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Abstract: Multi-task learning is a statistical methodology that aims to improve the generalization
performances of estimation and prediction tasks by sharing common information among multiple
tasks. On the other hand, compositional data consist of proportions as components summing to one.
Because components of compositional data depend on each other, existing methods for multi-task
learning cannot be directly applied to them. In the framework of multi-task learning, a network
lasso regularization enables us to consider each sample as a single task and construct different
models for each one. In this paper, we propose a multi-task learning method for compositional
data using a sparse network lasso. We focus on a symmetric form of the log-contrast model, which
is a regression model with compositional covariates. Our proposed method enables us to extract
latent clusters and relevant variables for compositional data by considering relationships among
samples. The effectiveness of the proposed method is evaluated through simulation studies and
application to gut microbiome data. Both results show that the prediction accuracy of our proposed
method is better than existing methods when information about relationships among samples is
appropriately obtained.

Keywords: clustering; log-contrast model; multi-task learning; symmetric form; variable selection

1. Introduction

Multi-task learning is a statistical methodology that assumes a different model for each
task and jointly estimates these models. By sharing the common information between them,
the generalization performance of estimation and prediction tasks is improved [1]. Multi-
task learning has been used in various fields of research, such as computer vision [2], natural
language processing [3], and life sciences [4]. In life sciences, the risk factors may vary from
patient to patient [5], and a model that is common to all patients cannot sufficiently extract
general risk factors. In multi-task learning, each patient can be considered as a single task,
and different models are built for each patient to extract both patient-specific and common
factors for the disease [6]. Localized lasso [7] is a method that performs multi-task learning
using network lasso regularization [8]. By treating each sample as a single task, localized
lasso simultaneously performs multi-task learning and clustering in the framework of a
regression model.

On the other hand, compositional data, which consist of the individual proportions of
a composition, are used in the fields of geology and life sciences for microbiome analysis.
Compositional data are constrained to always take positive values summing to one. Due
to these constraints, it is difficult to apply existing multi-task learning methods to compo-
sitional data. In the field of microbiome analysis, studies on gut microbiomes [9,10] have
suggested that there are multiple types of gut microbiome clusters that vary from individual
to individual [11]. In the case of such data where multiple clusters may exist, it is difficult
to extract sufficient information using existing regression models for compositional data.

Entropy 2022, 24, 1839. https://doi.org/10.3390/e24121839 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24121839
https://doi.org/10.3390/e24121839
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0001-8048-1980
https://orcid.org/0000-0002-0804-0141
https://doi.org/10.3390/e24121839
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24121839?type=check_update&version=3


Entropy 2022, 24, 1839 2 of 16

In this paper, we propose a multi-task learning method for compositional data, fo-
cusing on the network lasso regularization and the symmetric form of the log-contrast
model [12], which is a linear regression model with compositional covariates. The symmet-
ric form is extended to the locally symmetric form in which each sample has a different
regression coefficient vector. These regression coefficient vectors are clustered by the
network lasso regularization. Furthermore, because the dimensionality of features in
compositional data has been increasing, in particular in microbiome analysis [13], we
use an `1-regularization [14] to perform variable selection. The advantage of using `1-
regularization is being able to perform variable selection even if the number of parameters
exceeds the sample size. In addition, `1-regularization is formulated by convex optimiza-
tion, which leads to feasible computation, while classical subset selection is not. The
estimation of the parameters included in the model is performed using an estimation
algorithm based on the alternating direction method of multipliers [15], because the model
includes non-differentiable points in the `1-regularization term and zero-sum constraints
on the parameters. The constructed model includes regularization parameters, which are
determined by cross-validation (CV).

The remainder of this paper is organized as follows. Section 2 introduces multi-task
learning based on a network lasso. In Section 3, we describe the regression models for
compositional data. We propose a multi-task learning method for compositional data
and its estimation algorithm in Section 4. In Section 5, we discuss the effectiveness of the
proposed method through Monte Carlo simulations. An application to gut microbiome
data is presented in Section 6. Finally, Section 7 summarizes this paper and discusses
future work.

2. Multi-Task Learning Based on a Network Lasso

Suppose that we have n observed p-dimensional data {xi; i = 1, . . . , n} and n observed
data for the response variable {yi; i = 1, . . . , n} and that these pairs {(yi, xi), i = 1, . . . , n}
are given independently. The graph R = RT ∈ Rn×n is also given, where (R)ij = ri,j ≥ 0
represents the relationship between the sample pair (yi, xi) and (yj, xj), and thus the
diagonal components are zero.

We consider the following linear regression model:

yi = xT
i wi + εi, i = 1, . . . , n, (1)

where wi = (wi1, . . . , wip)
T ∈ Rp is the p-dimensional regression coefficient vector for

sample xi, and εi is an error term distributed as N(0, σ2) independently. Note that we
exclude the intercept w0 from the model, because we assume the centered response and
the standardized explanatory variables. Model (1) comprises a different model for each
sample. In classical regression models, the regression coefficient vectors are assumed to be
identical (i.e., w1 = w2 = · · · = wn).

For Model (1), we consider the following minimization problem:

min
wi∈Rp , i=1...,n

{
n

∑
i=1

(yi − xT
i wi)

2 + λ
n

∑
m>l

rm,l‖wm −wl‖2

}
, (2)

where λ (> 0) is a regularization parameter. The second term in (2) is the network lasso
regularization term [8]. For coefficient vectors wm and wl , the network lasso regularization
term induces wm = wl . If these vectors are estimated to be the same, then the m-th
and l-th samples are interpreted as belonging to the same cluster. In the framework of
multi-task learning, the minimization problem (2) considers one sample as one task by
setting a coefficient vector for each sample. This allows us to extract the information of
the regression coefficient vectors separately for each task. In addition, by clustering the
regression coefficient vectors using the network lasso regularization term, we can extract
the common information among tasks.
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Yamada et al. [7] proposed the localized lasso for minimization problem (2) by adding
an `1,2-norm regularization term [16] as follows:

min
wi∈Rp , i=1,...,n

{
n

∑
i=1

(yi − xT
i wi)

2 + λ1

n

∑
m>l

rm,l‖wm −wl‖2 + λ2

n

∑
i=1
‖wi‖2

1

}
. (3)

The `1,2-norm regularization term induces group structure and intra-group level sparsity:
several regression coefficients in a group are estimated to be zero, but at least one is esti-
mated to be non-zero by squaring over the `1-norm. In the localized lasso, each regression
coefficient vector wi is treated as a group in order to remain wi 6= 0. The localized lasso is
used for multi-task learning and variable selection.

3. Regression Modeling for Compositional Data

The p-dimensional compositional data x = (x1, . . . , xp)T are defined as proportional
data in the simplex space:

Sp−1 =

{
(x1, . . . , xp) : xj > 0 (j = 1, . . . , p),

p

∑
j=1

xj = 1

}
. (4)

This structure imposes dependence between the features of the compositional data. Thus,
statistical methods defined for spaces of real numbers cannot be applied [17]. To overcome
this problem, Aitchison and Bacon-Shone [12] proposed the log-contrast model, which is a
linear regression model with compositional covariates.

Suppose that we have n observed p-dimensional compositional data {xi; i = 1, . . . , n}
and n objective variable data {yi; i = 1, . . . , n} and these pairs {(yi, xi), i = 1 . . . , n} are
given independently. The log-contrast model is represented as follows:

yi =
p−1

∑
j=1

log
xij

xip
β j + εi, i = 1, . . . , n, (5)

where β = (β1, . . . , βp−1)
T ∈ Rp−1 is a regression coefficient vector. Because the model uses

an arbitrary variable as a reference for all other variables, the solution changes depending
on the selection of the reference. By introducing βp = −∑

p−1
j=1 β j, the log-contrast model is

equivalently expressed in symmetric form as:

yi = zT
i β + εi, s.t.

p

∑
j=1

β j = 0, i = 1, . . . , n, (6)

where zi = (log xi1, . . . , log xip)
T , and β = (β1, . . . , βp)T ∈ Rp is a regression coefficient

vector. Lin et al. [13] proposed the minimization problem to select relevant variables in
symmetric form by adding an `1-regularization term [14]:

min
β∈Rp

{
n

∑
i=1

(yi − zT
i β)2 + λ‖β‖1

}
, s.t.

p

∑
j=1

β j = 0. (7)

Other models that extend this symmetric form of the problem have also been proposed [18–21].

4. Proposed Method

In this section, we propose a multi-task learning method for compositional data based
on the network lasso and the symmetric form of the log-contrast model.
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4.1. Model

We consider the locally symmetric form of the log-contrast model:

yi = zT
i wi + εi, s.t.

p

∑
j=1

wij = 0, i = 1, . . . , n, (8)

where zi = (log xi1, . . . , log xip)
T , and wi = (wi1, . . . , wip)

T is the regression coefficient
vector for i-th sample of compositional data xi. For Model (8), we consider the following
minimization problem:

min
wi∈Rp , i=1...,n

{
n

∑
i=1

(yi − zT
i wi)

2 + λ1

n

∑
m>l

rm,l‖wm −wl‖2 + λ2

n

∑
i=1
‖wi‖1

}
,

s.t.
p

∑
j=1

wij = 0, i = 1, . . . , n,

(9)

where λ1, λ2 (> 0) are regularization parameters. The second term is the network lasso
regularization term, which performs the clustering of the regression coefficient vectors.
The third term is the `1-regularization term [14]. This term is interpreted as a special case
of the `1,2-regularization term used in Model (3). Unlike the `1-regularization term, it is
difficult to optimize the `1,2-regularization directly, because it does not have a closed form
of the updates. To construct the estimation algorithm that performs variable selection and
preserves the constraints for regression coefficient vectors simultaneously, we employ the
`1-regularization term. Since variable selection is performed by the `1-regularization term,
we refer to the combination of the second term and the third term as sparse network lasso
after sparse group lasso [22].

For Model (8), when a new data point zi∗ is obtained after the estimation, there is no
corresponding regression coefficient vector wi∗ for zi∗ . Thus, it is necessary to estimate
the coefficient vector for predicting the response. Hallac et al. [8] proposed solving the
following minimization problem:

min
wi∗∈Rp

{
n

∑
i=1

ri∗ ,i‖wi∗ − ŵi‖2

}
, (10)

where ŵi is the estimated regression coefficient vector for the i-th sample. This problem
is also known as the Weber problem. The solution of this problem is interpreted as the
weighted geometric median of ŵi. For our proposed method, we consider solving the
constrained Weber problem with the zero-sum constraint in the form:

min
wi∗∈Rp

{
n

∑
i=1

ri∗ ,i‖wi∗ − ŵi‖2

}
, s.t.

p

∑
j=1

wi∗ j = 0. (11)

4.2. Estimation Algorithm

To construct the estimation algorithm for the proposed method, we rewrite minimiza-
tion problem (9) as follows:

min
wi ,am ,bi∈Rp , i=1...,n

{
n

∑
i=1

(yi − zT
i wi)

2 + λ1

n

∑
m>l

rm,l‖am,l − al,m‖2 + λ2

n

∑
i=1
‖bi‖1

}
,

s.t. wm = am,l , wi = bi, 1T
p wi = 0, i, m, l = 1, . . . , n,

(12)
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where 1p is the p-dimensional vector of ones. The augmented Lagrangian for (12) is
formulated as:

L(Θ, Q)Ω =
n

∑
i=1

(yi − zT
i wi)

2

+
n

∑
m>l

{
λ1rm,l‖am,l − al,m‖2

+
ρ

2
(‖wm − am,l + sm,l‖2

2 + ‖wl − al,m + sl,m‖2
2)−

ρ

2
(‖sm,l‖2

2 + ‖sl,m‖2
2)
}

+
n

∑
i=1

{
λ2‖bi‖1 + tT

i (wi − bi) +
φ

2
‖wi − bi‖2

2

}

+
n

∑
i=1

{
ui1T

p wi +
ψ

2
‖1T

p wi‖2
2

}
,

(13)

where sm,l , ti, ui are the Lagrange multipliers and ρ, φ, ψ (> 0) are the tuning parameters.
For simplicity of notation, the parameters in the model wi, ai,j, bi are collectively denoted
as Θ, the Lagrange multipliers are collectively denoted as Q, and the tuning parameters are
collectively denoted as Ω.

The update algorithm for Θ with the alternating direction method of multipliers
(ADMM) is obtained from the following minimization problem:

w(k+1) = arg min
w

L(w, a(k), b(k), Q(k))Ω,

a(k+1) = arg min
a

L(w(k+1), a, b(k), Q(k))Ω,

b(k+1) = arg min
b

L(w(k+1), a(k+1), b, Q(k))Ω,

(14)

where k denotes the repetition number. By repeating the updates (14) and the update for Q,
the estimation algorithm for (12) is represented by Algorithm 1. The estimation algorithm
for (11) is represented by Algorithm 2 with the update from ADMM. The details of the
derivations of the estimation algorithms are presented in Appendices A and B.

Algorithm 1 Estimation algorithm for (12) via ADMM

Require: Initialize w(0), a(0), b(0), s(0), t(0), u(0).
while convergence do

for i = 1 . . . , n do

w(k+1)
i =

{
2zizT

i + (ρ(n− 1) + φ)Ip + ψ1p1T
p

}−1

{
2yizi + ρ

n

∑
m>l

(a(k)
m,l − s(k)l,m)− t(k)i + φb(k)

i − ui1p

}

end for
for m, l = 1, . . . , n, (m > l) do

θ = max

(
1− λ1rm,l

ρ‖(w(k+1)
m +s(k)m,l)−(w

(k+1)
l +s(k)l,m)‖2

, 0.5

)

a(k+1)
m,l = θ(w(k+1)

m + s(k)m,l) + (1− θ)(w(k+1)
l + s(k)l,m)

a(k+1)
l,m = (1− θ)(w(k+1)

m + s(k)m,l) + θ(w(k+1)
l + s(k)l,m)
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Algorithm 1 Cont.

end for
for i = 1, . . . , n, j = 1, . . . , p do

b(k+1)
ij = S(w(k+1)

ij + 1
φ t(k)ij , λ2

φ )

end for
for m, l = 1, . . . , n, (m 6= l) do

s(k+1)
m,l = s(k)m,l + ρ(w(k+1)

m − a(k+1)
m,l )

end for
for i = 1 . . . , n do

t(k+1)
i = t(k)i + φ(w(k+1)

i − b(k+1)
i )

u(k+1)
i = u(k)

i + ψ1T
p w(k+1)

i
end for

end while
Ensure: bi, i = 1, . . . , n.

Algorithm 2 Estimation algorithm for constrained Weber problem (11) via ADMM

Require: Initialize w(0)
i∗ , e(0), u(0), v(0).

while convergence do
for i = 1 . . . , n do

e(k+1)
i = min

(
ri∗ ,i

µ , ‖w(k)
i∗ − 1

µ u(k)
i − ŵi‖2

) w(k)
i∗ −

1
µ u(k)

i −ŵi

‖w(k)
i∗ −

1
µ u(k)

i −ŵi‖2

end for
w(k+1)

i∗ = (µnIp + η1p1T
p )
−1
{

µ ∑n
i=1(e

(k+1)
i + 1

µ u(k)
i )− v(k)1p

}

for i = 1 . . . , n do
u(k+1)

i = u(k)
i + µ(e(k+1)

i −w(k+1)
i∗ )

end for
v(k+1) = v(k) + η1T

p w(k+1)
i∗

end while
Ensure: wi∗

5. Simulation Studies

In this section, we report simulation studies conducted with our proposed method
using artificial data.

In our simulations, we generated artificial data from the true model:

yi =





zT
i w∗(1) + εi, (i = 1, . . . , 40),

zT
i w∗(2) + εi, (i = 41, . . . , 80),

zT
i w∗(3) + εi, (i = 81, . . . , 120),

(15)

where zi = (log xi1, . . . , log xip)
T , xi = (xi1, . . . , xip)

T is p-dimensional compositional data,
w∗(1),w

∗
(2),w

∗
(3) ∈ Rp are the true regression coefficient vectors, and εi is an error term dis-

tributed as N(0, σ2) independently. We generated compositional data {xi; i = 1, . . . , 120}
as follows. First, we generated the data {ci, i = 1, . . . , 120} from the p-dimensional multi-
variate normal distribution Np(ω, Σ) independently, where (ω)j = ωj, (Σ)ij = 0.2|i−j|, and

ωj =

{
log(0.5p), (j = 1, . . . , 5),
0, (j = 6, . . . , p).

(16)
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Then, the data {ci, i = 1, . . . , 120} were converted to the compositional data {xi; i =
1, . . . , 120} by the following transformation:

xij =
exp(cij)

∑
p
k=1 exp(cik)

, i = 1, . . . , 120, j = 1, . . . , p. (17)

The true regression coefficient vectors were set as:

w∗(1) = (1,−0.8, 0.6, 0, 0,−1.5,−0.5, 1.2, 0T
p−8)

T ,

w∗(2) = (0,−0.5, 1, 1.2, 0.1,−1, 0,−0.8, 0T
p−8)

T ,

w∗(3) = (0, 0, 0, 0.8, 1, 0,−0.8,−1, 0T
p−8)

T .

(18)

We also assumed that the graph R ∈ {0, 1}120×120 was observed. In the graph, the
true value of each element was obtained with probability PR. We calculated MSE as
∑n∗

i∗=1(yi∗ − zT
i∗ŵi∗)

2/n∗, dividing the 120 samples into 100 training data and 20 validation
data. Here, n∗ indicates the number of samples for validation data (i.e., 20). The regression
coefficient vectors for the validation data were estimated based on the constrained Weber
problem (11). To evaluate the effectiveness of our proposed method, it is compared with
both Model (7) and the model obtained by removing the zero-sum constraint from mini-
mization problem (9). We refer to the latter two comparison methods as compositional lasso
(CL) and sparse network lasso (SNL), respectively. To the best of our knowledge, there are
no studies that simultaneously perform regression and clustering on compositional data.
Therefore, we compared with the CL and SNL models; CL assumes the situation where the
existence of the multiple clusters is not considered, while SNL considers their existence
while the nature of the compositional data is ignored.

The regularization parameters were determined by five-fold CV for both the pro-
posed method and the comparison methods. The values of tuning parameters ρ, φ, ψ, µ, η
for ADMM were all set to one. We considered several settings: p = {30, 100, 200},
σ = {0.1, 0.5, 1}, PR = {0.99, 0.95, 0.90, 0.80, 0.70}. We generated 100 datasets and computed
the mean and standard deviation of MSE from the 100 repetitions.

Tables 1–3 show the results for the mean and standard deviation of MSE for each
σ. The proposed method and SNL show better prediction accuracy than CL in almost
settings. The reason for this may be that CL assumes only a single regression coefficient
vector and thus fails to capture the true structure, which consists of three clusters. A
comparison between the proposed method and SNL shows that the proposed method
has higher prediction accuracy than SNL when PR = 0.99, 0.95, and 0.90, whereas SNL
shows better results in most cases when PR = 0.80, 0.70. This means that the proposed
method is superior to SNL when the structure of the graph R is similar to the true structure.
On the whole, the prediction accuracy deteriorates as PR decreases for both the proposed
method and SNL, but this deterioration is more extreme for the proposed method. For both
the proposed method and SNL, which assume multiple regression coefficient vectors, the
standard deviation is somewhat large.

Table 1. Mean and deviation of MSE in σ = 0.1 for simulations.

Method p = 30 p = 100 p = 200

CL 5.20(1.44) 6.99(1.81) 8.75(2.69)

PR = 0.99
Proposed 0.51(0.58) 2.13(2.35) 2.70(1.92)

SNL 2.54(0.97) 3.73(1.31) 6.55(3.94)

PR = 0.95
Proposed 2.74(1.19) 2.96(1.33) 3.68(2.71)

SNL 3.19(0.98) 3.87(1.35) 5.26(4.15)
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Table 1. Cont.

Method p = 30 p = 100 p = 200

PR = 0.90
Proposed 3.29(1.38) 3.80(1.33) 4.49(1.81)

SNL 3.40(1.23) 4.25(1.49) 4.75(1.49)

PR = 0.80
Proposed 4.20(1.58) 5.53(2.30) 7.49(3.98)

SNL 3.87(1.41) 4.86(1.52) 5.70(2.00)

PR = 0.70
Proposed 4.13(1.56) 6.57(2.55) 7.66(2.28)

SNL 4.56(1.55) 5.63(1.72) 6.69(2.25)

Table 2. Mean and deviation of MSE in σ = 0.5 for simulations.

Method p = 30 p = 100 p = 200

CL 5.64(1.42) 7.94(2.31) 10.02(2.96)

PR = 0.99
Proposed 1.02(0.75) 2.13(1.50) 3.07(1.61)

SNL 2.97(1.23) 3.73(1.32) 5.98(3.95)

PR = 0.95
Proposed 3.05(1.28) 3.36(1.05) 4.37(3.47)

SNL 3.50(1.20) 4.19(1.35) 5.18(2.54)

PR = 0.90
Proposed 3.55(1.40) 4.83(1.61) 5.13(2.99)

SNL 3.83(1.30) 4.43(1.26) 5.21(3.42)

PR = 0.80
Proposed 4.10(1.47) 5.21(1.89) 6.70(2.51)

SNL 4.06(1.35) 5.32(1.88) 6.06(1.94)

PR = 0.70
Proposed 4.33(1.39) 6.59(2.62) 8.58(3.16)

SNL 4.53(1.54) 5.71(1.78) 7.37(2.24)

Table 3. Mean and deviation of MSE in σ = 1 for simulations.

Method p = 30 p = 100 p = 200

CL 6.50(1.78) 8.05(2.57) 10.41(3.10)

PR = 0.99
Proposed 2.34(1.29) 3.25(1.87) 3.87(1.97)

SNL 3.94(1.47) 4.98(1.67) 5.90(3.12)

PR = 0.95
Proposed 3.43(1.24) 3.96(1.61) 4.73(2.35)

SNL 4.36(1.31) 4.73(1.29) 5.39(1.64)

PR = 0.90
Proposed 4.28(1.55) 4.83(1.61) 5.09(1.88)

SNL 4.71(1.49) 5.25(2.08) 5.75(2.29)

PR = 0.80
Proposed 5.67(1.80) 6.61(2.05) 7.77(3.68)

SNL 5.20(1.79) 6.06(2.01) 6.77(2.07)

PR = 0.70
Proposed 5.73(1.87) 8.21(2.71) 8.86(3.57)

SNL 5.31(1.84) 7.02(2.29) 7.97(2.56)
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6. Application to Gut Microbiome Data

The gut microbiome affects human health/disease, for example, in terms of obesity.
Gut microbiomes may be exposed to inter-individual heterogeneity from environmental
factors such as diet as well as from hormonal factors and age [23,24]. In this section,
we applied our proposed method to the real dataset reported by [9]. This dataset was
obtained from a cross-sectional study of 98 healthy volunteers conducted at the University
of Pennsylvania to investigate the connections between long-term dietary patterns and gut
microbiome composition. Stool samples were collected from the subjects, and DNA samples
were analyzed by 454/Roche pyrosequencing of 16S rRNA gene segments of the V1–V2
region. In the results, the counts for more than 17,000 species-level OTUs were obtained.
Demographic data, such as body mass index (BMI), sex, and age, were also obtained.

We used centered BMI as the response and the compositional data of the gut micro-
biome as the explanatory variable. In order to reduce their number, we used single-linkage
clustering based on an available phylogenetic tree to aggregate the OTUs, which is provided
as the function tip_glom in the R package “phyloseq” see [25]. In this process, some closely
related OTUs defined on the leaf nodes of the phylogenetic tree are aggregated into one
OTU when the cophenetic distances between the OTUs are smaller than a certain threshold.
We set the threshold at 0.5. As a result, 166 OTUs were obtained after the aggregation. Since
some OTUs had zero counts, making it impossible to take the logarithm, these counts were
replaced by the value one before converting them to compositional data.

We computed the graph R ∈ R98×98 as follows:

R =
ST + S

2
, (S)ij =

{
1 j-th sample is a 5-NN of i-th sample with Dij,
0 Otherwise,

(19)

where Dij is the distance between the i-th and j-th samples. Distance Dij was calculated in
the following two ways: (i) Gower distance [26] was calculated using the sex and age data
of the subjects. (ii) Log-ratio distance (e.g., see [27]) was calculated using the explanatory
variable, as follows:

Dij =

√√√√
p

∑
l=1

(zc
il − zc

jl)
2, (20)

where zc
ij = log xij − 1

p ∑
p
j=1 log xij. Using these two ways of calculating distance, we

obtained two different R and estimation results. We refer to these two methods as Pro-
posed (i) and Proposed (ii), respectively. Equation (19) is the same as the one used in
Yamada et al. [7] in the application to real datasets.

To evaluate the prediction accuracy of our proposed method, we calculated MSE by
randomly splitting the dataset into 90 samples as the training data and eight samples as
the validation data. We again used the method of Lin et al. (2014), which is referred to as
compositional lasso (CL), as a comparison method. The regularization parameters were
determined by five-fold CV for both our proposed method and CL. The mean and standard
deviation of MSE were calculated from 100 repetitions.

Table 4 shows the mean and standard deviation of MSE in the real data analysis. We
observe that Proposed (i) has the smallest mean and standard deviation of MSE. This
indicates that our proposed method captures the inherent structure of the compositional
data by providing an appropriate graph R. However, the standard deviation is large even
for Proposed (i), which indicates that the prediction accuracy may strongly depend on the
assignments of samples to the training data and the validation data.

Table 4. Mean and standard deviation of MSE for real data analysis (100 repetitions).

Value Proposed (i) Proposed (ii) CL

MSE (SD) 23.01(16.62) 31.59(22.44) 30.96(23.36)
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Table 5 shows the coefficient of determination R2 using leave-one-out cross-validation
(LOOCV) for Proposed (i) and CL. The fittings of the observed and predicted BMI are
plotted in Figure 1a,b for Proposed (i) and CL, respectively. The horizontal axis represents
the centered observed BMI values, and the vertical axis represents the corresponding
predicted BMI. As shown, CL does not predict data with centered observed values between
−10 and −5 as being in that interval, whereas Proposed (i) predicts these data correctly to
some extent.

Table 5. Coefficients of determination using LOOCV.

Value Proposed (i) CL

LOOCV R2 0.245 0.083
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Figure 1. Observed and predicted BMI using LOOCV.

Figure 2 shows the regression coefficients estimated by Proposed (i) for all samples,
where the regularization parameters are determined by LOOCV. To obtain the results in
Figure 2, we used hierarchical clustering to group together similar regression coefficient
vectors, setting the number of clusters as five.
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With our proposed method, many of the estimated regression coefficients were not ex-
actly zero but close to zero. Thus, we will treat estimated regression coefficients |ŵij| < 0.05
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as being exactly zero to simplify the interpretation. Figure 3 shows only those coefficients
that satisfy |ŵij| ≥ 0.05 in at least one sample, where the corresponding variables are listed
in Table 6.

It is reported that the human gut microbiome can be classified into three clusters, called
enterotypes, which are characterized by three predominant genera: Bacteroides, Prevotella,
and Ruminococcus [11]. In the dataset, OTUs of genus levels Prevotella and Ruminococcus
were aggregated into the OTUs of family levels Prevotellaceae and Ruminococcaceae by the
single-linkage clustering. In Figure 3, Bacteroides correspond to OTU5, 6, 7, 8, 9, and 10;
Prevotellaceae corresponds to OTU12; and Ruminococcaceae corresponds to OTU30 and 31.
For these OTUs, the differences are clear between OTU6, 9, 10 and OTU30, 31 among
samples 81–90, in which only Bacteroides are correlated to the response. On the other hand,
the differences among samples 65–74 are also indicated, in which only Bacteroides do not
affect BMI. These results suggest that Bacteroides, Prevotellaceae, and Ruminococcaceae may
have different effects on BMI that are associated with enterotypes. In addition, it is reported
that women with a higher abundance of Prevotellaceae are more obese [28]. The regression
coefficients of non-zero Prevotellaceae are all positive, and the eight corresponding samples
are all females. On the other hand, in OTU29 indicating Roseburia, 9 samples out of 10 are
negatively associated with BMI. Roseburia is also reported to be negatively correlated with
indicators of body weight [29].

Table 6. Variables with estimated regression coefficients |ŵij| ≥ 0.05 for at least one sample.

Variable Kingdom Phylum Class Order Family Genus Species

OTU1 Bacteria
OTU2 Bacteria
OTU3 Bacteria Bacteroidetes
OTU4 Bacteria Bacteroidetes Bacteroidetes Bacteroidales
OTU5 Bacteria Bacteroidetes Bacteroidetes Bacteroidales Bacteroidaceae Bacteroides
OTU6 Bacteria Bacteroidetes Bacteroidetes Bacteroidales Bacteroidaceae Bacteroides
OTU7 Bacteria Bacteroidetes Bacteroidetes Bacteroidales Bacteroidaceae Bacteroides
OTU8 Bacteria Bacteroidetes Bacteroidetes Bacteroidales Bacteroidaceae Bacteroides
OTU9 Bacteria Bacteroidetes Bacteroidetes Bacteroidales Bacteroidaceae Bacteroides
OTU10 Bacteria Bacteroidetes Bacteroidetes Bacteroidales Bacteroidaceae Bacteroides
OTU11 Bacteria Bacteroidetes Bacteroidetes Bacteroidales Porphyromonadaceae Parabacteroides
OTU12 Bacteria Bacteroidetes Bacteroidetes Bacteroidales Prevotellaceae
OTU13 Bacteria Firmicutes Clostridia
OTU14 Bacteria Firmicutes Clostridia Clostridiales
OTU15 Bacteria Firmicutes Clostridia Clostridiales
OTU16 Bacteria Firmicutes Clostridia Clostridiales
OTU17 Bacteria Firmicutes Clostridia Clostridiales
OTU18 Bacteria Firmicutes Clostridia Clostridiales
OTU19 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae
OTU20 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae
OTU21 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae
OTU22 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae
OTU23 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae
OTU24 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae
OTU25 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae
OTU26 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae
OTU27 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae
OTU28 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae
OTU29 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Roseburia
OTU30 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae
OTU31 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae
OTU32 Bacteria Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Catenibacterium

OTU33 Bacteria Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Erysipelotrichaceae.
Incertae.Sedis

OTU34 Bacteria Proteobacteria
OTU35 Bacteria Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae
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Figure 3. Only the estimated regression coefficients with |ŵij| ≥ 0.05 for at least one sample.

7. Conclusions

We proposed a multi-task learning method for compositional data based on a sparse
network lasso and log-contrast model. By imposing a zero-sum constraint on the model
corresponding to each sample, we could extract the information of latent clusters in the
regression coefficient vectors for compositional data. In the results of simulations, the
proposed method worked well when clusters existed for the compositional data and an
appropriate graph R was obtained. In a human gut microbiome analysis, our proposed
method is better than the existing method in prediction accuracy by considering the
heterogeneity from age and sex. In addition, cluster-specific OTUs such as ones related to
enterotypes were detected in terms of effects on BMI.

Although our proposed method shrinks some regression coefficients that do not
affect response to zero, many coefficients close to zero remain. Furthermore, in both the
simulations and human gut microbiome analysis, the prediction accuracy of the proposed
method deteriorated significantly when the obtained R did not capture the true structure.
Moreover, the standard deviations of MSE were high in almost all cases. We leave these as
topics of future research.
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Appendix A. Derivations of Update Formulas in ADMM

Appendix A.1. Update of w

In the update of w, we minimize the terms of the augmented Lagrangian (13) depend-
ing on wi as follows:

w(k+1)
i = arg min

wi∈Rp

{
(yi − zT

i wi)
2 +

ρ

2

n

∑
m 6=i
‖wi − a(k)

i,m + s(k)i,m‖2
2

+t(k)Ti (wi − b(k)
i ) +

φ

2
‖wi − b(k)

i ‖2
2 + u(k)

i 1T
p wi +

ψ

2
‖1T

p wi‖2
2

}
.

(A1)

From ∂L
∂wi

= 0, we obtain the update:

w(k+1)
i =

{
2zizT

i + (ρ(n− 1) + φ)Ip + ψ1p1T
p

}−1

{
2yizi + ρ

n

∑
m 6=i

(a(k)
i,m − s(k)i,m)− t(k)i + φb(k)

i − u(k)
i 1p

}
.

(A2)

Appendix A.2. Update of a

The update of a is obtained by the joint minimization of am,l and al,m as follows:

a(k+1)
m,l , a(k+1)

l,m = arg min
am,l ,al,m∈Rp

{
λ1rm,l‖am,l − al,m‖2

+
ρ

2
(‖w(k+1)

m − am,l + s(k)m,l‖2
2 + ‖w

(k+1)
l − al,m + s(k)l,m‖2

2)
}

.
(A3)

In [8], the analytical solution was given as:

a(k+1)
m,l = θ(w(k+1)

m + s(k)m,l) + (1− θ)(w(k+1)
l + s(k)l,m),

a(k+1)
l,m = (1− θ)(w(k+1)

m + s(k)m,l) + θ(w(k+1)
l + s(k)l,m),

(A4)

where

θ = max


1− λ1rm,l

ρ‖(w(k+1)
m + s(k)m,l)− (w(k+1)

l + s(k)l,m)‖2

, 0.5


. (A5)

https://github.com/aokazaki255/CSNL
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Appendix A.3. Update of b

The update of b is obtained by the following minimization problem:

b(k+1)
i = arg min

bi∈Rp

n

∑
i=1

{
λ2‖bi‖1 + tT

i (wi − bi) +
φ

2
‖wi − bi‖2

2

}
. (A6)

Because the minimization problem with respect to bi contains a non-differentiable point in
the `1 norm of bi, we consider the subderivative of |bij|. Then, we obtain the update:

b(k+1)
ij = S

(
wij +

ti,j

φ
,

λ2

φ

)
, j = 1, . . . , p, (A7)

where S(·, ·) is the soft-thresholding operator given by S(x, λ) := sign(x)(|x| − λ)+.

Appendix A.4. Update of Q

The updates for the Lagrange multipliers denoted as Q are obtained by gradient
descent as follows:

s(k+1)
m,l = s(k)m,l + ρ(w(k+1)

m − a(k+1)
m,l ), m, l = 1, . . . , n (i 6= j),

t(k+1)
i = t(k)i + φ(w(k+1)

i − b(k+1)
i ), i = 1, . . . , n,

u(k+1)
i = u(k)

i + ψ1T
p w(k+1)

i , i = 1, . . . , n.

(A8)

Appendix B. Update Algorithm for Constrained Weber Problem via ADMM

We consider the updates for the following constrained Weber problem via ADMM
based on: [30].

min
wi∗∈Rp

{
n

∑
i=1

ri∗ ,i‖wi∗ − ŵi‖2

}
, s.t.

p

∑
j=1

wi∗ j = 0. (A9)

The minimization problem (A9) is equivalently represented as:

min
wi∗ ,e1,...,en∈Rp

{
n

∑
i=1

ri∗ ,i‖ei − ŵi‖2

}
,

s.t. 1T
p wi∗ = 0, ei = wi∗ , i = 1, . . . , n.

(A10)

The augmented Lagrangian for (A10) is formulated as:

Lρ,φ(wi∗ , e1, . . . , en) =
n

∑
i=1

{
ri∗ ,i‖ei − ŵi‖2 + uT

i (ei −wi∗) +
µ

2
‖ei −wi∗‖2

2

}

+ v1T
p wi∗ +

η

2
‖1T

p wi∗‖2
2,

(A11)

where ui, v are Lagrange multipliers and µ, η (> 0) are tuning parameters.

Appendix B.1. Update of wi∗

In the update of wi∗ , we minimize the terms of the augmented Lagrangian (A11)
depending on wi∗ as follows:

w(k+1)
i∗ = arg min

wi∗∈Rp

{
n

∑
i=1

{
µ

2

∥∥∥∥wi∗ − e(k)i −
1
µ

u(k)
i

∥∥∥∥
2

2

}
+ v(k)1T

p wi∗ +
η

2
‖1T

p wi∗‖2
2

}
. (A12)

From ∂L
∂wi∗

= 0, we obtain the update:
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w(k+1)
i∗ = (µn1p + η1p1T

p )
−1

{
µ

n

∑
i=1

(
e(k)i +

1
µ

u(k)
i

)
− v(k)1p

}
. (A13)

Appendix B.2. Update of e

In the update of ei, we minimize the terms of augmented Lagrangian (A11) depending
on ei as follows:

e(k+1)
i = arg min

ei∈Rp

{
ri∗ ,i‖ei −w(k+1)

i∗ ‖2 +
µ

2

∥∥∥∥ei −
(

w(k+1)
i∗ − 1

µ
u(k)

i

)∥∥∥∥
2

2

}
,

i = 1, . . . , n,

(A14)

The minimization problem (A14) is equivalently expressed as:

e(k+1)
i = arg min

ei∈Rp

{
ri∗ ,i
µ
‖ei −w(k)

i∗ ‖2 +
1
2

∥∥∥∥ei −
(

w(k)
i∗ −

1
µ

u(k)
i

)∥∥∥∥
2

2

}
,

i = 1, . . . , n.

(A15)

In [30], because the right-hand side of (A15) is the proximal map of the function f (ei) =ri∗ ,i
ρ ‖ei − wi∗‖2, by using Moreau’s decomposition (e.g., [31]), the updates of e are ob-

tained by:

e(k+1)
i = min

(
ri∗ ,i
µ

,
∥∥∥∥w(k)

i∗ −
1
µ

u(k)
i − ŵi

∥∥∥∥
2

) w(k)
i∗ − 1

µ u(k)
i − ŵi

‖w(k)
i∗ − 1

µ u(k)
i − ŵi‖2

. (A16)

Appendix B.3. Update of u and v

The updates for Lagrange multipliers ui and v are obtained by gradient descent
as follows:

u(k+1)
i = u(k)

i + µ(e(k+1)
i −w(k+1)

i∗ ), i = 1, . . . , n,

v(k+1) = v(k) + η1T
p w(k+1)

i∗ .
(A17)
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