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Abstract: This paper deals with the existence of solutions of the elliptic equation with nonlinear
gradient term −∆u = f (x, u, ∇u) on Ω restricted by the boundary condition u|∂Ω = 0, where Ω is a
bounded domain in RN with sufficiently smooth boundary ∂Ω, N ≥ 2, and f : Ω×R×RN → R
is continuous. The existence results of classical solutions and positive solutions are obtained under
some inequality conditions on the nonlinearity f (x, ξ, η) when |(ξ, η)| is small or large enough.
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1. Introduction and Main Results

Let Ω be a bounded domain in RN(N ≥ 2) whose boundary ∂Ω is C2+µ-smooth for
given µ ∈ (0, 1). In this paper, we discuss the existence of solutions of the elliptic boundary
value problem (BVP) with gradient term{ −∆u = f (x, u, ∇u) , x ∈ Ω ,

u|∂Ω = 0 ,
(1)

where f : Ω×R×RN → R is the nonlinearity. This problem arises in many different areas
of applied mathematics. Due to the appearance of the gradient term in the nonlinearity,
BVP(1) has no variational structure, and the variational method and critical point theory
cannot be applied to it directly. The authors of [1,2] proposed a method combining the
mountain-pass theorem with an approximation technique to solve BVP(1). Firstly, for any
given w ∈ H1

0(Ω), they considered the boundary value problem{ −∆u = f (x, u, ∇w) , x ∈ Ω ,

u|∂Ω = 0 .
(2)

Note that BVP(2) has the variational structure. They established the existence of a
solution uw of BVP(2) by using the mountain-pass theorem. Then, they constructed a
sequence {un} ⊂ H1

0(Ω) by the iterative equation{ −∆un = f (x, un, ∇un−1) , x ∈ Ω ,

un|∂Ω = 0
(3)

starting with an arbitrary u0 ∈ H1
0(Ω) ∩ C1(Ω), and they proved that {un} converges

to a solution of BVP(1) in that f (x, ξ, η) satisfies Lipschitz conditions on (ξ, η) in the
neighborhood of (0, 0) with appropriately small coefficients and certain growth conditions
on ξ. Later, this iterative method based on the mountain-pass theorem was applied to many
semilinear and quasilinear elliptic equations; see [3–7]. In [8], Ruiz obtained the existence
of a positive solution for BVP(1) by combining Krasnoselskii’s fixed-point theorem in cones
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with blow-up techniques when f (x, ξ, η) is a nonnegative function and satisfies a suitable
growth condition on ξ and η. When Ω is a ball, annulus, or exterior domain of a ball, and
f (x, ξ, η) is radially symmetric on x, the authors of [9–13] obtained the existence of positive
radial solutions of BVP(1) by discussing the corresponding boundary value problem of
second-order ordinary differential equations.

On the other hand, the lower- and upper-solutions method is an effective way to obtain
the existence of solutions of BVP(1). In [14], Amann built a lower- and upper-solution
theorem of BVP(1) in C2+µ(Ω) in that f (x, ξ, η) has a continuous partial derivative with
respect to ξ and η, and there is, at most, quadratic growth on η. He assumed BVP(1) has
pair of ordered lower and upper solutions and proved the existence of a solution between
the lower and upper solutions. In [15], Amann and Crandall slightly generalized the results
of [14] by a more-direct argument. In [16], Pohozaev obtained the existence results for
BVP(1) via the method of lower and upper solutions in the Sobolev space W2,p(Ω) with
p > N when f (x, ξ, η) is Lipschitzian with respect to η. In [17–22], the authors obtained
the existence of solutions or positive solutions by using the lower- and upper-solutions
method and fixed-point theorem under some growth condition of the nonlinearity.

In this paper, we apply the upper- and lower-solution method and the Leray–Schauder
fixed-point theory to obtain new existence results. In the following, we denote a generic
point of Ω×R×RN by (x, ξη) with x ∈ Ω, ξ ∈ R, and η = (η1, · · · , ηN) ∈ RN . To obtain
the classical solution of BVP(1), we assume the nonlinearity f : Ω×R×RN → R satisfies
the following conditions:

(F1) The partial derivatives f ′ξ , f ′ηi
, i = 1, · · · , N, exist and are continuous on Ω×R×RN ,

and for every ρ > 0, there exists L := L(ρ) > 0 such that

| f (x2, ξ, η)− f (x1, ξ, η)| ≤ L|x2 − x1|µ, (4)

for any x1, x2,∈ Ω, ξ ∈ [−ρ, ρ] and η2 ∈ Bρ := {η ∈ RN | |η| ≤ ρ}.
(F2) For every ρ > 0, there exists C := C(ρ) > 0 such that

| f (x, ξ, η)| ≤ C(1 + |η|2), (5)

for any (x, ξ, η) ∈ Ω× [−ρ, ρ]×RN .

Condition (F1) implies that f is continuous on Ω×R×RN and is a stronger regularity
condition. Condition (F2) restricts f to at most quadratic growth with respect to η. If f grows
at most like |η|2−ε for some ε ∈ (0, 1), the regularity condition (F1) can be weakened as

(F1)′ For every ρ > 0, there exists L := L(ρ) > 0 such that

| f (x2, ξ2, η2)− f (x1, ξ1, η1)| ≤ L(|x2 − x1|µ + |ξ2 − ξ1|+ |η2 − η1|),

for any (x1, ξ1, η1), (x2, ξ2, η2) ∈ Ω× [−ρ, ρ]× Bρ.

See [3,14].
Our existence results are related to the principle eigenvalue λ1 of Laplace operator

−∆ on the boundary condition u|∂Ω = 0, which is given by

λ1 = inf
{
‖∇u‖2

‖u‖2

∣∣∣ u ∈ H1
0(Ω), ‖u‖2 6= 0

}
. (6)

Theorem 1. Let f : Ω×R×RN → R satisfy (F1) and (F2). If there exist constants a, b ≥ 0
satisfying a

λ1
+

b√
λ1

< 1 (7)

and H > 0 such that

f (x, ξ, η) ≤ aξ + b|η|, x ∈ Ω, ξ ≥ 0, |(ξ, η)| ≥ H (8)

and
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f (x, −ξ, −η) ≥ −aξ − b|η|, x ∈ Ω, ξ ≥ 0, |(ξ, η)| ≥ H, (9)

then, BVP(1) has at least one classical solution u ∈ C2+µ(Ω).

In Theorem 1, if b = 0, the result is known (see [1, Theorem 1.2]), and if b 6= 0, the
result is new.

Theorem 2. Let f : Ω×R×RN → R satisfy (F1) and (F2). If there exist constants a, b ≥ 0
satisfying (7) and H > 0 such that f satisfies (8), and there exists a positive constant δ
such that

f (x, ξ, η) ≥ λ1ξ, x ∈ Ω, ξ ≥ 0, |(ξ, η)| ≤ δ, (10)

then, BVP(1) has at least one classical positive solution u ∈ C2+µ(Ω).

If f satisfies the condition of Theorem 1, but assume that

f (x, 0, 0) ≥ 0, x ∈ Ω (11)

instead of (9), then v0 ≡ 0 is a lower solution of BVP(1), and BVP(1) has at least one
nonnegative solution, see [1, Theorem 1.3]. Theorem 2 is an addition of this result and uses
(10) instead of (11) to obtain a positive solution of BVP(1).

Theorem 3. Let the conditions of Theorem 1 be satisfied, and there exists a positive constant
δ such that (10) and

f (x, −ξ, −η) ≤ −λ1ξ, x ∈ Ω, ξ ≥ 0, |(ξ, η)| ≤ δ, (12)

hold. Then, BVP(1) has at least one positive solution u1 ∈ C2+µ(Ω) and one negative
solution u2 ∈ C2+µ(Ω).

In Theorem 3, from (10) and (12), it follows that f (x, 0, 0) ≡ 0 by letting |(ξ, η)| → 0.
Hence, u3 ≡ 0 is a trivial solution. This means that BVP(1) has at least three
distinct solutions.

The proofs of Theorems 1–3 are based on the method of lower and upper solutions
built by Amann [14]. A lower solution v of BVP(1) means that v ∈ C2+µ(Ω) and satisfies{ −∆v ≤ f (x, v, ∇v) , x ∈ Ω ,

u|∂Ω ≤ 0 ,

and an upper solution w of BVP(1) means that w ∈ C2+µ(Ω) and satisfies{ −∆w ≥ f (x, w, ∇w) , x ∈ Ω ,

w|∂Ω ≥ 0 .

By [1, Theorem 1.1], we have the following existence result:

Theorem 4. Let f : Ω×R×RN → R satisfy (F1) and (F2). If BVP(1) has a lower solution
v0 and an upper solution w0 such that v0 ≤ w0, then BVP(1) has at least one solution
u2 ∈ C2+µ(Ω) between v0 and w0.

Theorem 4 is a special case of [1, Theorem 1.1]. In Section 3, we use Theorem 4 to
prove Theorems 1–3. Some preliminaries to discuss BVP(1) are presented in Section 2.

2. Preliminaries

Let Wm,p(Ω) be the usual Sobolev space on domain Ω and Hm(Ω) := Wm,2(Ω). To
discuss BVP(1), we first consider the corresponding linear elliptic boundary value problem
(LBVP)
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{ −∆u = h(x) , x ∈ Ω ,

u|∂Ω = 0 .
(13)

where h ∈ Lp(Ω)(1 < p < +∞) is a given function. Since the boundary ∂Ω of Ω is
C2+µ-smooth, by the LP theory of linear elliptic equations (see [23]), for every h ∈ Lp(Ω),
LBVP(13) has a unique strong solution u := Sh ∈ W2,p(Ω) ∩W1,p

0 (Ω), and the solution
operator S : Lp(Ω) → W2,p(Ω) is a linear bounded operator. Especially when p = 2, the
solution u = Sh of LBVP(13) satisfies

‖u‖2 ≤
1√
λ1
‖∇u‖2, ‖∇u‖2 ≤

1√
λ1
‖∆u‖2. (14)

In fact, since the Laplace operator −∆ : H2(Ω) ∩ H1
0(Ω) ⊂ L2(Ω) → L2(Ω) is a

positive definite operator in L2(Ω),

‖∇u‖2
2 = (−∆u, u) ≥ λ1(u, u) = λ1‖u‖2

2.

Hence, the first inequality of (14) holds. Noting ‖∆u‖2 = ‖h‖2, from Equation (13), it
follows that

‖∇u‖2
2 = (−∆u, u) = (h, u) ≤ ‖h‖2‖u‖2 = ‖∆u‖2‖u‖2 ≤

1√
λ1
‖∆u‖2‖∇u‖2.

Hence, the second inequality of (14) holds.
When h ∈ Cν(Ω) for some ν ∈ (0, µ], by the Schauder theory of linear elliptic

equations (see [23,24]), the solution of LBVP(13) u = Sh ∈ C2+ν(Ω) is a classical solution.
Next, consider the nonlinear elliptic equation BVP(1). We have the following existence

result of the classical solution:

Theorem 5. Let f : Ω×R×RN → R satisfy (F1)′ and in the following growth condition

(F3) let there exist constants a, b ≥ 0 satisfying (7) and c > 0 such that

| f (x, ξ, η)| ≤ a|ξ|+ b|η|+ c, (x, ξ, η) ∈ Ω×R×RN .

Then, BVP(1) has a unique classical solution u ∈ C2+µ(Ω).

Proof. We first show that BVP(1) has an L2 solution u0 ∈ H2(Ω) ∩ H1
0(Ω). Since the

solution operator of LBVP(13) S : L2(Ω)→ H2(Ω) ∩ H1
0(Ω) is a linear bounded operator,

by the compactness of the Sobolev embedding H2(Ω) ↪→ H1(Ω), S : L2(Ω) → H1
0(Ω) is

completely continuous. Define a mapping F on H1
0(Ω) by

F(u)(x) = f (x, u(x), ∇u(x)), u ∈ H1
0(Ω), x ∈ Ω. (15)

By Condition (F3), F : H1
0(Ω)→ L2(Ω) is continuous, and it maps every bounded set

of H1
0(Ω) into a bounded set of L2(Ω). Hence, the composite mapping

A = S ◦ F : H1
0(Ω)→ H1

0(Ω) (16)

is completely continuous. By the definition of S, the strong L2 solution of LBVP(13) is
equivalent to the fixed point of A. We use the Leray–Schauder fixed point theorem [25] to
show that A has a fixed point. For this, we consider the equation family

u = λ Au, 0 < λ < 1, (17)

and show that the set of their solutions is bounded in H1
0(Ω).

Let u ∈ H1
0(Ω) be a solution of (17) for λ ∈ (0, 1). Set h = λ F(u). Since h ∈ L2(Ω), by

the definition of S, u = Sh ∈ H2(Ω) ∩ H1
0(Ω) is the unique solution of LBVP(13). Hence, u

satisfies the differential equation
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{ −∆u = λ f (x, u, ∇u) , x ∈ Ω ,

u|∂Ω = 0 .
(18)

By this equation and Condition (F3), we have

|∆u(x)| = |λ f (x, u(x), ∇u(x))| ≤ a|u(x)|+ b|∇u(x)|+ c, x ∈ Ω.

By this inequality and (14), we obtain that√
λ1‖∇u‖2 ≤ ‖∆u‖2 ≤ a‖u‖2 + b‖∇u‖2 + c

√
|Ω|

≤
( a√

λ1
+ b
)
‖∇u‖2 + c

√
|Ω|.

From this, it follows that

‖∇u‖2 ≤
c
√
|Ω|

√
λ1

(
1−

( a
λ1

+ b√
λ1

)) := C0.

Hence, the set of the solutions of Equation Family (17) is bounded in H1
0(Ω). By the

Leray–Schauder fixed-point theorem, A = S ◦ F has a fixed point u0 ∈ H1
0(Ω), which

belongs to H2(Ω) and is an L2 solution of BVP(1).
Next, we show that u0 ∈ C2+µ(Ω), and it is a classical solution of BVP(1). Set

h0(x) = f (x, u0(x), ∇u0(x)), x ∈ Ω. (19)

Then, u0 = Sh0 is the solution of LBVP(13) for h = h0.
If p0 := 2 < N, choose p1 = Np0

N−p0
(> p0); then, by the Sobolev embedding theorem,

H2(Ω) ↪→ W1,p1(Ω). Since u0 ∈ H2(Ω), it follows that u0 ∈ W1,p1(Ω). By Condition
(F3) and (19), we see that h0 ∈ Lp1(Ω). Hence, by the existence and uniqueness of the Lp

solution of LBVP(13), u0 = Sh0 ∈W2,p1(Ω).
If p1 < N, choose p2 = Np1

N−p1
(> p1); then, by the Sobolev embedding theorem,

W2,p1(Ω) ↪→W1,p2(Ω). Hence, u0 ∈W1,p2(Ω). By Condition (F3) and (19), we obtain that
h0 ∈ Lp2(Ω). Hence, u0 = Sh0 ∈W1,p2(Ω).

To continue, since the step length pk − pk−1(k = 1, 2, · · · ) is increasing, we can choose
p > N such that h0 ∈ Lp(Ω). Thus, u0 = Sh0 ∈W2,p(Ω).

Choose σ = min{1 − N
P , µ}. By the Sobolev embedding theorem, W2,p(Ω) ↪→

C1+σ(Ω). Hence, u0 ∈ C1+σ(Ω). By Assumption (F1)′ and (19), h0 ∈ Cσ(Ω). Hence, by the
Schauder theory of linear elliptic equations, the solution of LBVP(2.1) u0 = Sh0 ∈ C2+σ(Ω).
By this and Assumption (F1)′, h0 ∈ Cµ(Ω). Hence, u0 = Sh0 ∈ C2+µ(Ω). Clearly, u0 is a
classical solution of BVP(1).

Strengthen Condition (F3) of Theorem 5; we have following existence and uniqueness
result.

Theorem 6. Let f : Ω×R×RN → R satisfy (F1)′, and for Following Condition

(F4), there exist constants a, b ≥ 0 satisfying (19) such that

| f (x, ξ2, η2)− f (x, ξ1, η1)| ≤ a|ξ2 − ξ1|+ b|η2 − η1|,

x ∈ Ω, (ξ1, η1), (ξ2, η2) ∈ ×R×RN .

Then, BVP(1) has at least one classical solution u ∈ C2+µ(Ω).
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Proof. We show that (F4) =⇒ (F3). Set c = max{| f (x, 0, 0)| : x ∈ Ω}+ 1. For every
(x, ξ, η) ∈ Ω×R×RN , by Condition (F4), we have

| f (x, ξ, η)| ≤ | f (x, ξ, η)− f (x, 0, 0)|+ | f (x, 0, 0)|

≤ a|ξ|+ b|η|+ c.

Hence, f satisfies Condition (F3). By Theorem 5, BVP(1) has at least one classical
solution in C2+µ(Ω).

Let u1, u2 ∈ C2+µ(Ω) be the solutions of BVP(1). Set u = u2 − u1 and h = F(u2)−
F(u1). By Assumption (F1)′, h ∈ Cµ(Ω). Since u = u2 − u1 = Au2 − Au2 = S(F(u2))−
S(F(u2)) = Sh, it follows that u is the clasical solution of LBVP(13). By (14) and Condition
(F4), we have

‖∇u‖2 ≤ 1√
λ1
‖∆u‖2 =

1√
λ1
‖h‖2 =

1√
λ1
‖F(u2)− F(u1)‖2

≤ 1√
λ1

(
a‖u2 − u1‖2 + b‖∇u2 −∇u1‖2

)
=

a√
λ1
‖u‖2 +

b√
λ1
‖∇u‖2

≤
( a

λ1
+

b√
λ1

)
‖∇u‖2.

Since a
λ1

+ b√
λ1

< 1, from this inequality, it follows that ‖∇u‖2 = 0. By (14), ‖u‖2 = 0,
and hence, u1 = u2. This implies that BVP(1) has only one solution.

The proof of Theorem 6 is completed.

Theorem 7. Let a, b ≥ 0 and c > 0 be constants, and a
λ1

+ b√
λ1

< 1. Then, the elliptic
boundary value { −∆u = a u + b |∇u|+ c , x ∈ Ω ,

u|∂Ω = 0
(20)

has a unique positive classical solution u ∈ C2+µ(Ω) ∩ C+(Ω).

Proof. Consider the elliptic boundary value{ −∆u = a |u|+ b |∇u|+ c , x ∈ Ω ,

u|∂Ω = 0.
(21)

Corresponding to BVP(1), the nonlinearity f of BVP(21) is given by

f (x, ξ, η) := a |ξ|+ b |η|+ c, (x, ξ, η) ∈ Ω×R×RN . (22)

It is easy to verify that the function f defined by (22) satisfies Conditions (F1)′ and
(F4). Hence, by Theorem 6, BVP(21) has a unique solution w0 ∈ C2+µ(Ω). Set

h(x) = f (x, w0(x), ∇w0(x))), x ∈ Ω; (23)

then, w0 is the classical solution of LBVP(13). Since −∆w0 = h > 0, by the maximum
principle of the elliptic operators, w0(x) > 0 for every x ∈ Ω. Hence, w0 is a positive
classical solution of BVP(20). On the other hand, the positive solution of BVP(20) is also a
solution of BVP(21). By the uniqueness of the solution of BVP(21), w0 is the unique positive
classical solution of BVP(20).
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3. Proofs of the Main Results

Proof of Theorem 1. Let a, b, H be the constants in the condition of Theorem 1. Choose a
positive constant by

c = max{| f (x, ξ, η)| : (x, ξ, η) ∈ Ω×R×RN , |(ξ, η)| ≤ H }+ 1; (24)

then, from Conditions (8) and (9), it follows that

f (x, ξ, η) ≤ aξ + b|η|+ c, (x, ξ, η) ∈ Ω×R+ ×RN , (25)

and
f (x,−ξ,−η) ≥ −aξ − b|η| − c, (x, ξ, η) ∈ Ω×R+ ×RN , (26)

respectively. By Theorem 7, BVP(20) has a unique positive solution w0 ∈ C2+µ(Ω). By
Equation (20) and Inequality (25), we easily see that w0 is an upper solution of BVP(1), and
by (20) and (26), −w0 is a lower solution of BVP(1). Since −w0 ≤ w0, by Theorem 4, BVP(1)
has at least one solution u ∈ C2+µ(Ω) between −w0 and w0.

Proof of Theorem 2. Let c be the positive constant defined by (24) and w0 be the unique
positive solution of BVP(20). Then by the proof of Theorem 1, w0 ∈ C2+µ(Ω) is a upper
solution of BVP(1).

It is well-known that the minimum positive real eigenvalue λ1 of the elliptic eigenvalue
problem { −∆u = λ u, x ∈ Ω,

u|∂Ω = 0,
(27)

has a positive unit eigenfunction; that is, there exists a function ϕ1 ∈ C2(Ω) ∩ C+(Ω) with
‖ϕ1‖C(Ω) = 1 that satisfies the equation{ −∆ϕ1 = λ1 ϕ1, x ∈ Ω,

ϕ1|∂Ω = 0.
(28)

Let δ be the constant in (10), and choose

δ0 = min{δ/(1 + ‖∇ϕ1‖C
2)1/2, c/λ1}. (29)

Set v0 = δ0 ϕ1. By the regularity of the solution of the linear equation LBVP(13),
v0 ∈ C2+µ(Ω). For every x ∈ Ω, since v0(x) ≥ 0 and

|(v0(x), ∇v0(x))| ≤ δ0 (|ϕ1(x)|2 + |∇ϕ1(x)|2)1/2 ≤ δ0 (1 + ‖∇ϕ1‖C(Ω)
2)1/2 ≤ δ, (30)

by the inequality (10) and Equation (28), we have

f (x, v0(x),∇v0(x)) ≥ λ1v0(x) = −∆v0(x).

Hence, v0 is a lower solution of BVP(1). We show that v0 ≤ w0.
Consider the function u = w0 − v0. Since w0 satisfies Equation (20) and v0 satisfies

Equation (28), it follows that

−∆u(x) = a w0(x) + b |∇w0(x)|+ c− λ1v0(x) ≥ c− λ1δ0 ≥ 0, x ∈ Ω.

Since u|∂Ω = 0, by the maximum principle of the elliptic operators, u(x) > 0 for every
x ∈ Ω. Hence, v0 ≤ w0.

Therefore by Theorem 4, BVP(1) has at least one solution u0 ∈ C2+µ(Ω) between v0
and w0 that is a positive solution of BVP(1).

Proof of Theorem 3. Let c be the positive constant defined by (24) and w0 be the unique
positive solution of BVP(20). Then by the proof of Theorem 1, w0 is an upper solution and
−w0 is a lower solution of BVP(1).



Entropy 2022, 24, 1829 8 of 9

Let δ0 be the positive constant defined by (29) and v0 = δ0 ϕ1. By the proof of Theorem 2,
v0 satisfies (30) and is a positive lower solution of BVP(1), and v0 ≤ w0. By the inequalities
(30) and (12), we have

f (x,−v0(x),−∇v0(x)) ≤ −λ1v0(x) = ∆v0(x) = −∆(−v0(x)).

That is, −v0 is an upper solution of BVP(1). Hence, we obtain two lower and upper
solution pairs: (v0, w0) and (−w0, −v0), respectively. By Theorem 4, BVP(1) has one
solution, u1, between v0 and w0, and has another solution, u2, between −w0 and −v0.
Obviously, u1 ≥ v0 is positive and u2 ≤ −v0 is negative.

Example 1. Consider the elliptic boundary value problem{ −∆u = a u− u2 + b |∇u| − u|∇u|2, x ∈ Ω ,

u|∂Ω = 0 .
(31)

Clearly, 0 is a trivial solution of BVP(31). Let a > λ1 and b ≤
√

λ1. We use Theorem 2
to prove that BVP(31) has a positive classical solution.

Corresponding to BVP(1), the nonlinearity of BVP(31) is

f (x, ξ, η) = aξ − ξ2 + b|η| − ξ|η|2. (32)

Obviously, f satisfies (F1) and (F2). Choose

ε =
1
2

λ1 −
√

λ1 b
1 +
√

λ1
, a1 = ε, b1 = b + ε, H =

a2

4ε
.

Then,

a1

λ1
+

b1√
λ1

=
( 1

λ1
+

1√
λ1

)
ε +

b√
λ1

<
( 1

λ1
+

1√
λ1

) λ1 −
√

λ1 b
1 +
√

λ1
+

b√
λ1

= 1;

when |(ξ, η)| > H, by (32), we have

f (x, ξ, η) ≤ aξ − ξ2 + b|η| ≤ a2

4
+ b|η| = Hε + b|η|

≤ ε|(ξ, η)|+ b|η| ≤ ε|ξ|+ (ε + b)|η|

= a1|ξ|+ b1|η|.

Hence, f satisfies (8) for a1 and b1 restricted by (7). On the other hand, choose

δ = min
{

1,
a− λ1

2

}
.

Then, when ξ ≥ 0 and |(ξ, η)| ≤ δ, by (32)

f (x, ξ, η) ≥ λ1ξ + ξ(a− λ1 − ξ − |η|2)

≥ λ1ξ + ξ(a− λ1 − |(ξ, η)| − |(ξ, η)|2)

≥ λ1ξ + ξ(a− λ1 − 2|(ξ, η)|)

≥ λ1ξ.

Hence, f satisfies (10). By Theorem 2, BVP(31) has at least one positive solution. This
result cannot be obtained from [14,15].
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