16 1.1320 × 10−16 2.2498 × 10−16 6.5816 × 10−17

GGSA 1.5355 × 10−9 6.4974 × 10−10 1.0641 × 10−9 2.3299 × 10−10

LGSA 5.3312 × 10−14 4.3968 × 10−16 1.2055 × 10−14 1.4035 × 10−14

RGGSA 1.8821 × 10−17 3.8605 × 10−19 1.7182 × 10−18 3.3370 × 10−18

RLGSA 5.1586 × 10−24 1.0922 × 10−25 8.5523 × 10−25 9.6857 × 10−25

GLGSA 1.6789 × 10−15 1.0556 × 10−16 4.5455 × 10−16 3.1838 × 10−16

RGLGSA 4.8916 × 10−27 2.0799 × 10−28 1.8049 × 10−27 1.2726 × 10−27

50

GSA 0.0236 3.7905 × 10−08 7.8561 × 10−4 0.0043
RGSA 0.0861 6.2460 × 10−16 0.0047 0.0168
GGSA 0.2069 2.1929 × 10−9 0.0181 0.0546
LGSA 5.1145 × 10−14 1.2501 × 10−15 1.3527 × 10−14 1.1082 × 10−14

RGGSA 0.2833 2.7805 × 10−13 0.0320 0.0748
RLGSA 3.1275 × 10−24 1.8799 × 10−25 1.2276 × 10−24 8.5222 × 10−25

GLGSA 2.8762 × 10−15 1.3163 × 10−16 6.1703 × 10−16 5.8851 × 10−16

RGLGSA 8.7338 × 10−27 1.9445 × 10−28 2.2760 × 10−27 1.8606 × 10−27

Table 4. Test results for f 3(x).

D Algorithm Worst Best Mean SD

30

GSA 4.6203 × 10−9 2.0095 × 10−9 3.1109 × 10−9 7.1216 × 10−10

RGSA 9.4873 × 10−16 5.6256 × 10−17 2.5335 × 10−16 2.4418 × 10−16

GGSA 3.0792 × 10−10 9.8951 × 10−11 2.1632 × 10−10 4.9367 × 10−11

LGSA 3.2172 × 10−14 6.3082 × 10−16 8.1911 × 10−15 8.6301 × 10−15

RGGSA 0.0167 3.0764 × 10−18 0.0011 0.0041
RLGSA 4.0438 × 10−24 2.3297 × 10−26 7.0978 × 10−25 8.7193 × 10−25

GLGSA 2.9153 × 10−15 4.4903 × 10−17 5.0494 × 10−16 6.3364 × 10−16

RGLGSA 9.4406 × 10−27 2.0399 × 10−28 1.9853 × 10−27 1.9898 × 10−27
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Table 4. Cont.

D Algorithm Worst Best Mean SD

50

GSA 7.3060 1.4952 3.8958 1.2656
RGSA 7.7420 1.4171 3.8093 1.6933
GGSA 0.0065 1.8832 × 10−9 2.4286 × 10−4 0.0012
LGSA 2.9909 × 10−14 2.6038 × 10−16 9.7994 × 10−15 8.8800 × 10−15

RGGSA 1.2411 0.3102 0.6938 0.2702
RLGSA 6.4042 × 10−24 1.3099 × 10−25 1.2454 × 10−24 1.5236 × 10−24

GLGSA 5.2383 × 10−15 2.7606 × 10−17 7.0144 × 10−16 1.0081 × 10−15

RGLGSA 1.0648 × 10−26 6.6210 × 10−29 3.0313 × 10−27 3.1224 × 10−27

Table 5. Test results for f 4(x).

D Algorithm Worst Best Mean SD

30

GSA 4.5997 × 10−9 2.5140 × 10−9 3.5884 × 10−9 4.2747 × 10−10

RGSA 1.5099 × 10−14 7.9936 × 10−15 1.0599 × 10−14 2.7886 × 10−15

GGSA 2.5246 × 10−10 1.2959 × 10−10 1.6997 × 10−10 2.7635 × 10−11

LGSA 9.3259 × 10−14 8.8818 × 10−16 1.1428 × 10−14 1.7165 × 10−14

RGGSA 1.5099 × 10−14 7.9936 × 10−15 9.6515 × 10−15 2.5945 × 10−15

RLGSA 8.8818 × 10−16 8.8818 × 10−16 8.8818 × 10−16 0
GLGSA 4.4409 × 10−15 8.8818 × 10−16 1.1250 × 10−15 9.0135 × 10−16

RGLGSA 8.8818 × 10−16 8.8818 × 10−16 8.8818 × 10−16 0

50

GSA 6.2569 × 10−9 3.7704 × 10−9 4.9280 × 10−9 6.2123 × 10−10

RGSA 2.5757 × 10−14 1.5099 × 10−14 2.0191 × 10−14 3.1890 × 10−15

GGSA 6.4020 × 10−10 1.9065 × 10−10 2.6571 × 10−10 8.2614 × 10−11

LGSA 2.2204 × 10−14 8.8818 × 10−16 5.7436 × 10−15 4.4239 × 10−15

RGGSA 0.0193 1.1546 × 10−14 0.0014 0.0043
RLGSA 8.8818 × 10−16 8.8818 × 10−16 8.8818 × 10−16 0
GLGSA 4.4409 × 10−15 8.8818 × 10−16 1.2434 × 10−15 1.0840 × 10−15

RGLGSA 8.8818 × 10−16 8.8818 × 10−16 8.8818 × 10−16 0

Table 6. Test results for f 5(x).

D Algorithm Worst Best Mean SD

30

GSA 2.8447 × 10−9 1.3648 × 10−9 2.2171 × 10−9 3.7633 × 10−10

RGSA 0.0045 3.8202 × 10−18 8.5381 × 10−4 0.0013

GGSA 1.5427 × 10−10 7.2127 × 10−11 1.1032 × 10−10 1.8751 × 10−11

LGSA 1.0398 × 10−14 7.2806 × 10−17 1.3223 × 10−15 2.1370 × 10−15

RGGSA 0.0069 4.7484 × 10−21 0.0014 0.0021
RLGSA 6.9037 × 10−25 2.8753 × 10−26 1.2272 × 10−25 1.3593 × 10−25

GLGSA 2.3019 × 10−16 7.6262 × 10−18 6.1309 × 10−17 5.3079 × 10−17

RGLGSA 2.1912 × 10−27 3.3527 × 10−29 2.2977 × 10−28 4.0053 × 10−28

50

GSA 0.0075 4.2822 × 10−9 7.8908 × 10−4 0.0017
RGSA 0.0239 2.7429 × 10−14 0.0055 0.0053
GGSA 0.0039 1.9820 × 10−10 7.3396 × 10−4 0.0011
LGSA 8.0741 × 10−15 6.6396 × 10−17 1.2979 × 10−15 1.5773 × 10−15

RGGSA 0.0361 1.4921 × 10−5 0.0105 0.0086
RLGSA 6.5537 × 10−25 1.5424 × 10−26 1.4210 × 10−25 1.2736 × 10−25

GLGSA 2.4325 × 10−16 1.1630 × 10−17 5.7302 × 10−17 4.5711 × 10−17

RGLGSA 9.6359 × 10−28 6.0262 × 10−29 3.0080 × 10−28 2.1554 × 10−28
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Table 7. Test results for f 6(x).

D Algorithm Worst Best Mean SD

2

GSA 0.3979 0.3979 0.3979 0
RGSA 0.3979 0.3979 0.3979 0
GGSA 0.3979 0.3979 0.3979 0
LGSA 0.3979 0.3979 0.3979 0

RGGSA 0.3979 0.3979 0.3979 0
RLGSA 0.3979 0.3979 0.3979 0
GLGSA 0.3979 0.3979 0.3979 0

RGLGSA 0.3979 0.3979 0.3979 0

Table 8. Test results for f 7(x).

D Algorithm Worst Best Mean SD

30

GSA 441.6230 100.6353 232.0828 73.4886
RGSA 3.0106 × 103 905.0757 1.7284 × 103 568.6537
GGSA 173.7834 36.2260 101.6022 39.9589
LGSA 2.2037 × 10−24 2.6581 × 10−30 7.9806 × 10−26 4.0151 × 10−25

RGGSA 4.3546 × 103 839.7732 2.3577 × 103 895.2346
RLGSA 4.2249 × 10−46 2.3761 × 10−50 7.2154 × 10−47 1.1422 × 10−46

GLGSA 2.5695 × 10−28 5.9115 × 10−33 3.4041 × 10−29 7.3331 × 10−29

RGLGSA 1.0902 × 10−51 8.8591 × 10−55 2.3283 × 10−52 3.4958 × 10−52

50

GSA 1.5986 × 103 678.5357 988.3067 261.3114
RGSA 8.8062 × 103 3.8307 × 103 5.6479 × 103 1.2912 × 103

GGSA 865.9041 351.5170 642.5225 125.1997
LGSA 1.0505 × 10−24 1.2817 × 10−29 7.9992 × 10−26 2.1493 × 10−25

RGGSA 1.0125 × 104 4.1745 × 103 6.9878 × 103 1.2641 × 103
RLGSA 7.9867 × 10−46 1.2999 × 10−49 1.1830 × 10−46 1.8003 × 10−46

GLGSA 8.3184 × 10−28 3.3753 × 10−32 9.8107 × 10−29 1.9489 × 10−28

RGLGSA 3.9046 × 10−51 9.6762 × 10−56 5.4271 × 10−52 8.8234 × 10−52

Table 9. Test results for f 8(x).

D Algorithm Worst Best Mean SD

30

GSA 0.0386 0.0090 0.0193 0.0072
RGSA 0.0587 0.0093 0.0301 0.0118
GGSA 0.0547 0.0167 0.0310 0.0105
LGSA 1.9174 × 10−4 8.5337 × 10−8 4.5438 × 10−5 4.6017 × 10−5

RGGSA 0.0772 0.0161 0.0455 0.0156
RLGSA 1.1234 × 10−4 7.6825 × 10−7 3.7319 × 10−5 3.0182 × 10−5

GLGSA 2.0404 × 10−4 1.1790 × 10−7 5.0362 × 10−5 5.3880 × 10−5

RGLGSA 1.8700 × 10−4 1.1549 × 10−6 4.5049 × 10−5 4.7092 × 10−5

50

GSA 0.1932 0.0296 0.0627 0.0317
RGSA 0.2004 0.0517 0.1121 0.0359
GGSA 0.1453 0.0307 0.0783 0.0290
LGSA 2.9610 × 10−4 3.1457 × 10−6 5.6102 × 10−5 5.8344 × 10−5

RGGSA 0.2718 0.0840 0.1449 0.0453
RLGSA 1.8462 × 10−4 6.1063 × 10−7 3.6584 × 10−5 3.8892 × 10−5

GLGSA 1.1842 × 10−4 2.1433 × 10−6 3.3349 × 10−5 2.7926 × 10−5

RGLGSA 1.9608 × 10−4 7.4748 × 10−7 3.9030 × 10−5 4.4529 × 10−5
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Table 10. Test results for f 9(x).

D Algorithm Worst Best Mean SD

30

GSA 7.4411 1.3746 4.0420 1.5575
RGSA 0.0074 0 2.4653 × 10−4 0.0014
GGSA 0.0537 0 0.0079 0.0162
LGSA 0 0 0 0

RGGSA 0.0123 0 9.8565 × 10−4 0.0031
RLGSA 0 0 0 0
GLGSA 0 0 0 0

RGLGSA 0 0 0 0

50

GSA 23.4237 11.0850 17.2132 3.4714
RGSA 0.0124 0 0.0015 0.0036
GGSA 1.1759 0 0.1319 0.2313
LGSA 0 0 0 0

RGGSA 0.0099 0 3.5078 × 10−4 0.0018
RLGSA 0 0 0 0
GLGSA 0 0 0 0

RGLGSA 0 0 0 0

Table 11. Test results for f 10(x).

D Algorithm Worst Best Mean SD

30

GSA 22.3692 9.7247 15.4151 2.8357
RGSA 30.9017 10.7804 20.9584 5.1313
GGSA 20.0970 6.6160 12.5334 3.7834
LGSA 7.1106 × 10−24 7.4616 × 10−30 1.2373 × 10−24 1.7594 × 10−24

RGGSA 45.7283 23.1280 35.3209 6.6800
RLGSA 1.0930 × 10−45 2.7914 × 10−47 2.5198 × 10−46 2.5438 × 10−46

GLGSA 1.3735 × 10−26 3.1561 × 10−31 2.2552 × 10−27 3.0441 × 10−27

RGLGSA 2.5063 × 10−51 7.9170 × 10−53 6.7030 × 10−52 6.1941 × 10−52

50

GSA 49.1786 18.8750 31.4671 6.6325
RGSA 47.8996 27.5320 37.6831 5.7390
GGSA 42.9315 14.3102 29.6947 8.4815
LGSA 2.1156 × 10−23 9.4851 × 10−29 4.9534 × 10−24 5.0170 × 10−24

RGGSA 83.9796 55.0682 67.5294 8.7154
RLGSA 2.2174 × 10−45 5.9626 × 10−47 5.5519 × 10−46 4.4312 × 10−46

GLGSA 3.4122 × 10−26 1.9063 × 10−30 8.4759 × 10−27 9.3119 × 10−27

RGLGSA 6.6221 × 10−51 1.3981 × 10−52 1.5619 × 10−51 1.3807 × 10−51

Table 12. Test results for f 11(x).

D Algorithm Worst Best Mean SD

2

GSA 6.9837 × 10−19 2.4931 × 10−21 1.4808 × 10−19 1.5281 × 10−19

RGSA 1.5693 × 10−36 3.9431 × 10−39 3.6757 × 10−37 4.0331 × 10−37

GGSA 1.1021 × 10−21 3.8066 × 10−24 2.6538 × 10−22 2.4632 × 10−22

LGSA 2.5328 × 10−25 1.0902 × 10−35 2.4752 × 10−26 6.4866 × 10−26

RGGSA 1.6362 × 10−41 4.2936 × 10−44 2.4011 × 10−42 3.8616 × 10−42

RLGSA 3.1987 × 10−47 2.1284 × 10−53 1.9892 × 10−48 5.9666 × 10−48

GLGSA 2.5843 × 10−27 3.2845 × 10−35 2.1927 × 10−28 5.3440 × 10−28

RGLGSA 4.3268 × 10−53 6.2023 × 10−60 5.7435 × 10−54 1.1301 × 10−53
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Table 13. Test results for f 12(x).

D Algorithm Worst Best Mean SD

30

GSA 21.8891 7.9597 14.8912 3.5586
RGSA 34.8235 13.9294 22.2539 5.7095
GGSA 26.8639 9.9496 18.5726 4.2961
LGSA 0 0 0 0

RGGSA 34.8235 14.9244 25.6699 5.8915
RLGSA 0 0 0 0
GLGSA 0 0 0 0

RGLGSA 0 0 0 0

50

GSA 50.7429 22.8841 33.0326 6.0459
RGSA 50.7429 23.8790 37.7089 7.0031
GGSA 47.7580 21.8891 37.0125 6.4396
LGSA 0 0 0 0

RGGSA 81.5865 34.8235 51.2403 11.3435
RLGSA 0 0 0 0
GLGSA 0 0 0 0

RGLGSA 0 0 0 0

Table 14. Test results for f 13(x).

D Algorithm Worst Best Mean SD

30

GSA 0 0 0 0
RGSA 0 0 0 0
GGSA 0 0 0 0
LGSA 0 0 0 0

RGGSA 0 0 0 0
RLGSA 0 0 0 0
GLGSA 0 0 0 0

RGLGSA 0 0 0 0

50

GSA 4 0 0.6333 0.9994
RGSA 5 0 0.6667 1.2130
GGSA 0 0 0 0
LGSA 0 0 0 0

RGGSA 4 0 0.7667 1.0400
RLGSA 0 0 0 0
GLGSA 0 0 0 0

RGLGSA 0 0 0 0

Table 15. Test results for f 14(x).

D Algorithm Worst Best Mean SD

30

GSA 2.4001 0.8014 1.2938 0.4433
RGSA 1.2989 0.7001 0.9479 0.1567
GGSA 0.9031 0.5999 0.6820 0.0680
LGSA 5.6621 × 10−15 0 1.1361 × 10−15 1.5394 × 10−15

RGGSA 1.4072 0.8052 1.1264 0.1450
RLGSA 0 0 0 0
GLGSA 1.1102 × 10−16 0 1.1102 × 10−17 3.3876 × 10−17

RGLGSA 0 0 0 0
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Table 15. Cont.

D Algorithm Worst Best Mean SD

50

GSA 4.8987 2.4057 3.3326 0.5198
RGSA 2.3001 1.4005 1.7868 0.2488
GGSA 2.6005 0.9999 1.6749 0.3434
LGSA 8.3267 × 10−15 1.1102 × 10−16 1.3582 × 10−15 1.7851 × 10−15

RGGSA 2.5008 1.5183 1.8890 0.2373
RLGSA 0 0 0 0
GLGSA 2.2204 × 10−16 0 3.3307 × 10−17 5.9395 × 10−17

RGLGSA 0 0 0 0

Table 16. Test results for f 15(x).

D Algorithm Worst Best Mean SD

2

GSA 0.0098 1.3534 × 10−5 0.0063 0.0039
RGSA 0.0097 1.0306 × 10−4 0.0054 0.0038
GGSA 0.0097 2.7770 × 10−4 0.0041 0.0032
LGSA 0 0 0 0

RGGSA 0.0097 5.8631 × 10−4 0.0057 0.0033
RLGSA 0 0 0 0
GLGSA 0 0 0 0

RGLGSA 0 0 0 0

First, the results of the RGSA, GGSA, and LGSA on the test functions are better than
those of the GSA. The results show that the three adaptive strategies of population density,
gravitational constant, and location update can effectively improve the performance of the
GSA. The detailed analysis is as follows. The result of the GGSA is inferior to those of the
RGSA and LGSA, but superior to that of the GSA. This shows that although the adaptive
gravitational constant strategy is inferior to the crowd density and location update strategy
in improving the performance of the GSA, it also improves the performance of the GSA to a
certain extent because it helps to improve the iteration step size and convergence speed. The
result of the RGSA is much better than that of the GSA, which indicates that the adaptive
population density strategy dynamically adjusts the distance between particles according
to the population density in the evolution process and better balances the exploration and
mining capabilities of the algorithm, thus improving the search capability of the algorithm.
The LGSA is not only better than the GSA, but also better than the GGSA and RGSA, which
shows that the location update strategy plays the largest role in improving the performance
of the GSA and reflects that the balance of location and speed between individuals is the
key to ensuring the good solution quality of a swarm intelligence algorithm.

Second, the results of the RGGSA, RLGSA, and GLGSA on the test function are better
than those of the RGSA, GGSA, and LGSA. The results show that the combination of
two of the three adaptive strategies proposed in this paper can effectively improve the
performance of the GSAs using a single strategy. The result of the GLGSA is better than that
of the RGGSA, but it is also inferior to that of the RLGSA, which indicates that the better
single improvement strategy still has a higher performance advantage in the combined
improvement strategy. The test result of the RGLGSA is higher than those of the RGGSA,
RLGSA and GLGSA. The results shows that the RGSGSA, which combines the three
strategies, leverages the advantages of the RGSA, GGSA, and LGSA, making the advantages
more effective in the search process and achieving the best solution performance.

5.2. Comparison and Analysis of Algorithm Test Results

To fully evaluate the overall performance of the adaptive GSA proposed in this paper
(RGLGSA), we selected the following classic and efficient GSA algorithms: the weight-
based GSA (GSAGJ) [29], SGSA [18], and multipoint adaptive constraint-based gravitation
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improved algorithm (MACGSA) [19]. A comparative analysis of simulation tests was
performed using 16 benchmark test functions of the CEC2017 benchmark. In the experiment,
we tested the convergence of the basic GSA and the four comparison algorithms in 10, 30,
and 50 dimensions.

5.2.1. Test Function

In this study, 16 benchmark test functions of CEC2017 were selected to test the effec-
tiveness of the proposed algorithm. Table 17 lists each test function. Among the 16 test
functions, f19 and f23 take the minimum value 0 at point (1, 1, ..., 1), f29 and f30 take the
minimum value 0 at point (−1, −1, ..., −1), and the other functions take the minimum
value 0 at point (0, 0, ..., 0). Functions f16, f17, f18, f24, and f25 are multidimensional uni-
modal reference functions, whereas f19–f23 and f26–f31 are multidimensional multimodal
reference functions.

Table 17. CEC2017 benchmark function set.

Function No. Test Function Value Range

16 f16(x) = x2
1 + 106

n
∑

i=2
x2

i
xi ∈ [−100, 100]

17 f17(x) =
n
∑

i=1
|xi|i+1 xi ∈ [−100, 100]

18 f18(x) =
n
∑

i=1
x2

i + (
n
∑

i=1
0.5xi)

2
+ (

n
∑

i=1
0.5xi)

4
xi ∈ [−100, 100]

19 f19(x) =
n−1
∑

i=1
(100(x2

i − xi+1)
2
+ (xi − 1)2) xi ∈ [−10, 10]

20 f20(x) =
n
∑

i=1
(x2

i − 10 cos(2πxi) + 10) xi ∈ [−5.12, 5.12]

21 g(x, y) = 0.5 + (sin2(
√

x2+y2)−0.5)
(1+0.001(x2+y2))2

f21(x) = g(x1, x2) + g(x2, x3) + ... + g(xn−1, xn) + g(xn, x1)

xi ∈ [−100, 100]

22 yi =

{
xi → |xi|

〈
1
2

round(2xi)/ 2→ |xi| ≥ 1
2

f22(x) =
n
∑

i=1
(y2

i − 10 cos(2πyi) + 10)

xi ∈ [−100, 100]

23 yi = 1 + xi−1
4 , ∀i = 1, ..., n

f23(x) = sin2(πy1) +
n−1
∑

i=1
(yi − 1)2[1 + 10 sin2(πyi + 1)] + (yn − 1)2[1 + sin2(2πyn)]

xi ∈ [−100, 100]

24 f24(x) =
n
∑

i=1
(106)

i−1
n−1 x2

i
xi ∈ [−100, 100]

25 f25(x) =
n
∑

i=2
xi

2 + 106x2
1

xi ∈ [−100, 100]

26 f26(x) = −20 exp(−0.2

√
1
n

n
∑

i=1
x2

i )− exp( 1
n

n
∑

i=1
cos(2πxi)) + 20 + e xi ∈ [−32, 32]

27 f27(x) = 1
4000

n
∑

i=1
x2

i −
n
∏
i=1

cos( xi√
i
) + 1 xi ∈ [−600, 600]

28 f28(x) = 10
n2

n
∏
i=1

(1 + i
32
∑

j=1

|2j xi−round(2j xi)|
2j )

10
n1.2 − 10

n2
xi ∈ [−100, 100]

29 f29(x) =
∣∣∣∣ n

∑
i=1

x2
i − n

∣∣∣∣1/4
+ (0.5

n
∑

i=1
x2

i +
n
∑

i=1
xi)/n + 0.5 xi ∈ [−100, 100]

30 f30(x) =
∣∣∣∣( n

∑
i=1

x2
i )2 − (

n
∑

i=1
xi)

2
∣∣∣∣1/2

+ (0.5
n
∑

i=1
x2

i +
n
∑

i=1
xi)/n + 0.5 xi ∈ [−100, 100]

31 yi =
√

x2
i + x2

i+1

f31(x) =
[

1
n−1

n−1
∑

i=1
(
√yi(sin(50y0.2

i ) + 1))2
]2

xi ∈ [−100, 100]
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5.2.2. Data Analysis

To prevent errors caused by accidental factors and to ensure objectivity and fairness
of the evaluation, in the experiment, the five algorithms were independently run 30 times
and were iterated 1000 times in the same environment. The other parameter settings of the
algorithms were consistent with those listed in Section 5.1.

The CEC2017 benchmark test function simulation results in Tables 18–33 reveal
the following.

Table 18. Test results for f 16(x).

D Algorithm Worst Best Mean SD

10

GSA 927.9558 0.1349 131.5188 208.5184
GSAGJ 2.0404 × 103 0.0028 416.9901 526.4530
SGSA 4.5419 × 103 0.0048 878.3686 1.1364 × 103

MACGSA 2.3696 × 10−29 1.4460 × 10−34 2.3722 × 10−30 5.3549 × 10−30

RGLGSA 6.4516 × 10−45 3.8488 × 10−50 9.3471 × 10−46 1.8916 × 10−45

30

GSA 318.6005 0.0013 74.1322 80.4764
GSAGJ 906.5667 1.2895 209.9172 243.1416
SGSA 6.8746 × 103 1.0985 1.5708 × 103 1.5861 × 103

MACGSA 8.2065 × 10−28 6.1559 × 10−33 5.0553 × 10−29 1.5421 × 10−28

RGLGSA 2.8601 × 10−42 4.7112 × 10−48 1.6732 × 10−43 5.4578 × 10−43

50

GSA 355.4676 0.7546 81.2026 86.5312
GSAGJ 1.7790 × 103 0.0090 305.5190 394.2691
SGSA 5.8571 × 103 0.0504 988.6499 1.4382 × 103

MACGSA 2.8593 × 10−27 9.2657 × 10−31 2.6063 × 10−28 5.9198 × 10−28

RGLGSA 1.0848 × 10−42 2.8539 × 10−47 1.1947 × 10−43 2.4321 × 10−43

Table 19. Test results for f 17(x).

D Algorithm Worst Best Mean SD

10

GSA 8.6678 × 10−11 1.1821 × 10−14 1.3260 × 10−11 2.1751 × 10−11

GSAGJ 9.4942 × 10−13 1.0772 × 10−15 1.7974 × 10−13 2.7312 × 10−13

SGSA 5.5934 × 10−8 9.2999 × 10−14 2.1619 × 10−9 1.0164 × 10−8

MACGSA 2.3449 × 10−79 1.8483 × 10−93 1.7312 × 10−80 5.4499 × 10−80

RGLGSA 8.8740 × 10−108 4.0256 × 10−127 4.6188 × 10−109 1.8277 × 10−108

30

GSA 2.7721 × 109 22.8367 1.1527 × 108 5.0804 × 108

GSAGJ 6.9577 × 105 59.9353 9.5043 × 104 1.9611 × 105

SGSA 2.7279 × 108 115.3677 1.4384 × 107 5.1481 × 107

MACGSA 8.5890 × 10−102 1.7331 × 10−118 3.1893 × 10−103 1.5710 × 10−102

RGLGSA 5.9700 × 10−122 7.6982 × 10−135 2.0933 × 10−123 1.0888 × 10−122

50

GSA 3.4420 × 1029 1.0669 × 1015 2.2045 × 1028 8.1793 × 1028

GSAGJ 2.5940 × 1023 8.6661 × 1010 1.2069 × 1022 4.8832 × 1022

SGSA 4.1466 × 1024 8.2921 × 1013 1.5953 × 1023 7.6141 × 1023

MACGSA 1.7681 × 10−107 4.2408 × 10−121 6.4581 × 10−109 3.2318 × 10−108

RGLGSA 1.0401 × 10−123 1.5384 × 10−144 3.5856 × 10−125 1.8973 × 10−124

Table 20. Test results for f 18(x).

D Algorithm Worst Best Mean SD

10

GSA 3.4437 × 10−18 3.1320 × 10−19 2.0191 × 10−18 7.2080 × 10−19

GSAGJ 7.4174 × 10−17 7.2964 × 10−18 3.7707 × 10−17 1.4441 × 10−17

SGSA 5.5986 × 10−34 3.5185 × 10−35 2.7418 × 10−34 1.1874 × 10−34

MACGSA 1.5097 × 10−33 6.4933 × 10−38 1.3977 × 10−34 2.9910 × 10−34

RGLGSA 4.2237 × 10−48 1.4052 × 10−51 5.3557 × 10−49 9.8273 × 10−49
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Table 20. Cont.

D Algorithm Worst Best Mean SD

30

GSA 22.1013 1.1135 × 10−17 0.7773 4.0327
GSAGJ 93.9609 2.2794 × 10−16 5.1395 18.3694
SGSA 4.0050 × 103 736.0369 2.3252 × 103 872.4120

MACGSA 9.4929 × 10−33 3.0631 × 10−35 1.8175 × 10−33 2.6357 × 10−33

RGLGSA 2.3447 × 10−47 3.6562 × 10−50 3.2662 × 10−48 5.8753 × 10−48

50

GSA 812.8504 56.8831 373.8760 184.1014
GSAGJ 1.3323 × 103 134.8774 501.4951 327.9025
SGSA 7.1515 × 103 2.8452 × 103 4.9205 × 103 917.0428

MACGSA 1.5722 × 10−32 5.1156 × 10−36 1.4101 × 10−33 3.0031 × 10−33

RGLGSA 2.1532 × 10−46 8.1105 × 10−50 2.3062 × 10−47 5.3073 × 10−47

Table 21. Test results for f 19(x).

D Algorithm Worst Best Mean SD

10

GSA 5.6309 5.0609 5.4357 0.1358
GSAGJ 5.7058 5.0384 5.3939 0.1572
SGSA 6.6388 6.0138 6.3808 0.1723

MACGSA 7.0299 6.2602 6.5791 0.1821
RGLGSA 7.4642 6.4863 6.9113 0.2123

30

GSA 26.6071 25.5609 26.0710 0.2053
GSAGJ 26.4659 25.6065 26.0522 0.1975
SGSA 28.2171 26.4256 26.9333 0.4014

MACGSA 27.8766 25.8729 27.1567 0.3542
RGLGSA 27.9882 27.0381 27.3609 0.2197

50

GSA 49.2016 45.7221 46.5439 0.6840
GSAGJ 49.2007 45.4268 46.4512 0.7858
SGSA 99.6238 45.6100 49.4379 10.0356

MACGSA 48.9909 46.1487 47.8639 0.8066
RGLGSA 48.9011 46.5779 47.7200 0.5182

Table 22. Test results for f 20(x).

D Algorithm Worst Best Mean SD

10

GSA 5.9698 0.9950 2.9517 1.2389
GSAGJ 7.9597 0 3.6813 1.8318
SGSA 9.9496 1.9899 5.5718 2.0507

MACGSA 0 0 0 0
RGLGSA 0 0 0 0

30

GSA 23.8790 7.9597 14.9907 3.6105
GSAGJ 32.8336 11.9395 18.4067 4.0119
SGSA 36.8135 10.9445 25.5041 6.6435

MACGSA 0 0 0 0
RGLGSA 0 0 0 0

50

GSA 42.7832 20.8941 31.9050 6.0093
GSAGJ 57.7075 18.9042 35.0889 8.5387
SGSA 61.6874 31.8387 47.1610 7.9322

MACGSA 0 0 0 0
RGLGSA 0 0 0 0
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Table 23. Test results for f 21(x).

D Algorithm Worst Best Mean SD

10

GSA 2.7304 0.9393 1.5832 0.4171
GSAGJ 3.3976 1.7065 2.6364 0.4612
SGSA 3.1766 1.4350 2.8282 0.3456

MACGSA 0 0 0 0
RGLGSA 0 0 0 0

30

GSA 5.1985 2.9800 4.1999 0.6364
GSAGJ 9.7717 5.3134 7.6816 0.9245
SGSA 11.9302 9.2954 10.8964 0.6814

MACGSA 0 0 0 0
RGLGSA 0 0 0 0

50

GSA 8.3152 4.4391 6.4113 0.9250
GSAGJ 13.0620 8.2424 10.8121 1.2371
SGSA 20.6838 15.8774 18.6364 1.2354

MACGSA 0 0 0 0
RGLGSA 0 0 0 0

Table 24. Test results for f 22(x).

D Algorithm Worst Best Mean SD

10

GSA 7.3448 2 4.4654 1.5347
GSAGJ 8 2 5.1476 1.6727
SGSA 11.0040 3 6.7614 2.1870

MACGSA 0 0 0 0
RGLGSA 0 0 0 0

30

GSA 55 12 22.4959 8.1175
GSAGJ 39 17 26.8000 5.0950
SGSA 57 20 35.0667 8.0982

MACGSA 141.0086 0 7.7670 30.2505
RGLGSA 0 0 0 0

50

GSA 175 57 108.8667 29.6133
GSAGJ 94 42 59.8333 12.4957
SGSA 107 47 79.9667 14.1262

MACGSA 850.2239 0 145.2359 299.2123
RGLGSA 0 0 0 0

Table 25. Test results for f 23(x).

D Algorithm Worst Best Mean SD

10

GSA 1.0829 × 10−18 1.9660 × 10−19 5.6692 × 10−19 2.3275 × 10−19

GSAGJ 2.7991 × 10−17 5.0265 × 10−18 1.1209 × 10−17 5.3271 × 10−18

SGSA 1.4998 × 10−32 1.4998 × 10−32 1.4998 × 10−32 1.1135 × 10−47

MACGSA 5.0085 × 10−7 1.0793 × 10−7 3.0263 × 10−7 1.0103 × 10−7

RGLGSA 8.4957 × 10−6 1.3167 × 10−6 4.2384 × 10−6 1.6172 × 10−6

30

GSA 45.0420 5.2599 × 10−18 4.2947 10.5661
GSAGJ 2.8179 8.8351 × 10−17 0.1818 0.5973
SGSA 0.4543 1.4998 × 10−32 0.0665 0.1563

MACGSA 3.2595 2.9752 3.2215 0.0676
RGLGSA 0.4546 2.4474 × 10−4 0.0185 0.0840

50

GSA 177.5581 3.9951 68.4516 41.2278
GSAGJ 18.0904 3.6758 × 10−16 1.3904 3.4206
SGSA 7.7252 4.1341 × 10−31 1.4550 1.7429

MACGSA 5.0764 4.7496 5.0298 0.0885
RGLGSA 3.2825 0.0024 0.6285 0.8729
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Table 26. Test results for f 24(x).

D Algorithm Worst Best Mean SD

10

GSA 1.5824 × 105 65.0845 2.1881 × 104 2.9856 × 104

GSAGJ 1.5669 × 105 2.2076 × 103 3.5142 × 104 3.8005 × 104

SGSA 2.1238 × 105 4.9374 × 103 7.4512 × 104 5.7663 × 104

MACGSA 1.4877 × 10−32 6.5895 × 10−37 1.6068 × 10−33 3.6474 × 10−33

RGLGSA 1.2592 × 10−46 3.9071 × 10−51 9.0954 × 10−48 2.6328 × 10−47

30

GSA 2.2231 × 105 1.3209 × 104 7.7308 × 104 5.3591 × 104

GSAGJ 2.4017 × 105 9.2003 × 103 8.5470 × 104 6.0342 × 104

SGSA 3.1540 × 105 4.3732 × 104 1.4493 × 105 6.9453 × 104

MACGSA 3.6955 × 10−32 1.8249 × 10−35 3.2962 × 10−33 7.3649 × 10−33

RGLGSA 1.1867 × 10−46 6.5780 × 10−50 1.3542 × 10−47 2.7548 × 10−47

50

GSA 2.2231 × 105 1.3209 × 104 7.7308 × 104 5.3591 × 104

GSAGJ 2.4017 × 105 9.2003 × 103 8.5470 × 104 6.0342 × 104

SGSA 3.1540 × 105 4.3732 × 104 1.4493 × 105 6.9453 × 104

MACGSA 3.6955 × 10−32 1.8249 × 10−35 3.2962 × 10−33 7.3649 × 10−33

RGLGSA 1.1867 × 10−46 6.5780 × 10−50 1.3542 × 10−47 2.7548 × 10−47

Table 27. Test results for f 25(x).

D Algorithm Worst Best Mean SD

10

GSA 1.6166 × 103 114.4355 717.1659 407.7005
GSAGJ 3.2975 × 103 424.6107 1.6499 × 103 749.6641
SGSA 3.0122 × 103 291.2547 1.5685 × 103 670.7036

MACGSA 5.3094 × 10−33 2.1696 × 10−37 2.4561 × 10−34 9.6672 × 10−34

RGLGSA 7.6013 × 10−48 1.4909 × 10−51 6.8777 × 10−49 1.7501 × 10−48

30

GSA 2.2537 × 103 299.4626 872.2012 393.5168
GSAGJ 2.3856 × 103 3.3096 × 10−16 486.5437 610.2161
SGSA 3.2041 × 10−32 5.0516 × 10−33 1.3777 × 10−32 6.3954 × 10−33

MACGSA 3.6098 × 10−32 5.0320 × 10−36 2.0449 × 10−33 6.5866 × 10−33

RGLGSA 2.1523 × 10−47 4.3108 × 10−50 3.0550 × 10−48 5.7203 × 10−48

50

GSA 2.8219 × 103 566.1510 1.7062 × 103 645.7675
GSAGJ 2.6789 × 103 1.3496 × 10−15 722.0980 788.4850
SGSA 2.0515 × 10−30 8.0778 × 10−32 4.2586 × 10−31 4.3106 × 10−31

MACGSA 1.3764 × 10−32 4.2468 × 10−36 1.3404 × 10−33 3.3730 × 10−33

RGLGSA 6.3641 × 10−47 1.1221 × 10−49 6.7762 × 10−48 1.5149 × 10−47

Table 28. Test results for f 26(x).

D Algorithm Worst Best Mean SD

10

GSA 2.7037 × 10−9 1.3481 × 10−9 1.8639 × 10−9 3.3343 × 10−10

GSAGJ 9.7995 × 10−9 4.6786 × 10−9 7.5941 × 10−9 1.3530 × 10−9

SGSA 7.9936 × 10−15 4.4409 × 10−15 4.5593 × 10−15 6.4863 × 10−16

MACGSA 8.8818 × 10−16 8.8818 × 10−16 8.8818 × 10−16 0
RGLGSA 8.8818 × 10−16 8.8818 × 10−16 8.8818 × 10−16 0

30

GSA 4.5600 × 10−9 2.8379 × 10−9 3.5839 × 10−9 4.5843 × 10−10

GSAGJ 1.7140 × 10−8 1.0784 × 10−8 1.4658 × 10−8 1.6459 × 10−9

SGSA 2.2204 × 10−14 7.9936 × 10−15 1.4744 × 10−14 3.5343 × 10−15

MACGSA 8.8818 × 10−16 8.8818 × 10−16 8.8818 × 10−16 0
RGLGSA 8.8818 × 10−16 8.8818 × 10−16 8.8818 × 10−16 0
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Table 28. Cont.

D Algorithm Worst Best Mean SD

50

GSA 8.2910 × 10−9 3.6928 × 10−9 4.9393 × 10−9 8.8854 × 10−10

GSAGJ 2.4806 × 10−8 1.5528 × 10−8 1.9258 × 10−8 2.2218 × 10−9

SGSA 5.7732 × 10−14 1.5099 × 10−14 2.9073 × 10−14 7.5758 × 10−15

MACGSA 8.8818 × 10−16 8.8818 × 10−16 8.8818 × 10−16 0
RGLGSA 8.8818 × 10−16 8.8818 × 10−16 8.8818 × 10−16 0

Table 29. Test results for f 27(x).

D Algorithm Worst Best Mean SD

10

GSA 0.0762 0 0.0200 0.0205
GSAGJ 0.0270 0 0.0030 0.0061
SGSA 0.0172 0 0.0031 0.0056

MACGSA 0 0 0 0
RGLGSA 0 0 0 0

30

GSA 9.5227 1.7763 4.2129 1.7361
GSAGJ 0.0515 0 0.0038 0.0108
SGSA 0.0148 0 0.0015 0.0040

MACGSA 0 0 0 0
RGLGSA 0 0 0 0

50

GSA 25.1669 11.4594 17.4486 4.1201
GSAGJ 0.1761 0 0.0356 0.0477
SGSA 0.0148 0 4.9241e-04 0.0027

MACGSA 0 0 0 0
RGLGSA 0 0 0 0

Table 30. Test results for f 28(x).

D Algorithm Worst Best Mean SD

10

GSA 1.1961 × 10−10 6.7969 × 10−11 1.0001 × 10−10 1.1193 × 10−11

GSAGJ 1.2086 × 10−10 6.9683 × 10−11 9.8470 × 10−11 1.2157 × 10−11

SGSA 0 0 0 0
MACGSA 0 0 0 0
RGLGSA 0 0 0 0

30

GSA 5.8032 × 10−11 4.6224 × 10−11 5.2202 × 10−11 3.1700 × 10−12

GSAGJ 5.6719 × 10−11 4.7120 × 10−11 5.2218 × 10−11 2.6389 × 10−12

SGSA 5.8824 × 10−13 0 1.2443 × 10−13 1.9250 × 10−13

MACGSA 0 0 0 0
RGLGSA 0 0 0 0

50

GSA 3.5579 × 10−11 3.1050 × 10−11 3.3152 × 10−11 9.9662 × 10−13

GSAGJ 3.4840 × 10−11 2.7680 × 10−11 3.3151 × 10−11 1.4994 × 10−12

SGSA 1.2293 × 10−12 8.3267 × 10−15 4.3324 × 10−13 3.1526 × 10−13

MACGSA 0 0 0 0
RGLGSA 0 0 0 0

Table 31. Test results for f 29(x).

D Algorithm Worst Best Mean SD

10

GSA 0.5050 0.1770 0.3001 0.0798
GSAGJ 0.3542 0.1485 0.2515 0.0563
SGSA 0.5103 0.2174 0.3332 0.0810

MACGSA 1.5100 0.4278 0.7252 0.2975
RGLGSA 0.6482 0.3033 0.4403 0.0917
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Table 31. Cont.

D Algorithm Worst Best Mean SD

30

GSA 0.1652 0.0440 0.1174 0.0290
GSAGJ 0.1938 0.0815 0.1362 0.0292
SGSA 0.2739 0.1108 0.1815 0.0425

MACGSA 0.4296 0.1637 0.2719 0.0714
RGLGSA 0.3036 0.1204 0.2153 0.0409

50

GSA 0.5050 0.1770 0.3001 0.0798
GSAGJ 0.3542 0.1485 0.2515 0.0563
SGSA 0.5103 0.2174 0.3332 0.0810

MACGSA 1.5100 0.4278 0.7252 0.2975
RGLGSA 0.6482 0.3033 0.4403 0.0917

Table 32. Test results for f 30(x).

D Algorithm Worst Best Mean SD

10

GSA 0.5008 0.3570 0.4925 0.0267
GSAGJ 0.5010 0.4387 0.4944 0.0175
SGSA 0.5009 0.3110 0.4895 0.0412

MACGSA 0.5000 0.3965 0.4860 0.0285
RGLGSA 0.5000 0.4574 0.4981 0.0081

30

GSA 0.5013 0.4344 0.4884 0.0159
GSAGJ 0.5010 0.3233 0.4581 0.0495
SGSA 0.5016 0.2767 0.4204 0.0553

MACGSA 0.5000 0.3568 0.4661 0.0438
RGLGSA 0.5000 0.4159 0.4851 0.0263

50

GSA 0.6156 0.2404 0.3872 0.0743
GSAGJ 0.4495 0.2743 0.3814 0.0405
SGSA 0.5687 0.2730 0.3726 0.0542

MACGSA 0.5000 0.3422 0.4711 0.0465
RGLGSA 0.5000 0.4451 0.4900 0.0154

Table 33. Test results for f 31(x).

D Algorithm Worst Best Mean SD

10

GSA 1.0420 × 10−4 2.7999 × 10−34 4.6894 × 10−6 1.9938 × 10−5

GSAGJ 2.8974 × 10−7 2.1420 × 10−32 1.9555 × 10−8 7.1460 × 10−8

SGSA 1.9305 × 10−5 0 7.0894 × 10−7 3.5154 × 10−6

MACGSA 1.1429 × 10−21 5.5902 × 10−24 4.5938 × 10−22 3.0559 × 10−22

RGLGSA 7.1484 × 10−30 2.1262 × 10−32 1.0346 × 10−30 1.3575 × 10−30

30

GSA 0.0786 1.5937 × 10−5 0.0118 0.0185
GSAGJ 5.8248 × 10−4 1.3017 × 10−10 7.2445 × 10−5 1.4989 × 10−4

SGSA 0.0261 1.4485 × 10−6 0.0040 0.0063
MACGSA 7.9223 × 10+ 1.4338 × 10−23 2.2198 × 10−22 1.9444 × 10−22

RGLGSA 1.1549 × 10−30 9.2467 × 10−33 3.4346 × 10−31 2.8391 × 10−31

50

GSA 0.0785 6.1868 × 10−4 0.0159 0.0207
GSAGJ 0.0189 1.0070 × 10−5 0.0031 0.0050
SGSA 0.0548 5.2674 × 10−4 0.0101 0.0146

MACGSA 3.8503 × 10−19 9.9380 × 10−21 1.2760 × 10−19 8.0890 × 10−20

RGLGSA 1.0666 × 10−25 6.5193 × 10−28 1.6474 × 10−26 2.0978 × 10−26

First, for the unimodal functions f16, f18, f24, and f25, both the RGLGSA and MACGSA
have high accuracy. Under the same number of dimensions, the optimization accuracy
of the RGLGSA proposed in this paper is significantly higher than those of the GSA,
GSAGJ, SGSA, and MACGSA. With different dimensions, as the dimensions increase, the
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solution accuracy of the five algorithms gradually decreases, but the solution accuracy
of the RGLGSA is still higher than those of the GSA, GSAGJ, SGSA, and MACGSA. For
function f17, both the RGLGSA and MACGSA have very high accuracy. Under the same
number of dimensions, the optimization accuracy of the RGLGSA is superior to those of
the other four algorithms. As the dimensions increase, the solution accuracy of the GSA,
GSAGJ, and SGSA decrease gradually, with an obvious trend. The solution accuracies of
the RGLGSA and MACGSA increase gradually, but the solution accuracy of the RGLGSA
is still higher than that of the other four algorithms.

For the multimodal functions f19, f29, and f30, the four algorithms all become trapped
in the local extrema, with little difference in solution accuracy. For functions f20, f21,
f26, f27, and f28, the RGLGSA and MACGSA find the globally optimal solution 0, but
other algorithms cannot. For function f22, when the dimensions are 10, the RGLGSA
and MACGSA can find the global optimal solution 0; when the dimensions are high,
only the RGLGSA can find the globally optimal solution 0. For function f23, when the
dimensions are 10, the SGSA has a higher precision, and when the dimensions are 30
and 50, the RGLGSA has the highest precision. For function f31, under the same number
of dimensions, the optimization accuracy of the RGLGSA is significantly higher than
those of the other algorithms. As the dimensions increase, the solution accuracies of the
GSA, GSAGJ, and SGSA decrease gradually. When the dimensions reach 50, the solution
accuracies of the MACGSA and RGLGSA decrease significantly.

The comparison and test results of the above algorithms reveal that, compared with
other classical and efficient improved GSAs, the RGLGSA has a relatively stable overall
search ability on unimodal functions and multimodal functions. Moreover, it has a high
convergence accuracy.

5.2.3. Curve Analysis

Figures 1–16 show the convergence curves of the RGLGSA, basic GSA, and the com-
parison GSAs. The convergence curves of the unimodal functions reveal that there is little
difference between the convergence speed of the five algorithms in the first 500 generations.
After 500 generations, the GSA, GSAGJ, and SGSA converge to the local extreme values
and stop searching. The MACGSA and RGLGSA do not fall into the local extreme values,
but continue to evolve. However, the convergence speed of the RGLGSA is faster than that
of the MACGSA, and the obtained value is better.

Figure 1. Convergence curves of function f16: (a) 10 dimensions, (b) 30 dimensions, and
(c) 50 dimensions.
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Figure 2. Convergence curves of function f17: (a) 10 dimensions, (b) 30 dimensions, and
(c) 50 dimensions.

Figure 3. Convergence curves of function f18: (a) 10 dimensions, (b) 30 dimensions, and
(c) 50 dimensions.

Figure 4. Convergence curves of function f19: (a) 10 dimensions, (b) 30 dimensions, and
(c) 50 dimensions.
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Figure 5. Convergence curves of function f20: (a) 10 dimensions, (b) 30 dimensions, and
(c) 50 dimensions.

Figure 6. Convergence curves of function f21: (a) 10 dimensions, (b) 30 dimensions, and
(c) 50 dimensions.

Figure 7. Convergence curves of function f22: (a) 10 dimensions, (b) 30 dimensions, and
(c) 50 dimensions.
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Figure 8. Convergence curves of function f23: (a) 10 dimensions, (b) 30 dimensions, and
(c) 50 dimensions.

Figure 9. Convergence curves of function f24: (a) 10 dimensions, (b) 30 dimensions, and
(c) 50 dimensions.

Figure 10. Convergence curves of function f25: (a) 10 dimensions, (b) 30 dimensions, and
(c) 50 dimensions.
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Figure 11. Convergence curves of function f26: (a) 10 dimensions, (b) 30 dimensions, and
(c) 50 dimensions.

Figure 12. Convergence curves of function f27: (a) 10 dimensions, (b) 30 dimensions, and
(c) 50 dimensions.

Figure 13. Convergence curves of function f28: (a) 10 dimensions, (b) 30 dimensions, and
(c) 50 dimensions.
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Figure 14. Convergence curves of function f29: (a) 10 dimensions, (b) 30 dimensions, and
(c) 50 dimensions.

Figure 15. Convergence curves of function f30: (a) 10 dimensions, (b) 30 dimensions, and
(c) 50 dimensions.

Figure 16. Convergence curves of function f31: (a) 10 dimensions, (b) 30 dimensions, and
(c) 50 dimensions.

For multimodal functions f19, f29 and f30, in the first 400 iterations, the convergence
speed of the RLSGSA is roughly the same as those of the other four algorithms. Because of
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the characteristics of the functions and algorithms, after 400 iterations, the five algorithms
converge to a local extremum, and the differences between the solutions obtained by the
algorithms are not significant. For multimodal functions f20, f21, f27, and f28, GSA, GSAGJ,
and SGSA converge to the local extreme value after a certain number of iterations and stop
searching. The MACGSA and RGLGSA do not fall into the local extreme value but continue
to evolve to find the globally optimal solution 0. However, the RGLGSA converges faster
than the MACGSA. For multimodal function f22, in the first 500 iterations, the convergence
speed of the RLSGSA is roughly the same as that of the other four algorithms. After
500 generations, the other four algorithms fall into local extrema, and the RLSGSA finds
the global optimal solution 0 after about 650 generations. For multimodal function f31,
in the first 300 iterations, the convergence rates of the five algorithms are similar. After
300 generations, the GSA, GSAGJ, and SGSA have stopped iterative evolutions, and the
algorithms have fallen into locally optimal solutions. The MACGSA and RGLGSA continue
to evolve after 600 generations, and finally, the MACGSA finds a better solution at a faster
speed. For multimodal function f23, in 10 dimensions, the GSA and GSAGJ stop iterations
after about 400 generations. After 400 generations, the convergence speed of the RGLGSA
is faster than that of the SGSA and MACGSA. At 30 and 50 dimensions, the convergence
accuracies of the five algorithms are not high. The GSAGJ has the fastest convergence speed,
followed by the RGLGSA, but the convergence accuracy of the RGLGSA is higher than
that of the GSAGJ. For multimodal function f26, the convergence speed of the MACGSA
is higher before generation 500, the convergence speed of the RGLGSA is higher after
generation 500, and the optimal value is obtained around generation 880. As a whole, the
convergence speed of the RGLGSA is higher than those of the other comparison GSAs.

In general, compared with other GSA methods, the proposed adaptive GSA based on
the adaptive strategies of population density, gravitational constant, and location update
has a greatly improved optimization accuracy and stability, and performs well with respect
to convergence.

6. Conclusions

In this paper, we proposed an improved GSA that is based on adaptive strategies. To
address the shortcomings of the basic GSA, this algorithm introduces adaptive strategies
based on crowd density, the gravitational constant, and location update into the basic uni-
versal GSA simultaneously. Moreover, it dynamically adjusts the distance between particles
and the step size of the particle iteration, strengthens the information exchange between
particles, and greatly increases the diversity of particles in the population. Therefore, it
can effectively overcome the disadvantages of the basic GSA, which tends to fall into local
extreme values. The simulation results show that the improved algorithm is superior to
other classically improved GSAs in terms of search accuracy, convergence speed, stability,
and other factors. It hence is an effective extension to the algorithm.

No Free Lunch Theory is a very important theorem in the field of optimization research,
which reflects that no optimization algorithm can outperform other algorithms in average
performance on all optimization problems. The improved algorithm in this paper also
has this problem, and the experimental analysis cannot fully cover many optimization
problems, which is convincing. The future research direction is mainly to optimize the
overall performance of the algorithm, so that the performance of the improved algorithm is
better than that of other algorithms on as many optimization problems as possible.
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