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Abstract: Self-intersecting energy band structures in momentum space can be induced by nonlinearity
at the mean-field level, with the so-called nonlinear Dirac cones as one intriguing consequence. Using
the Qi-Wu-Zhang model plus power law nonlinearity, we systematically study in this paper the
Aharonov–Bohm (AB) phase associated with an adiabatic process in the momentum space, with
two adiabatic paths circling around one nonlinear Dirac cone. Interestingly, for and only for Kerr
nonlinearity, the AB phase experiences a jump of π at the critical nonlinearity at which the Dirac cone
appears and disappears (thus yielding π-quantization of the AB phase so long as the nonlinear Dirac
cone exists), whereas for all other powers of nonlinearity, the AB phase always changes continuously
with the nonlinear strength. Our results may be useful for experimental measurement of power-law
nonlinearity and shall motivate further fundamental interest in aspects of geometric phase and
adiabatic following in nonlinear systems.

Keywords: AB phase; Berry phase; power-law nonlinearity; Dirac cone; adiabatic dynamics; quantization

1. Introduction

The dynamics depicted by a nonlinear discretized Schödinger equation (NDSE) can
be extremely rich, including the emergence of many-dimensional chaos, solitons, and
breathers, etc. The problem can be much reduced by assuming the translational invariance
of a wave under consideration. With this assumption, the main physics is about the
features of Bloch waves, the associated energy bands, and how they respond to changes in
the parameters of a nonlinear system. Interestingly, the nonlinear Bloch bands of NDSE
can induce gapless band structures absent in linear systems, such as 2-dimensional (2D)
nonlinear Dirac cones [1] induced by Kerr nonlinearity [2]. Even more peculiarly, such
nonlinear Dirac cones are formed by exotic nonlinear energy bands in a subregime of the
Brillouin zone [1,3–8].

As a close analog to a setting in real space to measure the Aharonov–Bohm (AB)
phase around a singularity point with magnetic flux, let us now imagine two adiabatic
paths, in the momentum space, circling around a band-crossing point. If we adiabatically
change the Bloch momentum, so as to guide the Bloch wave to evolve along the two
adiabatic paths, the final phase difference thus generated between the two adiabatic paths
is termed the nonlinear AB phase [1]. One may naïvely think of the following: provided
that the dynamical phases between the two adiabatic paths are identical and hence have
zero contribution to the phase difference of interest, the obtained AB phase would be
just the Berry phase associated with the band degeneracy point. The actual physics turns
out to be more interesting than just a Berry phase. As a result of nonlinearity, any small
deviation of the adiabatically following state from the instantaneous Bloch wave causes
a tiny correction to the dynamical phase, and accumulation of such tiny corrections over
the entire adiabatic protocol yields an unfamiliar geometrical phase on top of the expected
Berry phase. Remarkably, as a possible means of topological characterization of nonlinear
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Dirac cones, it is found in Ref. [1] that the nonlinear AB phase around nonlinear Dirac cones
induced by Kerr nonlinearity added to the so-called Qi-Wu-Zhang (QWZ) model [9] is
quantized in π, whereas the Berry phase is not quantized (thus in sharp contrast to a variety
of linear systems, where the Berry phase around a Dirac cone is quantized in π [10–13]).
Echoing with the finding in [1], Ref. [3] found π-quantization of a nonlinear Zak phase
and Ref. [14] further confirmed the π-quantization of the nonlinear AB phase around a
nodal line induced by Kerr nonlinearity.

The goal of this work is entirely focused on aspects of the nonlinear AB phase around
Dirac cones induced by general power law nonlinearity [15–23]. In this way, it becomes
possible to answer whether the previously obtained AB phase quantization is unique to
Kerr nonlinearity and if so, why there is such uniqueness. Using the QWZ model [9] as
the linear limit, we are able to analytically show that Kerr nonlinearity happens to be a
critical case among all kinds of power law nonlinearity. Specifically, for any nonlinearity
other than the cubic order, the π-quantization of nonlinear AB phase does not exist. Our
analytical results are further confirmed by direct numerical simulations.

2. Hamiltonian and Energy Spectrum

The momentum-space Hamiltonian is composed of a QWZ model with power law
nonlinearity characterized by a parameter p:

Ĥ(ψ) = J1 sin k1σ1 + J2 sin k2σ2 + β(k1, k2)σ3 + g
[
|ψ1|2p 0

0 |ψ2|2p

]
, (1)

where σi are Pauli matrices and ψa are two components of the wavefunction, ψ =

[
ψ1
ψ2

]
.

The normalization of the wavefunction means that |ψ1|2 + |ψ2|2 = 1. The nonlinearity
parameter p is a non-negative real number. The Kerr nonlinearity corresponds to p = 1.
The parameters k1 and k2 are two quasimomenta, whose values will be adiabatically tuned
in order to implement an actual adiabatic protocol to generate the nonlinear AB phase.

To solve the nonlinear eigenvalue problem,

Ĥ(ψ) |ψ〉 = E |ψ〉 , (2)

we introduce a real parameter x as

ψ1 =

√
1 + x

2
, ψ2 =

√
1− x

2
eiϕ. (3)

We will see later that the angular variable ϕ is the same as in the Figure 1. It turns out that x
is the central quantity for expressing energy, dynamical phase, Berry phase, and nonlinear
AB phase. It can be shown that the instantaneous eigenenergy is

E =
β

x
+

g
x

[(
1 + x

2

)p+1
−
(

1− x
2

)p+1
]

, (4)

where x satisfies the following algebraic equation,

1− x2

x2

{
β +

g
2

[(
1 + x

2

)p
−
(

1− x
2

)p]}2

= |γ|2, (5)

with γ := J1 sin k1 − i J2 sin k2.
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Figure 1. Dynamical paths in the momentum space. Path SWN and path SEN are symmetric halves
of the perimeter of the circle. The system starts its adiabatic following at point S, and ends at point N.
The two paths are parameterized by ϕ in the main text.

In order to have a Dirac point in the energy spectrum, the energy must be doubly
degenerate at k1 = k2 = 0. Since γ = 0 at this point, x must satisfy

β(0, 0) +
g
2

[(
1 + x

2

)p
−
(

1− x
2

)p]
= 0. (6)

For simplicity, we choose

J1 = J2 := B, (7)

β(k1, k2) = B(−1 + cos k1 + cos k2). (8)

Hence, β(0, 0) = B. It is clear that the nonlinearity strength g and energy E can be scaled in
terms of B. Energy spectra with p = 1, 1.5, 2 and g = 2.5B are shown in Figure 2, where the
Dirac cone is clearly visible around the origin. A perturbative analysis of energy spectrum
near the Dirac cone can be found in Appendix A.1.
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Figure 2. Cont.
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Figure 2. Nonlinear band structure for small momenta in the vicinity of the origin, i.e., for small
values of |k1| and |k2|, with the nonlinear strength parameter g = 2.5B, and with the power-law
nonlinearity parameter (a) p = 1, (b) p = 1.5, (c) p = 2. See the main text for details of the system
parameters. The Dirac cone emerges from the lower energy band.

3. Dynamics of Adiabatic Following

To obtain the nonlinear AB phase, let us consider two adiabatic paths along a small
circle around the origin k1 = k2 = 0. As shown in Figure 1, starting at the same point S,
along each path, the system is guided to move along one half of the perimeter of the circle
using the same amount of time. The two adiabatic paths are “recombined” at the end of
the evolution at point N. As introduced in Section 1, the phase difference acquired by the
system between two adiabatic paths is called the nonlinear AB phase. Clearly, the nonlinear
AB phase here is the sum of the dynamical phase difference and the Berry phase associated
with the closed loop around the band-degeneracy point. We shall study below the possible
AB phase quantization for a varying nonlinearity strength g and for different nonlinear
parameters p. The quasimomenta k1 and k2 associated with two spatial dimensions are
parameterized by ϕ and will be made to adiabatically change.
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At the starting point S, the system is assumed to be prepared in the Bloch eigenstate at
momentum space location S. As the system adiabatically evolves along the path SEN or
SWN, the time-evolving state deviates from the instantaneous eigenstate along the path,
with the tiny deviation at the order of the adiabatic parameter ε. The slower the rate of
adiabatic change is, the smaller ε is, and the smaller the deviation. Here, nonlinearity plays
a key role. That is, the dynamical phase also obtains a correction at the order of ε. Since the
total evolution time is of order O(ε−1), the O(ε) term in this phase correction will contribute
an ε-independent term through accumulation, yielding a geometric phase term out of the
dynamical phase. This will not occur in linear terms because such correction accumulated
over the entire adiabatic process is at most of the order of ε, which vanishes for sufficiently
slow adiabatic protocols.

The dynamics of the states is governed by the time-dependent Schrödinger equation,

i |Ψ̇〉 = Ĥ(Ψ) |Ψ〉 , (9)

where the Hamiltonian is given by Equation (1) with ψ being replaced by Ψ. Here, the
overhead dot denotes the time derivative. We will solve this equation up to the order of ε
as described above. Through the lengthy computation, as illustrated in Appendix A.2, we
obtain the instantaneous change rate of the overall phase of a time-evolving state as

θ̇ ∼ −E− 1− x
2

ϕ̇ + gp
x(1− x2)

4∆

[(
1 + x

2

)p
−
(

1− x
2

)p]
ϕ̇, (10)

with

∆ := β +
g
2

[
(1− px + px2)

(
1 + x

2

)p
− (1 + px + px2)

(
1− x

2

)p]
. (11)

We recognize that the circular integration of the second term in Equation (10) is nothing but
the Berry phase θB, because it assumes the same form as in the linear limit. The rest of the
phase is from the dynamical phase θD, which contains two parts: the first part comes from
the instantaneous eigenenergy E and the second part from the third term in Equation (10)
as a new contribution from the nonlinearity. Specifically,

θB := −
∮ 1− x

2
dϕ, (12)

θD := −
∫

Edt + gp
∫ x(1− x2)

4∆

[(
1 + x

2

)p
−
(

1− x
2

)p]
dϕ. (13)

In the event that the Dirac cone does exist at the point k1 = k2 = 0, the obtained phase
difference between the two adiabatic paths described in Figure 1 then becomes the nonlinear
AB phase θAB. Since the two adiabatic paths are symmetric by construction and they take
the same amount of time, the leading term in Equation (13) contributes the same in each of
the two paths. Thus, the difference of the dynamical phases between two paths comes from
the second term of Equation (13) only. Thus, the total nonlinear AB phase is

θAB := θB + δθD

∼ −π(1− x) + πgp
x(1− x2)

2∆

[(
1 + x

2

)p
−
(

1− x
2

)p]
. (14)

Note that we take into account that the paths are chosen to be close to the Dirac cone
(so that the cones indeed have linear dispersion relations), namely, |k1| and |k2| are small at
all times. The leading behavior of the dynamical phase difference term is then found to be

δθD ∼ πgp
x0(1− x2

0)

2∆0

[(
1 + x0

2

)p
−
(

1− x0

2

)p]
, (15)
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where ∆0 is ∆ evaluated at x = x0 and k1 = k2 = 0, x0 is the solution of Equation (6), and

∆0 = − gpx0

2

[
(1− x0)

(
1 + x0

2

)p
+ (1 + x0)

(
1− x0

2

)p]
. (16)

For the Berry phase, the leading behavior is

θB ∼ −π(1− x) ∼ −π(1− x0). (17)

As detailed in Appendix A.1, For |g| > 2B, a nonlinear Dirac cone is located at the
origin. For |g| < 2B, the only possible solutions to Equation (5) are x = ±1 and there is
no Dirac cone. For g ∈ (0, 2B), we can hence assign x0 = −1, and for g ∈ (−2B, 0), we
may assign x0 = 1. With this convention, it is clear to see that θB is constantly 0 (mod 2π)
for g ∈ (−2B, 2B). The Berry phase θB becomes nonzero and changes continuously for
|g| > 2B. For each p, as we continuously tune g, x0 can be easily solved numerically using
Equation (6), thus obtaining the theoretical values of the leading terms of the dynamical
phase, Berry phase and AB phase around the origin. We also numerically solve the
evolution using the Schrödinger equation Equation (9) along the two paths, and compute
the dynamical phase, AB phase and Berry phase using numerical solutions of the evolution.
The evolution is computed using an operator-splitting algorithm. The results are presented
in Figure 3.

10 8 6 4 2 0 2 4 6 8 10
g/B

2

1

0

1

2

D
/

(a)

p=0.5
p=1
p=1.5
p=2
p=2.5
p=3

10 8 6 4 2 0 2 4 6 8 10
g/B

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

B
/

(b)

p=0.5
p=1
p=1.5
p=2
p=2.5
p=3

10 8 6 4 2 0 2 4 6 8 10
g/B

2

1

0

1

2

AB
/

(c)

p=0.5
p=1
p=1.5
p=2
p=2.5
p=3

Figure 3. Cont.
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Figure 3. Dynamical, Berry and the nonlinear AB phase plotted against nonlinearity strength g for
different values of power-law nonlinearity parameter p. The solid lines are theoretical values, and the
dots are numerical verifications. (a) For p > 1, the jump of dynamical phase at g = ±2B is ±2π; for
p = 1, the jump of dynamical phase at g = ±2B is ±π; and for p < 1, the dynamical phase changes
continuously. (b) The Berry phases change continuously for any p. (c) Only for Kerr nonlinearity
p = 1, the AB phase has a quantized jump of π at the critical value g = ±2B and stays at π for
|g| > 2B.

In each plot, solid lines are theoretical values, while dots on the solid lines are com-
puted from numerical evolutions. In Figure 3a, for any p = 0.5, 1, 1.5, 2, 2.5, 3, the dynamical
phase around the origin is 0 for g ∈ (−2B, 2B). At the critical value g = ±2B where the
Dirac cone appears, for p = 0.5, the Dirac cone changes continuously with respect to g.
For p = 1, there is a quantized jump of ±π at g = ±2B. For p = 1.5, 2, 2.5, 3, there is a
quantized jump of ±2π at the critical value g = ±2B (so this is equivalent to no change).
In Figure 3b, the Berry phase (modulo 2π) is identically 0 for g ∈ (−2B, 2B), and changes
continuously with respect to g. In Figure 3c, the AB phase (modulo 2π) is the sum of the
dynamical phase in Figure 3a and the Berry phase in Figure 3b. Only for p = 1, the AB
phase has a quantized jump of π at the critical value g = ±2B and stays at π for |g| > 2B,
as discovered by Ref. [1]. For all other values of p, the AB phase changes continuously with
respect to g. The special behavior of p = 1 is a result of the fact that p = 1 is a critical value
for the limit limg→±2B± δθD, as will be explained in the next section.

4. Mechanism of the Jump of AB Phase at g = ±2B for Kerr Nonlinearity

For p > 1, we can factor out a factor (1− x2
0) from ∆0 which cancels the same factor in

the numerator of δθD,

δθD(p > 1) ∼ −π
(1 + x0)

p − (1− x0)
p

(1 + x0)p−1 + (1− x0)p−1 , (18)

which equals ∓2π or equivalently zero since x0 = ±1, for |g| = 2B or when the Dirac cone
starts to appear.

Likewise, for p = 1, we have

δθD(p = 1) ∼ −x0π, (19)

which equals ∓π since x0 = ±1, for |g| = 2B.



Entropy 2022, 24, 1835 8 of 13

Finally, for 0 < p < 1,

δθD(0 < p < 1) ∼ −π(1− x2
0)

1−p (1 + x0)
p − (1− x0)

p

(1 + x0)1−p + (1− x0)1−p , (20)

which vanishes for x0 = ±1, for |g| = 2B.
The calculations above make it clear that the nonlinear AB phase associated with

Kerr nonlinearity (p = 1) is most special as the extra nonlinearity-induced correction to
dynamical phase experiences a π jump when the Dirac cone appears. What is intriguing
for Kerr nonlinearity is that the nonlinear AB phase stays quantized at π for |g| > 2B, as θB
and δθD happen to be complementary to each other, as shown in Equations (17) and (19).
For all other forms of power-law nonlinearity, there is no such jump, π-quantization is
thus absent, and consequently, the nonlinear AB phase only changes continuously with
respect to g. This finally explains why in Figure 3 only the nonlinear AB phase for Kerr
nonlinearity (p = 1) displays a quantization plateau for |g| > 2B.

5. Conclusions

In this paper, we analytically and computationally examined the so-called nonlinear
AB phase around Dirac cones induced by power-law nonlinearity added to the QWZ model
often used for studies of topological band structures. With our analytical results, we are able
to explain why the nonlinear AB phase has a quantized jump of π when Dirac cone starts
to appear or disappear, for and only for Kerr nonlinearity. In the context of nonlinear AB
phase that can be in principle measured in experiments, Kerr nonlinearity is thus identified
as a critical form of nonlinearity. As seen from our theoretical considerations above, our
result will not be restricted to the QWZ model alone since it is based only on the asymptotic
dispersion relation in the vicinity of the nonlinear Dirac cone. It is thus of considerable
interest to investigate the generality of our results in other models with nonlinearity.
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Appendix A

Appendix A.1. Eigenvalue Problem

The instantaneous eigenenergy and eigenstate satisfy the Schrödinger equation,[
β(k1, k2) + g|ψ1|2p γ(k1, k2)

γ∗(k1, k2) −β(k1, k2) + g|ψ2|2p

][
ψ1
ψ2

]
= E

[
ψ1
ψ2

]
. (A1)

In terms of the two components of the state, we have

γψ2 = (E− β− g|ψ1|2p)ψ1, (A2)

γ∗ψ1 = (E + β− g|ψ2|2p)ψ2. (A3)

https://github.com/saschapojot/diracCone
https://www.nscc.sg
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Plugging the expressions in Equation (3), we see that

γeiϕ =

[
E− β− g

(
1 + x

2

)p]√1 + x
1− x

. (A4)

Since the right-hand side of the above equation is real, we recognize that the phase variable
ϕ is simply the opposite of the phase of γ,

ϕ = −arg(γ). (A5)

Recall that γ = B(sin k1− i sin k2) in our choice, this means that ϕ is the same angle illustrated
in Figure 1 for sufficiently small |k1| and |k2|.

Multiplying ψ∗1 on both sides of Equation (A2), multiplying ψ∗2 on Equation (A3) and
taking complex conjugate, then subtracting the two equations, one obtains

β + g(|ψ1|2p+2 − |ψ2|2p+2) = E(|ψ1|2 − |ψ2|2). (A6)

In terms of the parameter x defined in Equation (3), we obtain the instantaneous eigenen-
ergy as in Equation (4).

One can then multiply the two equations in (A2) and (A3) together. Eliminating the
common factor ψ1ψ2, we arrive at

|γ|2 = E2 − gE(|ψ1|2p + |ψ2|2p)− β2 − βg(|ψ1|2p − |ψ2|2p) + g2|ψ1|2p|ψ2|2p. (A7)

Further using Equation (3), we obtain the equation satisfied by the variable x in Equation (5).
Apparently, if the Dirac cone exists, at the Dirac point k1 = k2 = 0, the energy is doubly

degenerate. As a result, x is also doubly degenerate. Namely, it must satisfy Equation (6)
with β(0, 0) = B. That is,

2p+1B + g[(1 + x)p − (1− x)p] = 0. (A8)

We denote the solution of the above equation as x0, i.e.,(
1 + x0

2

)p
−
(

1− x0

2

)p
= −2B

g
. (A9)

Note that the left hand side of the above equation is a monotonically increasing function of
x0 as x0 ∈ [−1, 1], with a minimum of −1 and a maximum of +1. Therefore,

−1 ≤ −2B
g
≤ 1. (A10)

This means that

|g| ≥ 2B. (A11)

This is the necessary condition for a Dirac cone to exist.
It is also of interest to use the perturbation theory to solve the eigenenergies near the

Dirac cone. For sufficiently small |k1| and |k2|, we let

x ∼ x0 + χ, (A12)

β ∼ B + ρ, (A13)

|γ|2 ∼ 0 + η, (A14)
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where χ is at least in the first order in k1 and k2, and ρ and η are at least in the second order
in k1 and k2. Plugging Equations (A12)–(A14) into Equation (5), we have

g2 p2

22p+2
1− x2

0
x2

0

[
(1 + x0)

p−1 + (1− x0)
p−1
]2

χ2 ∼ η. (A15)

To this order, we obtain the correction to the parameter x,

χ ∼ ±2p+1

gp
x0

(1 + x0)p−1 + (1− x0)p−1

√
J2
1 k2

1 + J2
2 k2

2√
1− x2

0

. (A16)

Plugging this into Equation (4), we find the expression for the eigenenergy,

E ∼ E0

(
1 + p

χ

x0

)
, (A17)

where the nonperturbed eigenenergy is

E0 =
g
2

[(
1 + x0

2

)p
+

(
1− x0

2

)p]
. (A18)

We can see clearly from the expansion of E that there is a Dirac cone structure at the
origin, provided |x0| < 1, which corresponds to |g| > 2B. For |g| < 2B, the system contains
two smooth energy bands. At the critical value g = 2B (g = −2B), a kink will develop
on the lower (upper) band at k1 = k2 = 0. Once g > 2B (g < −2B), a 2D self-intersection
structure, i.e., a nonlinear Dirac cone, will appear from the lower (upper) band, whose
vertex is at k1 = k2 = 0. This is true for any p > 0. We show five plots with different
values of nonlinearity in Figure A1, along section k1 = 0 and with −0.1π ≤ k2 ≤ 0.1π. In
each plot, the red dots are perturbative eigenenergies around the Dirac point (or at the
origin for |g| ≤ 2B), while the blue lines are numerical solutions by solving Equation (5)
exactly. We can see that the perturbative solutions perfectly match the numerical solutions
for sufficiently small |k2|.
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Entropy 2022, 24, 1835 11 of 13

0.10 0.05 0.00 0.05 0.10
k2/

0.5

1.0

1.5

2.0

2.5

3.0

3.5

E/
B

(e) p = 2, g/B = 2.5

Figure A1. Numerical and perturbative solutions of E for p = 2 with g/B = −2.5,−2, 1, 2, 2.5, B = 2
along section k1 = 0. In these plots, the red dots are perturbative eigenenergies near the Dirac cone
and the blue lines are numerical solutions.

Appendix A.2. Dynamics around the Dirac Cone

We solve the following Schrödinger equation perturbatively in terms of adiabatic
parameter ε [1],

i∂t

[
Ψ1
Ψ2

]
=

[
β γ

γ∗ −β

][
Ψ1
Ψ2

]
+ g
[
|Ψ1|2pΨ1
|Ψ2|2pΨ2

]
. (A19)

During the adiabatic following process, the quasimomenta are tuned adiabatically,

k1 = k1(εt), k2 = k2(εt), (A20)

with 0 < ε� 1. Let

|Ψ〉 =
[

Ψ1
Ψ2

]
= eiθ(|ψ〉+ ε |φ〉) = eiθ

[
ψ1
ψ2

]
+ εeiθ

[
φ1
φ2

]
, (A21)

with

θ̇ ∼ −E + εα, (A22)

where ψa are the solutions to the eigenvalue problem in Equation (2), and εφa are the
first-order corrections. As we shall see, the dynamical phase comes from both E and εα,
and geometric phase comes from only εα.

The solution to the adiabatic process deviates from the instantaneous eigensolution by
the order of ε, multiplied by a phase term. Note that the increment of phase θ over a small
duration of time dt may deviate from the contribution of dynamical phase by O(ε), but the
accumulation of the O(ε) term over the total time O(ε−1) has a contribution of O(1).

The Hamiltonian can be expand in the power of ε accordingly,

Ĥ(Ψ) ∼ Ĥ(ψ) + εĥ(ψ, φ), (A23)

where Ĥ(ψ) is given in Equation (1) and ĥ depends on both ψ and φ with a diagonal form,

ĥ(ψ, φ) = gp
[
|ψ1|2p−2(ψ∗1 φ1 + ψ1φ∗1 ) 0

0 |ψ2|2p−2(ψ∗2 φ2 + ψ2φ∗2 )

]
. (A24)

To compute ĥ, we need to expand |Ψ|2p. To the first order in ε, we have

|ψa + εφa|2p ∼ |ψa|2p
[

1 + 2εp Re
(

φa

ψa

)]
= |ψa|2p + εp|ψa|2p−2(ψ∗a φa + ψaφ∗a ). (A25)
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Plugging Equations (A21), (A22) and (A25) into the time-dependent Schrödinger equation
in Equation (A19), up to the first order in ε, we obtain

E |ψ〉 − εα |ψ〉+ εE |φ〉+ i |ψ̇〉+ iε |φ̇〉 ∼ Ĥ(ψ) |ψ〉+ εĥ |ψ〉+ εĤ(ψ) |φ〉 . (A26)

Note that the time derivative brings a factor of ε because we are in the adiabatic regime, thus,
the term ε |φ̇〉 is actually in the order of ε2 and it can be discarded. Apply the instantaneous
eigenvalue equation in Equation (2), we obtain the equation for |φ〉,[

E− Ĥ(ψ)
]
|φ〉 ∼ α |ψ〉 − i

ε
|ψ̇〉+ ĥ |ψ〉 . (A27)

Multiplying 〈ψ| from the left to Equation (A27), we obtain

εα = i 〈ψ|ψ̇〉 − ε 〈ψ| ĥ |ψ〉 . (A28)

After a lengthy calculation, we find the solution to the correction of wavefunction as

εφ1 = − x(1− x)
√

1 + x
4
√

2
ϕ̇

∆
− i

x
4
√

2(1 + x)
ẋ
∆′

, (A29)

εφ2 =
x(1 + x)

√
1− x

4
√

2
ϕ̇

∆
eiϕ + i

x
4
√

2(1− x)
ẋ
∆′

eiϕ, (A30)

where we introduce two quantities, ∆ in Equation (11) and ∆′ is defined as

∆′ := β +
g
2

[(
1 + x

2

)p
−
(

1− x
2

)p]
. (A31)

It turns out that the ẋ/∆′ terms do not contribute to ĥ,

ĥ = gp
x(1− x2)

4∆
ϕ̇

ε

−
(

1+x
2

)p−1
0

0
(

1−x
2

)p−1

. (A32)

Putting all together, the change rate of the overall phase is given in Equation (10).
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