Universal Non-Extensive Statistical Physics Temporal Pattern of Major Subduction Zone Aftershock Sequences
Abstract
:1. Introduction
2. Materials and Methods
3. Data Selection and Analysis
3.1. The 2004 Mw 9.0 Sumatra–Andaman Islands Earthquake
3.2. The 2011 Mw 9.1 Great Tohoku (Japan) Earthquake
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shcherbakov, R.; Goda, K.; Ivanian, A.; Atkinson, G.M. Aftershock Statistics of Major Subduction Earthquakes. Bull. Seism. Soc. Am. 2013, 103, 3222–3230. [Google Scholar] [CrossRef]
- Becker, T.W.; Faccenna, C. A Review of the Role of Subduction Dunamics for Regional and Global Plate Motions. In Subduction Zone Geodynamics, 1st ed.; Lallemand, S., Funiciello, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 3–5. [Google Scholar] [CrossRef]
- Stern, R.J. Subduction Zones. Rev. Geophys. 2002, 40, 1012. [Google Scholar] [CrossRef]
- Lobkovsky, L.I.; Kerchman, V.I.; Baranov, B.V.; Pristavakina, E.I. Analysis of Seismotectonic Processes in Subduction Zones from the Standpoint of a Keyboard Model of Great Earthquakes. Tectonophysics 1991, 199, 211–212. [Google Scholar] [CrossRef]
- Heuret, A.; Lallemand, S.; Funiciello, F.; Piromallo, C.; Faccena, C. Physical characteristics of subduction interface type seismogenic zones revisited. Geochem. Geophys. Geosyst. 2011, 12, Q01004. [Google Scholar] [CrossRef] [Green Version]
- Bilek, S.L.; Lay, T. Subduction Zone Megathrust Earthquakes. Geosph. 2018, 14, 1468–1470. [Google Scholar] [CrossRef] [Green Version]
- Shcherbakov, R.; Yakovlev, G.; Turcotte, D.L.; Rundle, J.B. Model for the Distribution of Aftershock Interoccurrence Times. Phys. Rev. Lett. 2005, 95, 218501. [Google Scholar] [CrossRef] [Green Version]
- Shcherbakov, R.; Turcotte, D.L.; Rundle, J.B. Aftershock Statistics. Pure Appl. Geophys. 2005, 162, 1053–1054. [Google Scholar] [CrossRef]
- Ruff, L.; Kanamori, H. Seismicity and the Subduction Process. Phys. Earth Plan. Int. 1980, 23, 240–250. [Google Scholar] [CrossRef]
- Zhang, L. Spatiotemporal Seismic Hazard and Risk Assessment of Global M9.0 Megathrust Earthquake Sequences. Ph.D. Thesis, University of Bristol, Bristol, UK, 24 March 2020. [Google Scholar]
- Sugiyama, M. Introduction to the topical issue: Nonadditive entropy and non-extensive statistical mechanics. Contin. Mech. Thermodyn. 2004, 16, 221–222. [Google Scholar] [CrossRef]
- Tsallis, C. Introduction to Nonextensive Statistical Mechanics; Springer: Berlin/Heidelberg, Germany, 2009; pp. 41–218. [Google Scholar] [CrossRef] [Green Version]
- Cohen, E.G.D. Boltzmann and Einstein: Statistics and dynamics—An unsolved problem. Pramana—J. Phys. 2005, 64, 635–643. [Google Scholar] [CrossRef]
- Mathai, A.M.; Haubold, H.J. Pathway model, superstatistics, Tsallis statistics, and a generalized measure of entropy. Phys. A Stat. Mech. Appl. 2007, 375, 110–122. [Google Scholar] [CrossRef] [Green Version]
- Baldovin, F.; Moyano, L.; Tsallis, C. Boltzmann-Gibbs thermal equilibrium distribution for classical systems and Newton law: A computational discussion. Eur. Phys. J. B 2006, 52, 113–117. [Google Scholar] [CrossRef] [Green Version]
- Schwämmle, V.; Tsallis, C. Two-parameter generalization of the logarithm and exponential functions and Boltzmann-Gibbs-Shannon entropy. J. Math. Phys. 2007, 48, 113301. [Google Scholar] [CrossRef] [Green Version]
- Fukuda, I.; Nakamura, H. Deterministic generation of the Boltzmann-Gibbs distribution and the free energy calculation from the Tsallis distribution. Chem. Phys. Lett. 2003, 382, 110–122. [Google Scholar] [CrossRef]
- Tsallis, C. Nonextensive Statistical Mechanics: Construction and Physical Interpretation. In Nonextensive Entropy: Interdisciplinary Applications; Murray, G.M., Tsallis, C., Eds.; Oxford Academic: Oxford, NY, USA, 2004; pp. 1–53. [Google Scholar] [CrossRef]
- Beck, C.; Cohen, E.G.D. Superstatistics. Phys. A 2003, 322, 267–269. [Google Scholar] [CrossRef] [Green Version]
- Lyra, M.L.; Tsallis, C. Nonextensivity and Multifractality in Low-Dimensional Dissipative Systems. Phys. Rev. Lett. 1998, 80, 53–56. [Google Scholar] [CrossRef] [Green Version]
- Silva, R.; França, G.S.; Vilar, C.S.; Alcaniz, J.S. Nonextensive models for earthquakes. Phys. Rev. E 2006, 73, 026102. [Google Scholar] [CrossRef]
- Sarlis, N.V.; Skordas, E.S.; Varotsos, P.A. Nonextensivity and natural time: The case of seismicity. Phys. Rev. E 2010, 82, 0211. [Google Scholar] [CrossRef] [Green Version]
- Vallianatos, F.; Pavlou, K. Scaling properties of the Mw 7.0 Samos (Greece), 2020 aftershock sequence. Acta Geophys. 2021, 69, 5–7. [Google Scholar] [CrossRef]
- Vallianatos, F.; Papadakis, G.; Michas, G. Generalized statistical mechanics approaches to earthquake and tectonics. Proc. R. Soc. A 2016, 472, 20160497. [Google Scholar] [CrossRef] [Green Version]
- Vallianatos, F. A description of seismicity based on non-extensive statistical Physics. In Earthquakes and Their Impact on Society; D’Amico, S., Ed.; Springer Nature Hazzrds: Berlin/Heidelberg Germany, 2016; pp. 1–42. [Google Scholar] [CrossRef]
- Michas, G.; Pavlou, K.; Avgerinou, S.-E.; Anyfadi, E.-A.; Vallianatos, F. Aftershock patterns of the 2021 Mw 6.3 Northern Thessaly (Greece) earthquake. J. Seismol. 2022, 26, 201–225. [Google Scholar] [CrossRef]
- Ramírez-Rojas, A.; Sigalotti, L.G.; Márquez, E.L.F.; Rendón, O. Non-extensive statistcs in time series: Tsallis theory. In Time Series Analysis in Seismology: Practical Applications; Ramírez-Rojas, A., Sigalotti, L.G., Márquez, E.L.F., Rendón, O., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 147–164. [Google Scholar] [CrossRef]
- Vallianatos, F.; Karakostas, V.; Papadimitriou, E. A Non-Extensive Statistical Physics View in the Spatiotemporal Properties of the 2003 (Mw6.2) Lefkada, Ionian Island Greece, Aftershock Sequence. Pure Appl. Geophys. 2013, 171, 1443–1449. [Google Scholar] [CrossRef]
- Papadakis, G.; Vallianatos, F.; Sammonds, P. A Nonextensive Statistical Physics Analysis of the 1995 Kobe, Japan Earthquake. Pure Appl. Geophys. 2014, 172, 1923–1927. [Google Scholar] [CrossRef] [Green Version]
- Vallianatos, F.; Michas, G.; Papadakis, G.; Sammonds, P. A Non-Extensive Statistical Physics View to the Spatiotemporal Properties of the June 1995, Aigion Earthquake (M6.2) Aftershock Sequence (West Corinth Rift, Greece). Acta Geophys. 2012, 60, 759–765. [Google Scholar] [CrossRef]
- Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52, 479–487. [Google Scholar] [CrossRef]
- Tsallis, C. Nonadditive entropy and non-extensive statistical mechanics—An overview after 20 years. Brazil. J. Phys. 2009, 39, 337–339. [Google Scholar] [CrossRef]
- Queirós, S.; Moyano, L.; de Souza, J. A nonextensive approach to the dynamics of financial observables. Eur. Phys. J. B 2007, 55, 161–167. [Google Scholar] [CrossRef]
- Tzanis, A.; Efstathiou, A.; Vallianatos, F. Are Seismogenetic Systems Random or Organized? A Treatise of Their Statistical Nature Based on the Seismicity of the North-Northeast Pacific Rim. In Complexity of Seismic Time Series: Measurement and Application, 1st ed.; Chelidze, T., Vallianatos, F., Telesca, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 370–377. [Google Scholar]
- Michas, G.; Vallianatos, F.; Sammonds, P. Non-extensivity and long-range correlations in the earthquake activity at the West Corinth rift (Greece). Nonlin. Process. Geophys. 2013, 20, 713–724. [Google Scholar] [CrossRef] [Green Version]
- Vallianatos, F.; Koutalonis, I.; Chatzopoulos, G. Evidence of Tsallis entropy signature on medicane induced ambient seismic signals. Phys. A 2019, 520, 36–42. [Google Scholar] [CrossRef]
- Vallianatos, F.; Michas, G.; Benson, P.; Sammonds, P. Natural time analysis of critical phenomena: The case of acoustic emissions in triaxially deformed Etna basalt. Phys. A Stat. Mech. Appl. 2013, 392, 5172–5178. [Google Scholar] [CrossRef]
- Chochlaki, K.; Michas, G.; Vallianatos, F. Complexity of the Yellowstone Park Volcanic Field Seismicity in Terms of Tsallis Entropy. Entropy 2018, 20, 721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michas, G.; Sammonds, P.; Vallianatos, F. Dynamic Multifractality in Earthquake Time Series: Insights from the Corinth Rift, Greece. Pure Appl. Geophys. 2015, 172, 1909–1921. [Google Scholar] [CrossRef]
- Caruso, F.; Pluchino, A.; Latora, V.; Vinciguerra, S.; Rapisarda, A. Analysis of self-organized criticality in the Olami-Feder-Christensen model and in real earthquakes. Phys. Rev. E 2007, 75, 055101(R). [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michas, G.; Papadakis, G.; Vallianatos, F. A Non-Extensive approach in investigating Greek seismicity. Bull. Geol. Soc. Greece 2016, XLVII, 1178–1181. [Google Scholar] [CrossRef] [Green Version]
- Papadakis, G.; Vallianatos, F.; Michas, G. The earthquake interevent time distribution along the Hellenic subduction Zone. Bull. Geol. Soc. Greece 2013, XLVII, 1194–1200. [Google Scholar] [CrossRef]
- Vallianatos, F.; Benson, P.; Meredith, P.; Sammonds, P. Experimental evidence of a non-extensive statistical physics behavior of fracture in triaxially deformed Etna basalt using acoustic emissions. EPL 2012, 97, 58002. [Google Scholar] [CrossRef]
- Efstathiou, A.; Tzanis, A.; Vallianatos, F. On the nature and dynamics of the seismogenetic systems of North California, USA: An analysis based on Non-Extensive Statistical Physics. Phys. Earth Planet. Inter. 2017, 270, 46–72. [Google Scholar] [CrossRef]
- Vallianatos, F.; Michas, G.; Papadakis, G.; Tzanis, A. Evidence of non-extensivity in the seismicity observed during the 2011–2012 unrest at the Santorini volcanic complex, Greece. Nat. Hazards Earth Syst. Sci. 2013, 13, 177–185. [Google Scholar] [CrossRef] [Green Version]
- Vallianatos, F.; Sammonds, P. Evidence of non-extensive statistical physics of the lithospheric instability approaching the 2004 Sumatran-Andaman and 2011 Honshu mega-earthquakes. Tectonophysics 2013, 590, 52–58. [Google Scholar] [CrossRef]
- Papadakis, G.; Vallianatos, F.; Sammonds, P. Evidence of Nonextensive Statistical Physics behavior of the Hellenic Subduction Zone seismicity. Tectonophysics 2013, 608, 1037–1048. [Google Scholar] [CrossRef]
- U.S. Geological Survey. Available online: https://www.usgs.gov/natural-hazards/earthquake-hazards/earthquakes (accessed on 30 September 2020).
- Nava, F.A.; Márquez-Ramírez, V.H.; Zúñiga, F.R.; Ávila-Barrientos, L.; Quinteros, C.B. Gutenberg-Richter b-values maximum likelihood estimation and sample size. J. Seism. 2016, 21, 127–128. [Google Scholar] [CrossRef]
- Gutenberg, B.; Richter, C.F. Magnitude and energy of earthquakes. Ann. Geophys. 1956, 9, 1–14. [Google Scholar] [CrossRef]
- Lay, T.; Kanamori, H.; Ammon, C.; Nettles, M.; Ward, S.; Aster, R.; Beck, S.; Bilek, S.; Brudzinski, M.; Butler, R.; et al. The Great Sumatra-Adaman Earthquake of 26 December 2004. Science 2005, 308, 1127–1133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayes, G.P.; Myers, E.K.; Dewey, J.W.; Briggs, R.W.; Earle, P.S.; Benz, H.M.; Smoczyk, G.M.; Flamme, H.E.; Barnhart, W.D.; Gold, R.D.; et al. Tectonic Summaries of Magnitude 7 and Greater Earthquakes from 2000 to 2015; U.S. Geological Survey: Reston, VA, USA, 2017. [CrossRef] [Green Version]
- Shao, G.; Li, X.; Ji, C.; Maeda, T. Focal mechanism and slip history of the 20011 Mw 9.1 off the Pacific coast of Took Earthquake, constrained with te;eseismic body and surface waves. Earth Planet Space 2011, 63, 559–564. [Google Scholar] [CrossRef]
- Vallianatos, F. A non-extensive statistical physics approach to the polarity reversals of the geomagnetic field. Phys. A Stat. Mech. Appl. 2011, 390, 1773–1778. [Google Scholar] [CrossRef]
- Vallianatos, F.; Michas, G.; Papadakis, G. Non-Extensive Statistical Seismology: An overview. In Complexity of Seismic Time Series: Measurement and Application, 1st ed.; Chelidze, T., Vallianatos, F., Telesca, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 25–53. [Google Scholar]
- Vallianatos, F.; Sammonds, P. Is plate tectonics a case of non-extensive thermodynamics? Phys. A Stat. Mech. Appl. 2010, 389, 4989–4993. [Google Scholar] [CrossRef]
- Vallianatos, F.; Telesca, L. Statistical mechanics in earth physics and natural hazards. Acta Geophys. 2012, 60, 499–501. [Google Scholar] [CrossRef]
- Chochlaki, K.; Vallianatos, F.; Michas, G. Global regionalized seismicity in view of Non-Extensive Statistical Physics. Phys. A Stat. Mech. Appl. 2018, 493, 276–285. [Google Scholar] [CrossRef]
- Michas, G.; Vallianatos, F. Scaling properties, multifractality and range of correlations in earthquake timeseries: Are earthquakes random? In Statistical Methods and Modeling of Seismogenesis; Limnios, N., Papadimitriou, E., Tsaklidis, G., Eds.; ISTE John Wiley: London, UK, 2021. [Google Scholar] [CrossRef]
- Abe, S.; Suzuki, N. Scale-free statistics of time interval between successive earthquakes. Phys. A Stat. Mech. Appl. 2005, 350, 588–596. [Google Scholar] [CrossRef] [Green Version]
- Sob’yanin, D.N. Generalization of the Beck-Cohen superstatistics. Phys. Rev. E 2011, 84, 051128. [Google Scholar] [CrossRef] [Green Version]
- Beck, C. Superstatistics: Theory and applications. Contin. Mech. Thermodyn. 2004, 16, 294–298. [Google Scholar] [CrossRef] [Green Version]
- Beck, C. Recent developments in superstatistics. Braz. J. Phys. 2009, 39, 357–362. [Google Scholar] [CrossRef] [Green Version]
- Beck, C. Dynamical Foundations of Nonextensive Statistical Mechanics. Phys. Rev. Lett. 2001, 87, 180601. [Google Scholar] [CrossRef]
- Beck, C. Superstatistical Brownian Motion. Prog. Theor. Phys. Suppl. 2006, 162, 29–31. [Google Scholar] [CrossRef] [Green Version]
- Antonopoulos, C.G.; Michas, G.; Vallianatos, F.; Bountis, T.; Physica, A. Evidence of q-exponential statistics in Greek seismicity. Phys. A Stat. Mech. Appl. 2014, 409, 71–77. [Google Scholar] [CrossRef] [Green Version]
- Feller, W. Two Singular Diffusion Problems. Ann. Math. 1951, 54, 173–182. [Google Scholar] [CrossRef]
- Michas, G.; Vallianatos, F. Stochastic modeling of nonstationary earthquake time series with long-term clustering effects. Phys. Rev. E 2018, 98, 042107. [Google Scholar] [CrossRef]
- Risken, H. The Fokker-Planck Equation: Methods of Solution and Applications, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1989. [Google Scholar] [CrossRef]
- Mathai, A.M. A pathway to matrix-variate gamma and normal densities. Lin. Al. Appl. 2005, 396, 317–328. [Google Scholar] [CrossRef]
- Gardiner, C.W. Handbook of Stochastic Methods for Physics, Chemistry, and the Natural Sciences., 1st ed.; Springer: Berlin/Heidelberg, Germany, 1993. [Google Scholar]
Index Number | Date | Epicenter (Lat, Lon) | Depth (km) | Duration (days) | Mainshock Magnitude (Mw) | Mc | N | qT | Tq (s) | Tc (s) |
---|---|---|---|---|---|---|---|---|---|---|
1 | 14 January 1976 | −28.43, −177.66 | 33.00 | 346 | 8.0 | 5.4 | 101 | 1.78 | 4444 | 4 × 105 |
2 | 19 August 1977 | −11.14, 118.23 | 23.30 | 649 | 8.3 | 5.3 | 124 | 1.69 | 3750 | 5 × 105 |
3 | 20 October 1986 | −27.93, −176.07 | 50.40 | 732 | 7.7 | 5.3 | 103 | 1.74 | 1579 | 10 × 105 |
4 | 4 October 1994 | 43.60, 147.63 | 68.20 | 248 | 8.3 | 5.2 | 219 | 1.72 | 472 | 2 × 105 |
5 | 16 August 1995 | −5.51, 153.64 | 45.60 | 89 | 7.7 | 5.2 | 100 | 1.77 | 2791 | 4 × 105 |
6 | 3 December 1995 | 44.82, 150.17 | 25.90 | 333 | 7.9 | 5.2 | 138 | 1.83 | 200 | 2 × 105 |
7 | 4 June 2000 | −4.73, 101.94 | 43.90 | 719 | 7.9 | 5.2 | 162 | 1.82 | 1636 | 3 × 105 |
8 | 16 November 2000 | −4.56, 152.79 | 24.00 | 357 | 8.0 | 5.5 | 165 | 1.73 | 822 | 5 × 105 |
9 | 23 June 2001 | −17.28, −72.71 | 29.60 | 710 | 8.4 | 5.2 | 109 | 1.79 | 250 | 20 × 105 |
10 | 25 September 2003 | 42.21, 143.84 | 28.20 | 708 | 8.3 | 5.1 | 110 | 1.78 | 4000 | 6 × 105 |
11 | 26 December 2004 | 3.09, 94.26 | 28.60 | 692 | 9.0 | 5.1 | 356 | 1.69 | 3063 | 3 × 105 |
12 | 28 March 2005 | 1.67, 97.07 | 25.80 | 709 | 8.6 | 5.1 | 210 | 1.83 | 667 | 2 × 105 |
13 | 3 May 2006 | −20.39, −173.47 | 67.80 | 713 | 8.0 | 5.0 | 100 | 1.75 | 22,500 | 3 × 105 |
14 | 17 July 2006 | −10.28, 107.78 | 20.00 | 186 | 7.7 | 5.3 | 133 | 1.67 | 433 | 0.2 × 105 |
15 | 1 April 2007 | −7.79, 156.34 | 14.10 | 687 | 8.1 | 5.2 | 115 | 1.81 | 2692 | 8 × 105 |
16 | 12 September 2007 | −3.78, 100.99 | 24.40 | 722 | 8.5 | 5.1 | 174 | 1.83 | 833 | 1 × 105 |
17 | 11 February 2009 | 3.92, 126.81 | 23.90 | 699 | 7.2 | 5.2 | 126 | 1.81 | 346 | 20 × 105 |
18 | 29 September 2009 | −15.13, −171.97 | 12.00 | 728 | 8.1 | 5.2 | 228 | 1.83 | 1500 | 1 × 105 |
19 | 7 October 2009 | −11.86, 166.01 | 41.70 | 695 | 7.8 | 5.1 | 154 | 1.80 | 1600 | 4 × 105 |
20 | 27 February 2010 | −35.98, −73.15 | 23.20 | 720 | 8.8 | 5.0 | 190 | 1.76 | 6098 | 3 × 105 |
21 | 11 March 2011 | 37.52, 143.05 | 20.20 | 717 | 9.1 | 5.0 | 435 | 1.74 | 26,316 | 1 × 105 |
22 | 6 July 2011 | −29.22, −175.83 | 32.50 | 364 | 7.6 | 5.1 | 140 | 1.71 | 6286 | 4 × 105 |
23 | 11 April 2012 | 2.35, 92.82 | 45.60 | 359 | 8.6 | 5.2 | 129 | 1.80 | 286 | 8 × 105 |
24 | 30 August 2013 | 51.54, −175.23 | 29.00 | 724 | 7.0 | 4.8 | 133 | 1.80 | 224 | 10 × 105 |
25 | 12 April 2014 | −11.35, 162.24 | 27.30 | 411 | 7.6 | 4.9 | 177 | 1.75 | 173 | 60 × 105 |
26 | 19 April 2014 | −6.64, 154.67 | 43.40 | 722 | 7.5 | 4.7 | 107 | 1.83 | 776 | 2 × 105 |
27 | 15 November 2014 | 1.98, 126.37 | 45.00 | 664 | 7.1 | 4.6 | 119 | 1.81 | 472 | 3 × 105 |
28 | 29 March 2015 | −5.18, 152.59 | 37.60 | 719 | 7.5 | 4.7 | 245 | 1.71 | 2857 | 2 × 105 |
29 | 16 September 2015 | −31.57, −71.67 | 22.40 | 575 | 8.3 | 4.6 | 213 | 1.78 | 222 | 6 × 105 |
30 | 28 May 2016 | −56.24, −26.94 | 68.00 | 616 | 7.2 | 4.9 | 107 | 1.78 | 3333 | 3 × 105 |
31 | 1 September 2016 | −37.36, 179.15 | 19.00 | 580 | 7.0 | 4.7 | 166 | 1.74 | 263 | 3 × 105 |
32 | 13 November 2016 | −42.74, 173.05 | 15.10 | 648 | 7.8 | 4.9 | 144 | 1.72 | 556 | 50 × 105 |
33 | 8 December 2016 | −10.68, 161.33 | 40.00 | 479 | 7.8 | 5.0 | 100 | 1.72 | 278 | 10 × 105 |
34 | 8 September 2017 | 15.02, −93.90 | 47.40 | 737 | 8.2 | 4.8 | 252 | 1.74 | 921 | 3 × 105 |
35 | 23 January 2018 | 56.00, −149.17 | 14.10 | 437 | 7.9 | 4.5 | 113 | 1.81 | 367 | 2 × 105 |
36 | 5 December 2018 | −21.95, 169.43 | 10.00 | 670 | 7.5 | 4.8 | 166 | 1.78 | 217 | 1 × 105 |
37 | 20 December 2018 | 55.10, 164.70 | 16.60 | 662 | 7.3 | 4.6 | 131 | 1.78 | 435 | 8 × 105 |
38 | 14 May 2019 | −4.05, 152.60 | 10.00 | 573 | 7.6 | 4.9 | 103 | 1.86 | 411 | 4 × 105 |
39 | 15 June 2019 | −30.64, −178.10 | 46.00 | 530 | 7.3 | 4.8 | 217 | 1.75 | 2250 | 3 × 105 |
40 | 14 November 2019 | 1.62, 126.42 | 33.00 | 364 | 7.1 | 4.8 | 191 | 1.82 | 143 | 2 × 105 |
41 | 18 June 2020 | −33.29, −177.86 | 10.00 | 102 | 7.4 | 4.9 | 121 | 1.72 | 694 | 0.6 × 105 |
42 | 22 July 2020 | 55.07, −158.60 | 28.00 | 138 | 7.8 | 4.2 | 207 | 1.69 | 313 | 0.5 × 105 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anyfadi, E.-A.; Avgerinou, S.-E.; Michas, G.; Vallianatos, F. Universal Non-Extensive Statistical Physics Temporal Pattern of Major Subduction Zone Aftershock Sequences. Entropy 2022, 24, 1850. https://doi.org/10.3390/e24121850
Anyfadi E-A, Avgerinou S-E, Michas G, Vallianatos F. Universal Non-Extensive Statistical Physics Temporal Pattern of Major Subduction Zone Aftershock Sequences. Entropy. 2022; 24(12):1850. https://doi.org/10.3390/e24121850
Chicago/Turabian StyleAnyfadi, Eleni-Apostolia, Sophia-Ekaterini Avgerinou, Georgios Michas, and Filippos Vallianatos. 2022. "Universal Non-Extensive Statistical Physics Temporal Pattern of Major Subduction Zone Aftershock Sequences" Entropy 24, no. 12: 1850. https://doi.org/10.3390/e24121850
APA StyleAnyfadi, E. -A., Avgerinou, S. -E., Michas, G., & Vallianatos, F. (2022). Universal Non-Extensive Statistical Physics Temporal Pattern of Major Subduction Zone Aftershock Sequences. Entropy, 24(12), 1850. https://doi.org/10.3390/e24121850