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Abstract

:

The (weighted) partial maximum satisfiability ((W)PMS) problem is an important generalization of the classic problem of propositional (Boolean) satisfiability with a wide range of real-world applications. In this paper, we propose an initialization and a diversification strategy to improve local search for the (W)PMS problem. Our initialization strategy is based on a novel definition of variables’ structural entropy, and it aims to generate a solution that is close to a high-quality feasible one. Then, our diversification strategy picks a variable in two possible ways, depending on a parameter: continuing to pick variables with the best benefits or focusing on a clause with the greatest penalty and then selecting variables probabilistically. Based on these strategies, we developed a local search solver dubbed  ImSATLike , as well as a hybrid solver   ImSATLike-TT  , and experimental results on (weighted) partial MaxSAT instances in recent MaxSAT Evaluations show that they outperform or have nearly the same performances as state-of-the-art local search and hybrid competitors, respectively, in general. Furthermore, we carried out experiments to confirm the individual impacts of each proposed strategy.






Keywords:


maximum satisfiability; structural entropy; local search; heuristic search












1. Introduction


The maximum satisfiability (MaxSAT) problem is an optimization version of the Boolean satisfiability (SAT) problem, which is a prototypical NP-complete problem. In the context of the SAT and MaxSAT problems, a propositional formula F is usually expressed in conjunctive normal form (CNF) [1], i.e.,   F =  ⋀ i   ⋁ j   l  i j    , where each   l  i j    is a literal, which is either a Boolean variable or its negation. A CNF formula can be expressed as a set of clauses, where a clause is a disjunction of literals, and each CNF formula is a conjunction of clauses.



Given a formula in CNF, the MaxSAT problem is to seek an assignment that minimizes the number of unsatisfied clauses in the formula. The partial maximum satisfiability (PMS) problem generalizes the MaxSAT problem to involve both hard and soft clauses. It aims to find a solution that minimizes the number of violated soft clauses while satisfying all the hard ones. The weighted partial maximum satisfiability (WPMS) problem is a generalization of the PMS problem, which further associates each soft clause with a positive weight and tries to locate a solution that minimizes the total weight of violated soft clauses. The MaxSAT, PMS, and WPMS problems are all NP-hard, and it is well known that optimum solutions are hard to approximate [2]. Obviously, MaxSAT is a special case of PMS, where the set of hard clauses is empty, and PMS is a special case of WPMS, where each soft clause is associated with the same weight.



Like other combinatorial problems, real-world applications usually contain hard and soft constraints [3], and soft ones often have different importance. Encoding such problems into PMS and WPMS problems is natural and straightforward [4,5,6,7]. In fact, real-world problems such as computational protein design [8,9], set covering [10], coalition structure generation [11], and large-scale road sensing through crowdsourced vehicles [12] can be encoded and solved as PMS or WPMS problems.



There are two popular kinds of algorithms for solving MaxSAT and also its extensions: complete and stochastic local search (SLS) algorithms. Complete algorithms are able to confirm the optimality of the returned solution at the end, but they may fail to return a high-quality one for large-scale instances within reasonable time [13]. These algorithms can further be classified into two main subcategories: branch and bound MaxSAT algorithms [14,15,16,17], which are based on David–Putnam–Loveland–Logemann (DPLL) procedures [18,19], and SAT-based ones [20,21,22,23,24,25,26,27], which call efficient conflict-driven clause learning (CDCL) SAT solvers [28,29] to solve a sequence of SAT problems. Considering recent MaxSAT Evaluations, we found that branch and bound algorithms are superior on crafted benchmarks, while SAT-based ones perform better on application benchmarks (https://maxsat-evaluations.github.io/2018/, accessed on 8 November 2022). Furthermore, SAT-based solvers, namely   Open-WBO   [30],  LinSBPS , and   TT-Open-WBO-inc   [31], performed extraordinarily in incomplete solver tracks of MaxSAT Evaluations 2018 and 2019 (https://helda.helsinki.fi/bitstream/handle/10138/237139/mse18_proceedings.pdf?sequence=1, https://helda.helsinki.fi/bitstream/handle/10138/306989/mse19proc.pdf?sequence=1 accessed on 8 November 2022). On the other hand, SLS algorithms are often able to find satisfactory solutions within a reasonable time frame [3,32], although they do not guarantee the optimality of the solution they find. These algorithms are usually variants or refinements of two prototype solvers, i.e.,  GSAT  [33] and  WalkSAT  [34].



1.1. Local Search for MaxSAT


Recently, significant breakthroughs have been achieved by SLS algorithms for solving PMS and WPMS problems, resulting in state-of-the-art SLS algorithms, namely  Dist  [3] together with its improvement  DistUP  [35],  CCEHC  [36], and  SATLike  together with one of its variants  SATLike  3.0 [37]. The  Dist  algorithm shows great success in solving PMS and won several categories in the incomplete solver track of the MaxSAT Evaluation 2014. Furthermore, it competes well with state-of-the-art complete algorithms on some classes of PMS application instances, such as advanced encryption standard and protein [3]. Furthermore,  Dist  can also be adapted to solve WPMS and is still one of the current best SLS algorithms for solving WPMS. The  DistUP  algorithm, an improvement of  Dist , which incorporates unit propagation in its initialization procedure, shows improvement over  Dist  on industrial instances. However,  CCLS ,  Dist , and  DistUP  are not dedicated to solving WPMS, and their performance for solving WPMS could be further improved. This motivates the design of a solver dubbed  CCEHC  [36], which is the state-of-the-art on WPMS instances. The  CCEHC  algorithm extends the framework of  CCLS  with an extra heuristic, which emphasizes hard clauses (EHCs). With a strong focus on hard clauses, the EHC heuristic has three components: a variable selection mechanism, which focuses on a forbidding mechanism called configuration checking based only on hard clauses, a weighting scheme for hard clauses, as well as an approach of a biased random walk. Later,  SATLike  and its variant  SATLike  3.0 outperformed previous solvers in solving PMS and WPMS problems. Moreover, they are thought to be the first SLS solvers that compete well with SAT-based ones.



Despite the significant breakthroughs above, there is still a gap between the performances of SLS solvers and those of SAT-based ones. To make matters worse, the algorithms for the former ones are more complicated than those for the latter ones. We believe that these drawbacks may be due to certain structures of PMS and WPMS problems. For example, there are two kinds of clauses, hard and soft ones. Furthermore, these drawbacks could also be caused by improper selections of initial solutions (starting points of local search) or diversifying variables. In this sense, the detailed analysis of the structures of PMS and WPMS problems, as well as suitable initial solutions and diversifying variables may lead to significant improvements.




1.2. Our Contributions


In this work, we develop an SLS solver named  ImSATLike  together with a hybrid one dubbed   ImSATLike-TT   based on two novel strategies, i.e., generating a high-quality starting point for local search and selecting a promising variable for diversification. Firstly, our initial solution generation is based on a notion called variable entropy. The resulting solution is closer to high-quality feasible solutions compared to those generated in the most common and traditional approach, i.e., pure random assignments. Experiments showed that this strategy is able to improve the efficiency of locating a satisfactory solution. Secondly, when the search is trapped in local optima, it will focus more on three types of variables: (1) those in the whole formula, which has the greatest benefit; (2) those lying in a clause with the greatest penalty; (3) those causing the least clauses to become unsatisfied. Thirdly, we also develop a hybrid solver   ImSATLike-TT  , which combines  ImSATLike  with a state-of-the-art SAT-based solver  TT - Open - WBO - inc  [31], and this solver presents satisfactory performances on (weighted) partial MaxSAT instances in recent MaxSAT Evaluations.



The rest of this paper is organized as follows. Some necessary concepts and basic notations are introduced in Section 2. The strategy of generating an initial solution based on variables’ structural entropy is introduced in Section 3. In Section 4, we introduce the diversifying variable selection strategy based on clause penalties. Our algorithm and the experimental evaluations are presented in Section 5 and Section 6, respectively. In Section 7, we give some conclusions and the future work.





2. Preliminaries


Throughout this paper, we talk about propositional logic. Given a set of n Boolean variables (also called propositional atoms)   V = {  x 1  , ⋯ ,  x n  }  , a literal l is either   x k   or   ¬  x k   , where   k = 1 , 2 , ⋯ , n  . A clause   C =  l 1  ∨ ⋯ ∨  l s    is a disjunction of literals, where s is called the (clause) length of C. Then, we use   V ( C )   as the set of variables in C. In addition, if   l =  x k    (respectively   l = ¬  x k   ) is a literal in C, then we say that   x k   occurs positively (respectively negatively) in C, and we can also say that C contains   x k  ’s positive (respectively negative) occurrence.



A formula F in conjunctive normal form (CNF) is a conjunction of clauses, i.e.,   F =  C 1  ∧ ⋯ ∧  C t   , where t is called the number of clauses in F. Given a CNF formula F, we abuse   V ( F )   to denote the set of variables in F, i.e.,   V  ( F )  =  ⋃  1 ≤ j ≤ t   V  (  C j  )   . Furthermore, we use   C ( F )   to denote the set of clauses in F, i.e.,   C  ( F )  =  {  C 1  , ⋯ ,  C t  }   . In the MaxSAT problem, as well as its variants, clauses are usually partitioned into hard and soft ones, so we use    C h   ( F )    and    C s   ( F )    to denote the set of hard and soft clauses in F, respectively.



Two different variables, namely x and y, are said to be neighbors if there exists at least one clause C in   C ( F )   s.t. both x and y occurring in C. We use   N ( x , F )   to denote the set of x’s neighboring variables in F, i.e.,   N ( x , F ) = { y | x , y  both  occur  in  C , C ∈ C ( F ) }  . Given a CNF formula F with a weighting function    W F  : C  ( F )  ↦  Z +   , we say that   〈 F ,  W F  〉   is a MaxSAT formula (or we call it a MaxSAT instance). Without loss of generality for any unweighted soft clause    C s  ∈ C  ( F )   , we let    W F   (  C s  )  = 1  . We use   W F   with subscripts here in order to distinguish between this weight notation and those below in graph theory.



Usually, SLS algorithms will first make a random guess to obtain a candidate solution, then they will change this solution by trial and error, so we introduce some related notions here. A complete assignment is a map   α : V ( F ) ↦ { 0 , 1 }  , which assigns a Boolean value (either 0 or 1) to each variable in the formula F, so for any variable x in F, either   α ( x ) = 0   or   α ( x ) = 1  . In the context of SLS algorithms for MaxSAT, as well as its variants, a (candidate) solution is a complete assignment. In this sense, we say that x is flipped if we change the Boolean value of x from 0 to 1 or vice versa. More formally, this manipulation leads to another assignment    α ′   = α \  {  〈 x , α  ( x )  〉  }  ∪  {  〈 x , 1 − α  ( x )  〉  }    . In what follows, we will use the notions of assignment and solution interchangeably.



Given a CNF formula F and a complete assignment  α  that maps   V ( F )   to   { 0 , 1 }  , each clause in F under the assignment  α  has two possible states: satisfied and unsatisfied; a clause C in F is satisfied if at least one literal in C takes the value 1 (true) under  α ; otherwise, C is unsatisfied.



Clauses in a (weighted) partial MaxSAT formula   〈 F ,  W F  〉   are partitioned into hard and soft ones, and each soft clause in the weighted case is further associated with a positive integer. Given   〈 F ,  W F  〉  , the (weighted) partial maximum satisfiability ((W)PMS)) problem is to find a complete assignment that satisfies all hard clauses in F and minimizes the total weight/number of all unsatisfied soft clauses in F.



Given a (weighted) partial MaxSAT formula   〈 F ,  W F  〉  , a complete assignment is feasible if it satisfies all hard clauses in F. The quality of a complete assignment  α  over   〈 F ,  W F  〉  , denoted as   quality ( α , F ,  W F  )  , is the total weight/number of all satisfied soft clauses in   〈 F ,  W F  〉   under  α . An optimum assignment is a feasible assignment, namely   α *  , s.t., for any feasible assignment  α  over   〈 F ,  W F  〉  ,   quality  (  α *  , F ,  W F  )  ≥ quality  ( α , F ,  W F  )   , that is an optimum assignment over   〈 F ,  W F  〉   is an feasible assignment with the minimum cost. In what follows, we usually suppress F and   W F   in   quality ( α , F ,  W F  )   if understood from the context.



2.1. Variable Graph


The research community for complex networks has developed techniques of analysis and algorithms to study real-world graphs, and such approaches can be adopted by the SAT community. Inspired by the results on complex networks, Ref. [21] studied the community structure, or modularity, of industrial SAT instances, and they proposed a notion named the variable graph, which describes the interactions between Boolean variables in a SAT formula. Here, we extend the notion of the variable graph so that it works seamlessly in PMS and WPMS problems.



The variable graph of a (weighted) partial MaxSAT formula   〈 F ,  W F  〉  , denoted by   G ( F ,  W F  )  , is defined as   (  V F  ,  E F  ,  W  〈 F ,  W F  〉   )  , which describes the interactions between any pair of distinct Boolean variables in F. First,   V F   is a vertex set s.t. each vertex    v i  ∈  V F    representing a Boolean variable    x i  ∈ V  ( F )   , i.e., there is a bijection   ϕ : V  ( F )  ↦  V F    for graph construction. In this sense, the inverse function   ϕ  − 1    exists, and it maps vertices, namely   v i  , back to their corresponding Boolean variables, namely   x i  . Second, they defined   E F   as   {  { u , v }  | x =  ϕ  − 1    ( u )  , y =  ϕ  − 1    ( v )  and y = N  ( x , F )  }  , i.e., two vertices in a variable graph   G ( F ,  W F  )   are connected if and only if their corresponding Boolean variables are neighbors in F. Third, the edge weight component   W  〈 F ,  W F  〉   , is defined as below.


   W  〈 F ,  W F  〉    (  { u , v }  )  =  ∑  x , y ∈ C     1    | C |  2    ,  








where   x =  ϕ  − 1    ( u )  , y =  ϕ  − 1    ( v )   . In this formula,   | C |   is the cardinality of C and     | C |  2    means a combination of   | C |   elements taken two elements at a time. The motivation is to give the same relevance to all clauses, so they pondered the contribution of a clause to an edge by   1 /    | C |  2    . This way, the sum of the weights of the edges generated by a clause is always 1. In this paper, we propose an extension to this weighting scheme that is tailored for PMS and WPMS.




2.2. Local Search for MaxSAT


The basic framework of SLS algorithms for solving (W)PMS can be described as follows. Initially, an SLS algorithm randomly generates an assignment of Boolean values to all variables; then, it repeatedly selects and flips a Boolean variable until the cutoff arrives; finally, it returns the best feasible assignment that has been found. During the search, most SLS algorithms alternate between two modes: greedy (intensification) mode and random (diversification) mode. In greedy modes, SLS algorithms prefer those flips that lead to a decreasing number of unsatisfied hard clauses and a decreasing total weight/number of unsatisfied soft clauses. In random modes, they tend to diversify the search by randomized strategies.




2.3. Clause Penalties in  SATLike  3.0


Although greedy search helps find better solutions nearby, it can often be trapped in local optima, so various diversification strategies have been proposed to tackle this problem including dynamic local search. Usually, in the context of SAT/MaxSAT, SLS algorithms associate each clause in a CNF formula F with a penalty, in order to help focus more on those clauses that are rarely satisfied [38]. To be specific, if a clause, namely C, is often unsatisfied, they will increase C’s penalty often. As a result, any solution that violates C will tend to have a great penalty. Alternatively, the search will have high priority to satisfy C. In this sense, each clause will have opportunities to be satisfied.



Below, we introduce the penalty management scheme in  SATLike  3.0 [37], which is also adopted for our algorithms. It distinguishes between hard and soft clauses with three parameters: the change   δ h   for hard clause penalties, the change   δ s   for soft clause penalties, as well as  Λ , which limits soft clause penalties.  SATLike  3.0 uses  Λ  to prevent the penalties of soft clauses from being too large, in case they receive too much attention. Furthermore,   δ h   is usually greater than   δ s   because hard clauses should have greater impacts on the search, compared to soft ones:




	1.

	
Initially:




	(a)

	
  penalty (  C h  ) ← 1   for each hard clause   C h  ;




	(b)

	
  penalty  (  C s  )  ←  W F   (  C s  )    for each soft clause   C s  .










	2.

	
At each local optimum:




	(a)

	
with probability p:




	i.

	
  penalty  (  C h  )  ← penalty  (  C h  )  +  δ h    for each violated hard clause   C h  ;




	ii.

	
  penalty  (  C s  )  ← penalty  (  C s  )  +  δ s    for each violated soft clause   C s   s.t.   penalty (  C s  ) < Λ  .










	(b)

	
with probability   1 − p  :




	i.

	
  penalty  (  C h  )  ← penalty  (  C h  )  −  δ h    for each satisfied hard clause   C h   s.t.   penalty  (  C h  )  >  δ h   ;




	ii.

	
  penalty  (  C s  )  ← w  (  C s  )  −  δ s    for each satisfied hard clause   C s   s.t.   penalty (  C s  )    >  δ s   .





















Like most SLS algorithms,  SATLike  3.0 uses the traditional notion of a score to select variables to flip, in order to decrease the total penalties. Before introducing this notion, we first introduce the  cost  of an assignment over a MaxSAT formula, which sums up the penalties of all hard and soft clauses. Given an assignment  α , the cost of  α  over   〈 F ,  W F  〉  , denoted by   cost ( α , F ,  W F  )  , is defined as the total penalties of all unsatisfied clauses. In this sense, the  score  of x under  α  over   〈 F ,  W F  〉  , denoted by   score ( x , α , F ,  W F  )  , is defined as the benefits of flipping x in F. More specifically,


  score  ( x , α , F ,  W F  )  = cost  ( α , F ,  W F  )  − cost  (  α ′  , F ,  W F  )  ,  








where   α ′   is the same as  α  with x being flipped. Therefore, the scoring function measures that decrease of penalties that is caused by flipping x.  SATLike , as well as its variants mainly rely on this scoring function and guide local search to seek a better solution. Last, we use   a g e ( x )   to denote the number of flips since the last time x was flipped.




2.4.  SATLike  3.0


Below, we introduce a state-of-the-art solver,  SATLike  3.0 (See Algorithm 1) [37], which performed well in recent MaxSAT Evaluations. It is named after SAT because it works somewhat like a SAT solver. The experimental results showed that it outperforms some SAT-based solvers in some industrial benchmarks.



	Algorithm 1: SATLike 3.0.



	    input  : A (W)PMS formula   〈 F ,  W F  〉   and the cutoff



	    output: A best solution found   α *   or “NO SOLUTION FOUND”
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3. Initiating a Solution Based on Variables’ Structural Entropy


In local search, an initial solution (starting point), which lies near a high-quality one, may cost significantly less steps (flips) to achieve that satisfactory solution. In our previous works [39,40], we confirmed that a variable’s structural entropy significantly influences the probability that it will be flipped later in local search. Based on this result, we developed strategies for initiating solutions and such strategies greatly improve two state-of-the-art solvers,  Sparrow  and  CCASat . However, most SLS PMS and WPMS solvers initiate a solution in a purely random way, which possibly generates a bad starting point. Hence, in this work, we extend our initiating strategy for SAT to (W)PMS problems, in order to improve efficiency. In this section, we introduce (1) a novel weighting scheme for the variable graph of a MaxSAT formula, (2) our definition of structural entropy, and finally, (3) our algorithm for constructing a good starting point.



3.1. A Novel Weighting Scheme Tailored for (W)PMS


We adopted the notion of the variable graph from [21], but assigned each edge a positive weight in a novel approach. Before introducing this approach, we first define the relevance of any pair of distinct variables in a MaxSAT formula.



Definition 1. 

Given a (weighted) partial MaxSAT formula   〈 F ,  W F  〉  , a clause   C ∈ C ( F )  , and a pair of variables   x , y  , we define the relevance between x and y in C over   〈 F ,  W F  〉  , denoted by    t  〈 F ,  W F  , C 〉    ( x , y )   , as below, where  W  is the total weight of all soft clauses.


      t  〈 F ,  W F  , C 〉    ( x , y )  =      1    | C |  2       if  x , y ∈ C  and  C ∈  C h   ( F )  ;          W F   ( C )   W  ·  1    | C |  2        if  x , y ∈ C  and  C ∈  C s   ( F )  ;      0    otherwise .          













Now, we discuss some special cases of this formula to present some intuition:




	
If either x or y is absent from C, we think that there is no connection between them in C, so the relevance between them in C is defined to be 0.



	
If C is long, we believe that the connection between x and y is weak, so     | C |  2    will be big and the relevance tends to be small. Cases are analogous if C is short.



	
If C is soft, we guess that their connection is weak, so the coefficient     W F   ( C )   W   helps decrease the relevance value.



	
If C is a soft clause with a great weight, we feel that the connection between x and y is relatively big, then     W F   ( C )   W   will be relatively big as well and so will be the relevance.








Then, we define the total relevance between x and y in a clause set S over   〈 F ,  W F  〉   as the sum of relevance over all clauses in S, as is shown below.


   t  〈 F ,  W F  , S 〉    ( x , y )  =  ∑  C ∈ S     t  〈 F ,  W F  , C 〉    ( x , y )   








Here, we abuse the notation in Definition 1 and write    t  〈 F ,  W F  , S 〉    ( x , y )    to discuss cases about clause sets. Therefore, the total relevance between x and y in the clause set of F, i.e.,   C ( F )  , is    t  〈 F ,  W F  , C  ( F )  〉    ( x , y )   , which measures how closely related the two variables are in the involved MaxSAT formula.



Finally, we are ready to define edge weights in   G ( F ,  W F  )  , i.e.,    W  〈 F ,  W F  〉    ( u , v )  =  t  〈 F ,  W F  , C  ( F )  〉    ( x , y )   , where   x =  ϕ  − 1    ( u )    and   y =  ϕ  − 1    ( v )   . In this sense, the weight of an edge in our variable graph   G ( F ,  W F  )   represents the relevance between their corresponding Boolean variables in the MaxSAT formula   〈 F ,  W F  〉  .




3.2. Properties of Our Weighting Scheme


Now, we discuss the impacts of hard and soft clauses on the relevance between Boolean variables. First, we have a proposition below that shows that the contribution of a single hard binary clause to the relevance is no smaller than that made by all soft clauses.



Proposition 1. 

Given a MaxSAT formula   〈 F ,  W F  〉  , if there exists a binary hard clause   C h   that contains variables x and y, then


    t  〈 F ,  W F  ,  C s   ( F )  〉    ( x , y )  ≤  t  〈 F ,  W F  ,  C h  〉    ( x , y )  ;   








the equality relation holds if and only if all soft clauses are of length 2.





Proof. 

First, we amplify the left-hand side as below.


          t  〈 F ,  W F  ,  C s   ( F )  〉    ( x , y )           =  ∑  C ∈  C s   ( F )      t  〈 F ,  W F  , C 〉    ( x , y )           =  ∑  C ∈  C s   ( F )  ,  | C |  ≥ 2       W F   ( C )   W  ·  1    | C |  2             ≤  ∑  C ∈  C s   ( F )  ,  | C |  ≥ 2       W F   ( C )   W  ·  1     |   C h   |   2             =  1     |   C h   |   2    ·  ∑  C ∈  C s   ( F )  ,  | C |  ≥ 2       W F   ( C )   W      



(1)






        ≤  1     |   C h   |   2    =  t  〈 F ,  W F  ,  C h  〉    ( x , y )  .     



(2)












	
As to (1), if there exists any soft clause whose length is greater than 2, then the equation there does not hold.



	
As to (2), if there exists any soft clause whose length is smaller than 2, then the equation there does not hold.



	
Obviously, if all soft clauses are of length 2, the equality relation in the proposition above holds.








According to the statements above, we have proven this proposition.    □





	
Based on this proof, we have a corollary below.






Corollary 1. 

Given a MaxSAT formula   〈 F ,  W F  〉   and an integer k s.t.   k ≥ 2  , if:








	1.

	
there exists a hard clause   C h   of length k that contains variables x and y;




	2.

	
all soft clauses are at least of length k.









then


    t  〈 F ,  W F  ,  C s   ( F )  〉    ( x , y )  ≤  t  〈 F ,  W F  ,  C h  〉    ( x , y )  ;   








the equality relation holds if and only if all soft clauses are of length k.






3.3. Variables’ Structural Entropies


Given an edge-weighted graph   G = ( V , E ,  w G  )  , we use   N ( u , G )   to denote the set of u’s neighbor in G and use   d ( u , G )   to denote the cardinality of   N ( u , G )  , i.e.,   d ( u , G ) = | N ( u , G ) |  . Moreover, we use   ω ( u , G )   to denote u’s weighted degree, i.e.,   ω  ( u , G )  =  ∑  v ∈ N ( u , G )    w G   (  { u , v }  )   , suppressing G if understood from the context. Given   U ⊆ V  , we define the volume of U, denoted by   vol ( U )  , as    ∑  u ∈ U   ω  ( u )   , and we abuse this notation to define   vol ( G )   as   vol ( V )  .



Definition 2. 

Given a (weighted) partial MaxSAT formula   〈 F ,  W F  〉   and its variable graph   G  ( F ,  W F  )  =  (  V F  ,  E F  ,  W  〈 F ,  W F  〉   )   , where    V F  =  {  v 1  , ⋯ ,  v n  }   , we define   v i  ’s structural entropy as


    H  (  v i  )  = −  p i   log 2   p i  = −   ω (  v i  )   vol ( G )    log 2    ω (  v i  )   vol ( G )    ,   








then the structural entropy of the variable graph G is defined as


   H  ( G )  =  ∑  i = 1  n  H  (  v i  )  .   













As is stated in [41], the structural information   H ( G )   of a weighted and connected graph G measures the information required to determine the code of the vertices that are accessible from a random walk in G with its stationary distribution   (  p 1  , ⋯ ,  p n  )  . On the other hand, as to a single vertex, namely   v i  ,   H (  v i  )   represents the uncertainty information of a random walk with a stationary distribution to visiting   v i   from its neighbors.



Then, given a MaxSAT formula   〈 F ,  W F  〉   and a variable, namely x, we abuse the notation above to define x’s structural entropy in   〈 F ,  W F  〉   as the structural entropy of its corresponding vertex in   G ( F ,  W F  )  .



Now, we present some properties of our definition of structural entropy to help understand its insights intuitively.



Proposition 2. 

Let   f  ( x )  = − x  log 2  x   with   x ∈ ( 0 , 1 )  ; we have:








	1 

	
  f ( x ) > 0   for any   x ∈ ( 0 , 1 )  ;




	2. 

	
  f ( x )   is strictly monotonically increasing (respectively decreasing) in   ( 0 , 1 / e )   (respectively   ( 1 / e , 0 )  ), where e is Euler’s constant and   e ≈ 2.71828 ⋯  .











Therefore, given a vertex, namely   v i  , with   H  (  v i  )  = −  p i   log 2   p i   , if   H (  v i  )   is relatively small, then   p i   is relatively close to 0 or 1. Similarly, if   H (  v i  )   is relatively large, then the value of   p i   is near   1 / e  . In our algorithm, we first assign Boolean variables whose corresponding vertex has relatively small structural entropy. Now, we explain the motivation as follows. Vertices with relatively small structural entropy correspond to Boolean variables that are of much or little influence on other variables in the CNF formula. Below, we discuss these cases in details:




	
Assigning highly influential variables tend to satisfy relatively many clauses or help satisfy clauses with great weights.



	
Variables of little influence often occur in few clauses or in clauses of small weights, so we simply assign them to satisfy such clauses.









3.4. Initiating Solutions


In this subsection, given a CNF formula F, we use   C ( F , x )   to denote the set of clauses in F (including both hard and soft ones) that contain x as one of its literals. Similarly, we define the notation of   C ( F , ¬ x )  . Then, our procedure for initiating a solution is described in Algorithm 2, which is named variables’ structural entropy-based initialization (VSEI). The motivation of VSEI is as follows. The smaller a variable’s structural entropy is, the more stable its truth value is, hence the smaller the probability that it will be flipped later [40]. That is, a variable with smaller structural entropy should probably be assigned earlier, compared to those variables with greater ones.



The main idea of Algorithm 2 is as follows. When initiating a solution, we repeated the following operations: picking a variable that is unassigned with the smallest structural entropy and, then, mapping it to 0 or 1, depending on the number of its positive and negative occurrences in clauses that have not been satisfied yet. To be specific, suppose we have picked a variable x and x’s positive occurrences is more than its negative ones, then we assign 1 to x; otherwise, we assign 0 to x. In a nutshell, we assign values to variables greedily in order to satisfy as many clauses as possible at the end of initialization.



	Algorithm 2: VSEI.



	    input  : A (W)PMS formula   〈 F ,  W F  〉  



	    output: An initial solution
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4. Diversifying Variable Selection Based on Clause Penalties


Each time the search encounters a local optimum, i.e., there are no variables whose flip leads to a penalty decrease, we will call Algorithm 3 to pick a variable and flip it. More specifically, this algorithm first adjusts penalties like  SATLike  3.0 (Line 1), then it picks a variable in two possible ways depending on a parameter p: (1) continuing to choose one with the best score and the best age (Line 3); (2) focusing on an unsatisfied clause with the greatest penalty (Line 5) and performing probabilistic selections on it (Line 6). Considering its most distinguishing features, we name it probabilistic selection for great penalties (PSGP).



	Algorithm 3: PSGP.



	    input  :   score ( x )   and   age ( x )   for all x’s in F, the current unsatisfied clause set U



	    output: A variable to be flipped
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In Line 3, we insist on picking the globally best variables, and this may bring some benefits. The reason is that Line 1 just changes the penalties of some clauses, which, in turn, affects the score of some variables involved.



In Line 6, each variable namely x in C is picked with a probability proportional to   δ  − break ( x , α )   , where   break ( x , α )   is the number of clauses (including both hard and soft ones) that will become unsatisfied if x is flipped, given the current assignment  α . Hence, this probability distribution always prefers small- break  variables. Here, the parameter  δ  controls how concentrated this distribution is at small- break  variables. Obviously, the greater  δ  is, the greater the probability difference between small- break  and big- break  variables. This distribution is inherited from  ProbSAT  [42], which was a simple and elegant local search SAT solver with a probabilistic selection as its single strategy.




5. ImSATLike


In this section, we introduce our novel Algorithm 4 as a whole, which works on (W)PMS instances. In the initialization procedure, it adopts variables’ structural entropy to generate a good starting point of local search. Then, during local search, each time it meets a local optimum, it will still pick the globally best variables or it will focus on an unsatisfied clause with the greatest penalty and choose variables by probabilistic selection. Since our algorithm is based on  SATLike  3.0, we call it  ImSATLike .



There are two main differences between our algorithm and  SATLike  3.0: (1)  SATLike  3.0 employs unit propagation to generate an initial solution, while our solver initiates starting points by variables’ structural entropy; (2) in diversification,  SATLike  3.0 picks a random unsatisfied clause and performs greedy selection, while our solver still possibly continues our greedy strategy or focuses on a clause with the greatest penalty and exploits probabilistic selection.



	Algorithm 4: ImSATLike.



	    input  : A (W)PMS formula   〈 F ,  W F  〉   and the cutoff



	    output: A best solution found   α *   or “NO SOLUTION FOUND”
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6. Experimental Evaluations


To evaluate the performance of our algorithm, we compared it to  SATLike  and its improvement  SATLike  3.0 on (W)PMS instances, which was used in MaxSAT Evaluations 2018 and 2019. To be specific, these instances came from four benchmarks, namely ms18_wt, ms19_wt, ms18_unwt, and ms19_unwt, among which the former (respectively latter) two contain all weighted (respectively unweighted) partial MaxSAT instances used in 2018 and 2019, respectively. For each instance, namely  I , among  I ’s feasible solutions, there is a quality that is known to be the best, and we call it  I ’s best-known (solution) quality. Given a solver  A  and an instance  I , we say that  A successfully solves  I  in a particular run if  A  locates a solution of that best-known quality in that run.



 SATLike  3.0 not only outperforms  CCEHC  and  Dist , but also beats their respective improvements,  DeciDist  and  DeciCCEHC , which alternates between decimation and local search [43]. Hence, it is the current best local search solver for (W)PMS problems. In addition, we also compared our solver to two SAT-based ones, Open-WBO-inc [30] and LinSBPS (https://helda.helsinki.fi/bitstream/handle/10138/237139/mse18_proceedings.pdf?sequence=1, accessed on 8 November 2022), which were the top two solvers in MaxSAT Evaluation 2018.



 SATLike  3.0 was downloaded from the web pages of MaxSAT Evaluation 2018 (https://maxsat-evaluations.github.io/2018/, accessed on 8 November 2022), and we adopted its default parameter settings in the following experiments. Based on this version, we developed  ImSATLike  with two extra parameters: p and  δ  in Algorithm 3, which were set to 0.3 and 2.06, respectively.



In the following tables, we use   ins _ class   to denote instance sets, #win to denote the number of instances that were successfully solved, #ins to denote the number of instances in each instance set, and  time  to denote the average running time to locate a solution. The best #win and  time  values are shown in bold font.



6.1. Comparing  ImSATLike  to Other SLS Solvers


We compared  ImSATLike  with  SATLike , as well as its 3.0 version on a computer equipped with an Intel(R) Core(TM) i5-10210U CPU @ 1.60 GHz 2.11 GHz with 8 GB RAM, running the Windows 10 OS. First, we conducted experiments with 60 s as a cutoff, then we repeated such experiments with 300 s as a second cutoff (see Table 1).



From Table 1, we found the following. Within 60 s:




	
 ImSATLike  outperformed both  SATLike  and its 3.0 version in terms of #win on each of the four benchmark categories, with the exception of ms18_unwt, where  ImSATLike  and  SATLike  came to a draw;



	
In this benchmark category,  ImSATLike  generally located its solutions within a shorter time, compared to that spent by  SATLike .








Within 300 s:




	
 ImSATLike  showed best performances in terms of #win in 3 categories, while  SATLike  did that in 2;



	
In ms19_wt, where both  ImSATLike  and  SATLike  achieved 162 in terms of #win,  ImSATLike  generally located its solutions within a much shorter time, compared to that spent by  SATLike .









6.2. Individual Impacts of Our Strategies


To evaluate the individual impacts, we modified  SATLike  3.0 and developed two independent variants. Then, we reperformed the experiments above with 60 s as the cutoff and compared these variants in terms of #win.



	
First, we replaced the initialization procedure in  SATLike  3.0 with our VESI strategy and developed a solver named   SATLike _ a 1  .



	
Second, we replaced  SATLike  3.0’s diversification mode with our PSGP strategy and developed a second solver named   SATLike _ a 2  .






From Table 2, we found the following:




	
In none of the benchmark categories,  SATLike  3.0 outperformed either   SATLike _ a 1   or   SATLike _ a 2   in terms of #win, which illustrates the robustness of our strategies.



	
In all of these categories,   SATLike _ a 2   significantly outperformed  SATLike  3.0, which showed the power of our PSGP strategy.



	
In half of these categories,   SATLike _ a 1   was superior to  SATLike  3.0, which presented the positive impacts of our VESI strategy.









6.3. Comparing  ImSATLike  to SAT-Based Solvers


We compared  ImSATLike  with two SAT-based solvers,  Open - WBO - Inc  and  LinSBPS , on a computer equipped with an Intel Core i5-10210U CPU @ 1.60 GHz × 8 with 8 GB RAM, running Ubuntu 18.04.5 LTS. These two competitors were the top two solvers in the incomplete track in MaxSAT Evaluation 2018, where the time limit was 60 s, and their codes were downloaded from the web pages of MaxSAT Evaluation (https://maxsat-evaluations.github.io/2018/, accessed on 8 November 2022). To be consistent with MaxSAT Evaluation 2018, we also set the cutoff here to be 60 s. From Table 3, we found that our solver performed somewhat close to the top SAT-based solvers on weighted partial MaxSAT instances, although it fell behind in general.




6.4. Evaluations of a Hybrid Solver Incorporating  ImSATLike 


Combining solvers in different frameworks has proven to be a promising approach, which has been confirmed in recent MaxSAT Evaluations. Therefore, we combined our solver  ImSATLike  with a state-of-the-art SAT-based solver,  TT - Open - WBO - inc  [31], which was the champion in the incomplete track of MaxSAT Evaluation 2019. We call this hybrid solver  ImSATLike - TT , and its work flow based on a MaxSAT formula is as follows:




	
A SAT solver  B  is called to find a feasible solution   α init  .



	
 B  passes   α init   to  ImSATLike  as its starting point.



	
 ImSATLike  bypasses its VSEI strategy and performs local search for k steps, where k was set to be   10 7  .



	
 ImSATLike  passes its best-found solution to  TT - Open - WBO - inc .



	
 TT - Open - WBO - inc  is run for the remaining time.








In most cases,  ImSATLike  was able to find high-quality solutions, but the time for it to find even better solutions will increase exponentially, so in this situation,  ImSATLike - TT  will turn to  TT - Open - WBO - inc  for better solutions.



For better comparisons, we also included  TT - Open - WBO - inc  and  SATLike -ck as competitors. Note that  SATLike -ck is the same as  ImSATLike - TT , but employs  SATLike  as its embedded local search component. The experiments were conducted on a computer equipped with an Intel Core i5-10210U CPU @ 1.60 GHz × 8 with 8 GB RAM running Ubuntu 18.04.5 LTS, and the cutoff was set to 60 s. The experimental outcome can be found in Table 4, which shows the number of successfully solved instances for each SAT-based solver and each portfolio in each benchmark category.



In Table 4, we find the following:




	
On partial MaxSAT instances,   ImSATLike-TT   performed the same as  SATLike -ck, and they were the top two solvers, which showed the superiority of portfolios over SAT-based solvers.



	
On weighted partial MaxSAT instances,   ImSATLike-TT   performed as well as  SATLike -ck in ms18_wt, but outperformed it in ms19_wt, which showed the positive effects of our strategies.










7. Conclusions and the Future Work


In this paper, we presented a local search MaxSAT solver named  ImSATLike , as well as a hybrid solver named   ImSATLike-TT  , which performed better than or the same as state-of-the-art competitors  SATLike  3.0 and  SATLike -ck, respectively, on (weighted) partial MaxSAT instances in recent MaxSAT Evaluations.



The main contributions include: (1) an initialization strategy to help generate a solution that is closer to high-quality feasible ones; (2) a diversification strategy to guide local search to a more promising area.



As for future works, it will be interesting to apply these strategies to solve other combinatorial problems such as the vertex cover and dominating set problems.
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Table 1. Comparative results of  ImSATLike  and  SATLike  with its 3.0 version.
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    ins _ class    

	
    # ins    

	
   SATLike   

	
  SATLike   3.0

	
   ImSATLike   




	
#win

	
#time

	
#win

	
#time

	
#win

	
#time






	
60 s

	




	
ms18_wt

	
172

	
101

	
23.2335

	
99

	
13.8662

	
103

	
17.4195




	
ms19_wt

	
282

	
154

	
23.4689

	
152

	
24.5351

	
159

	
19.5359




	
ms18_unwt

	
153

	
77

	
52.1586

	
73

	
50.2791

	
77

	
49.0867




	
ms19_unwt

	
288

	
158

	
14.0828

	
149

	
15.9554

	
163

	
16.2713




	
300 s

	




	
ms18_wt

	
172

	
110

	
103.554

	
102

	
99.4858

	
106

	
76.8005




	
ms19_wt

	
282

	
162

	
119.761

	
160

	
91.7588

	
162

	
79.0564




	
ms18_unwt

	
153

	
77

	
88.226

	
73

	
115.1743

	
86

	
137.7936




	
ms19_unwt

	
288

	
166

	
68.926

	
152

	
77.1327

	
168

	
71.8434
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Table 2. Individual impacts of the VSEI and PSGP strategies.






Table 2. Individual impacts of the VSEI and PSGP strategies.





	
    ins _ class    

	
    # ins    

	
    SATLike _ a 1    

	
  SATLike   3.0

	
    SATLike _ a 2    




	
#win

	
#time

	
#win

	
#time

	
#win

	
#time






	
ms18_wt

	
172

	
99

	
14.603

	
99

	
13.8662

	
103

	
15.9523




	
ms19_wt

	
282

	
155

	
16.345

	
152

	
24.5351

	
158

	
26.3373




	
ms18_unwt

	
153

	
73

	
52.888

	
73

	
50.2791

	
77

	
52.7514




	
ms19_unwt

	
288

	
150

	
16.107

	
149

	
15.9554

	
155

	
16.3538
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Table 3. Comparative results of our algorithm and two SAT-based solvers.
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	    ins _ class    
	#ins
	ImSATLike
	LinSBPS
	Open-WBO-Inc





	ms18_wt
	172
	130
	164
	164



	ms19_wt
	282
	185
	269
	266



	ms18_unwt
	153
	78
	135
	134



	ms19_unwt
	288
	174
	270
	260
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Table 4. Comparative results of SAT-based solvers and two portfolios.






Table 4. Comparative results of SAT-based solvers and two portfolios.





	    ins _ class    
	#ins
	ImSATLike
	LinSBPS
	Open-wbo
	TT-Open-WBO-inc
	SATLike-ck
	ImSATLike-TT





	ms18_wt
	172
	130
	164
	164
	161
	158
	158



	ms19_wt
	282
	185
	269
	266
	265
	261
	263



	ms18_unwt
	153
	78
	135
	134
	135
	144
	144



	ms19_unwt
	288
	174
	270
	260
	263
	277
	277
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