Entropy Interpretation of Hadamard Type Fractional Operators: Fractional Cumulative Entropy
Abstract
:1. Introduction
2. Hadamard-Type Fractional Operators
2.1. Hadamard-Type Fractional Integrals
2.2. Hadamard-Type Fractional Differential Operator
2.3. Hadamard-Type FI and FD Operators with Respect to Function
- For , we obtain the Hadamard fractional operators with respect to .
- For and , we obtain the Hadamard fractional integral and differential operators.
- For and , we obtain the Riemann–Liouville and Caputo fractional integrals and derivatives.
- For and , we obtain the Erdelyi–Kober-type fractional integrals and derivatives (fractional operators with respect to .
- For and , we obtain the Riemann-Liouville and Caputo fractional operators of a function with respect to another function .
3. Entropy and Its Generalizations
3.1. Cumulative Entropies
- Firstly, is more general than the Shannon entropy in that its definition is valid in the continuous and discrete domains.
- Secondly, possesses more general mathematical properties than the Shannon entropy.
- Thirdly, can be easily computed from sample data, and these computations asymptotically converge to the true values.
3.2. Fractional Entropies
4. Interpretation of Hadamard-Type Fractional Operators
4.1. Equation of HTFI Operator in Convenient Form
4.2. Properties of Functions and used in HTFI Operator
- (1)
- Continuously differentiable function:
- (2)
- Positive function:
- (3)
- Increasing function:
- (1)
- Continuously differentiable function:
- (2)
- Positive function:
- (3)
- Increasing function:
- (4)
- The limit on the left is equal to one:
4.3. Characteristic Properties of Cumulative Distribution Function
4.4. Cumulative Fractional Entropy
- (1)
- Continuously differentiable function:
- (2)
- Positive function:
- (3)
- Increasing function:
- (4)
- The limit on the right is zero:
- (5)
- The limit on the left is equal to one:
4.5. Examples
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives Theory and Applications; Gordon and Breach: New York, NY, USA, 1993; 1006p, ISBN 9782881248641. [Google Scholar]
- Kiryakova, V. Generalized Fractional Calculus and Applications; Longman and J. Wiley: New York, NY, USA, 1994; 360p, ISBN 9780582219779. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1998; 340p, ISBN 978-0125588409. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006; 540p, ISBN 978-0444518323. [Google Scholar]
- Diethelm, K. The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type; Springer: Berlin/Heidelberg, Germany, 2010; 247p. [Google Scholar] [CrossRef] [Green Version]
- Kochubei, A.; Luchko, Y. (Eds.) Handbook of Fractional Calculus with Applications. Volume 1. Basic Theory; Walter de Gruyter GmbH: Berlin/Heidelberg, Germany; Boston, MA, USA, 2019; 481p. [Google Scholar] [CrossRef]
- Kochubei, A.; Luchko, Y. (Eds.) Handbook of Fractional Calculus with Applications. Volume 2. Fractional Differential Equations; Walter de Gruyter GmbH: Berlin/Heidelberg, Germany; Boston, MA, USA, 2019; 519p. [Google Scholar] [CrossRef] [Green Version]
- Letnikov, A.V. On the historical development of the theory of differentiation with arbitrary index. Sb. Math. 1868, 3, 85–112. Available online: http://mi.mathnet.ru/eng/msb8048 (accessed on 12 October 2022).
- Tenreiro Machado, J.A.; Kiryakova, V.; Mainardi, F. Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 1140–1153. [Google Scholar] [CrossRef] [Green Version]
- Tenreiro Machado, J.A.; Galhano, A.M.; Trujillo, J.J. Science metrics on fractional calculus development since 1966. Fract. Calc. Appl. Anal. 2013, 16, 479–500. [Google Scholar] [CrossRef] [Green Version]
- Tarasov, V.E. (Ed.) Handbook of Fractional Calculus with Applications. Volume 4. Application in Physics. Part A; Walter de Gruyter GmbH: Berlin/Heidelberg, Germany; Boston, MA, USA, 2019; 306p, ISBN 978-3-11-057088-5. [Google Scholar] [CrossRef]
- Tarasov, V.E. (Ed.) Handbook of Fractional Calculus with Applications. Volume 5. Application in Physics. Part B; Walter de Gruyter GmbH: Berlin/Heidelberg, Germany; Boston, MA, USA, 2019; 319p, ISBN 978-3-11-057089-2. [Google Scholar] [CrossRef] [Green Version]
- Tarasov, V.E.; Tarasova, S.S. Fractional derivatives and integrals: What are they needed for? Mathematics 2020, 8, 164. [Google Scholar] [CrossRef] [Green Version]
- Mainardi, F. Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos Solitons Fractals 1996, 7, 1461–1477. [Google Scholar] [CrossRef]
- Gorenflo, R.; Mainardi, F. Fractional relaxation-oscillation phenomena. In Handbook of Fractional Calculus with Applications. Volume 4 Applications in Physics Part A; Tarasov, V.E., Ed.; De Gruyter: Berlin/Heidelberg, Germany; Boston, MA, USA, 2019; pp. 45–74. [Google Scholar] [CrossRef]
- Luchko, Y.; Mainardi, F. Fractional diffusion-wave phenomena. In Handbook of Fractional Calculus with Applications. Volume 5 Applications in Physics. Part B; Tarasov, V.E., Ed.; De Gruyter: Berlin/Heidelberg, Germany; Boston, MA, USA, 2019; pp. 71–98. [Google Scholar] [CrossRef]
- Novikov, V.V.; Wojciechowski, K.W.; Komkova, O.A.; Thiel, T. Anomalous relaxation in dielectrics. Equations with fractional derivatives. Mater. Sci. 2005, 23, 977–984. [Google Scholar]
- Stanislavsky, A.; Weron, K. Fractional-calculus tools applied to study the nonexponential relaxation in dielectrics. In Handbook of Fractional Calculus with Applications. Volume 5 Applications in Physics. Part B; Tarasov, V.E., Ed.; De Gruyter: Berlin/Heidelberg, Germany; Boston, MA, USA, 2019; pp. 53–70. [Google Scholar] [CrossRef]
- Tarasov, V.E. Self-organization with memory. Commun.-Nonlinear Sci. Numer. Simul. 2019, 72, 240–271. [Google Scholar] [CrossRef]
- Tarasov, V.E.; Tarasova, V.V. Economic Dynamics with Memory: Fractional Calculus Approach; De Gruyter: Berlin/Heidelberg, Germany; Boston, MA, USA, 2021; 576p. [Google Scholar] [CrossRef]
- Metzler, R.; Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 2000, 339, 1–77. [Google Scholar] [CrossRef]
- Zaslavsky, G.M. Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 2002, 371, 461–580. [Google Scholar] [CrossRef]
- Uchaikin, V.V. Anomalous diffusion and fractional stable distributions. J. Exp. Theor. Phys. 2003, 97, 810–825. [Google Scholar] [CrossRef]
- Uchaikin, V.; Sibatov, R. Fractional Kinetics in Solids: Anomalous Probability Transport in Semiconductors, Dielectrics and Nanosystems; World Scientific: Singapore, 2013. [Google Scholar] [CrossRef]
- Uchaikin, V.; Sibatov, R. Fractional Kinetics in Space. Anomalous Transport Models; Worls Scientific: Singapore, 2018; 300p. [Google Scholar] [CrossRef]
- Mainardi, F. Considerations on fractional calculus: Interpretations and applications. Transform. Methods Spec. Funct. 1998, 96, 594–597. [Google Scholar]
- Gorenflo, R. Afterthoughts on interpretation of fractional derivatives and integrals. Transform. Methods Spec. Funct. 1998, 96, 589–591. [Google Scholar]
- Kiryakova, V. A long standing conjecture failes? Transform. Methods Spec. Funct. 1998, 96, 579–588. [Google Scholar]
- Butkovskii, A.G.; Postnov, S.S.; Postnova, E.A. Fractional integro-differential calculus and its control-theoretical applications. I. Mathematical fundamentals and the problem of interpretation. Autom. Remote Control 2013, 74, 543–574. [Google Scholar] [CrossRef]
- Nigmatullin, R.R. A fractional integral and its physical interpretation. Theor. Math. Phys. 1992, 90, 242–251. [Google Scholar] [CrossRef]
- Rutman, R.S. On the paper by R.R. Nigmatullin “A fractional integral and its physical interpretation”. Theor. Math. Phys. 1994, 100, 1154–1156. [Google Scholar] [CrossRef]
- Rutman, R.S. On physical interpretations of fractional integration and differentiation. Theor. Math. Phys. 1995, 105, 1509–1519. [Google Scholar] [CrossRef]
- Heymans, N.; Podlubny, I. Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives. Rheol. Acta 2006, 45, 765–772. [Google Scholar] [CrossRef] [Green Version]
- Molz, F.J.; Fix, G.J.; Lu, S. A physical interpretation for the fractional derivatives in Levy diffusion. Appl. Math. Lett. 2002, 15, 907–911. [Google Scholar] [CrossRef] [Green Version]
- Podlubny, I.; Despotovic, V.; Skovranek, T.; McNaughton, B.H. Shadows on the walls: Geometric interpretation of fractional integration. J. Online Math. Its Appl. 2007, 7, 1664. [Google Scholar]
- Herrmann, R. Towards a geometric interpretation of generalized fractional integrals—Erdelyi-Kober type integrals on RN, as an example. Fract. Calc. Appl. Anal. 2014, 17, 361–370. [Google Scholar] [CrossRef] [Green Version]
- Tarasov, V.E. Geometric interpretation of fractional-order derivative. Fract. Calc. Appl. Anal. 2016, 19, 1200–1221. [Google Scholar] [CrossRef]
- Husain, H.S.; Sultana, M. Principal parts of a vector bundle on projective line and the fractional derivative. Turk. J. Math. 2019, 43, 3. [Google Scholar] [CrossRef]
- Podlubny, I. Geometrical and physical interpretation of fractional integration and fractional differentiation. Fract. Calc. Appl. Anal. 2002, 5, 367–386. [Google Scholar]
- Moshrefi-Torbati, M.; Hammond, J.K. Physical and geometrical interpretation of fractional operators. J. Frankl. Inst. 1998, 335, 1077–1086. [Google Scholar] [CrossRef]
- Tavassoli, M.H.; Tavassoli, A.; Ostad Rahimi, M.R. The geometric and physical interpretation of fractional order derivatives of polynomial functions. Differ. Geom.-Dyn. Syst. 2013, 15, 93–104. [Google Scholar]
- Cioc, R. Physical and geometrical interpretation of Grunwald-Letnikov differintegrals: Measurement of path and acceleration. Fract. Calc. Appl. Anal. 2016, 19, 161–172. [Google Scholar] [CrossRef]
- Tarasova, V.V.; Tarasov, V.E. Economic interpretation of fractional derivatives. Prog. Fract. Differ. Appl. 2017, 3, 1–7. [Google Scholar] [CrossRef]
- Rehman, H.U.; Darus, M.; Salah, J. A note on Caputo’s derivative operator interpretation in economy. J. Appl. Math. 2018, 2018, 7. [Google Scholar] [CrossRef]
- Stanislavsky, A.A. Probability interpretation of the integral of fractional order. Theor. Math. Phys. 2004, 138, 418–431. [Google Scholar] [CrossRef]
- Tenreiro Machado, J.A. A probabilistic interpretation of the fractional-order differentiation. Fract. Calc. Appl. Anal. 2009, 6, 73–80. [Google Scholar]
- Tenreiro Machado, J.A. Fractional derivatives: Probability interpretation and frequency response of rational approximations. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 3492–3497. [Google Scholar] [CrossRef] [Green Version]
- Tarasov, V.E.; Tarasova, S.S. Probabilistic interpretation of Kober fractional integral of non-integer order. Prog. Fract. Differ. Appl. 2019, 5, 1–5. [Google Scholar] [CrossRef]
- Tarasov, V.E.; Tarasova, S.S. Fractional and integer derivatives with continuously distributed lag. Commun. Nonlinear Sci. Numer. Simul. 2019, 70, 125–169. [Google Scholar] [CrossRef]
- Tarasov, V.E. Interpretation of fractional derivatives as reconstruction from sequence of integer derivatives. Fundam. Informaticae 2017, 151, 431–442. [Google Scholar] [CrossRef]
- Hadamard, J. Essay on the study of functions given by their Taylor expansion. (Essai sur letude des fonctions donnees par leur developpement de Taylor). J. Math. Pures Appl. 1892, 8, 101–186. [Google Scholar]
- Ahmad, B.; Alsaedi, A.; Ntouyas, S.K.; Tariboon, J. Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities; Springer International Publishing: Cham, Switzerland, 2017; ISBN 978-3-319-52140-4. [Google Scholar] [CrossRef]
- Butzer, P.L.; Kilbas, A.A.; Trujillo, J.J. Fractional calculus in the Mellin setting and Hadamard-type fractional integrals. J. Math. Anal. Appl. 2002, 269, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Kilbas, A.A. Hadamard-type fractional calculus. J. Korean Math. Soc. 2001, 38, 1191–1204. [Google Scholar]
- Kilbas, A.A.; Titjura, A.A. Hadamard-type fractional integrals and derivatives. Tr. Instituta Mat. Nan Belarusi 2002, 11, 79–87. Available online: http://www.koreascience.or.kr/article/JAKO200111920819409.page (accessed on 12 October 2022).
- Butzer, P.L.; Kilbas, A.A.; Trujillo, J.J. Compositions of Hadamard-type fractional integration operators and the semigroup property. J. Math. Anal. Appl. 2002, 269, 387–400. [Google Scholar] [CrossRef]
- Butzer, P.L.; Kilbas, A.A.; Trujillo, J.J. Mellin transform analysis and integration by parts for Hadamard-type fractional integrals. J. Math. Anal. Appl. 2002, 270, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Kilbas, A.A.; Marzan, S.A.; Tityura, A.A. Hadamard-type fractional integrals and derivatives and differential equations of fractional order. Dokl. Akad. Nauk. 2003, 389, 734–738. Available online: https://www.elibrary.ru/item.asp?id=17335599 (accessed on 12 October 2022). (In Russian).
- Kilbas, A.A.; Marzan, S.A.; Tityura, A.A. Hadamard-type fractional integrals and derivatives and differential equations of fractional order. Dokl. Math. 2003, 67, 263–267. Available online: https://www.elibrary.ru/item.asp?id=27822330 (accessed on 12 October 2022).
- Jarad, F.; Abdeljawad, T.; Baleanu, D. Caputo-type modification of the Hadamard fractional derivatives. Adv. Differ. Equ. 2012, 2012, 142. [Google Scholar] [CrossRef] [Green Version]
- Gambo, Y.Y.; Jarad, F.; Baleanu, D.; Abdeljawad, T. On Caputo modification of the Hadamard fractional derivatives. Adv. Differ. Equations 2014, 2014, 10. [Google Scholar] [CrossRef] [Green Version]
- Zafar, R.; Rehman, M.U.; Shams, M. On Caputo modification of Hadamard-type fractional derivative and fractional Taylor series. Adv. Differ. Equations 2020, 2020, 219. [Google Scholar] [CrossRef]
- Garra, R.; Polito, F. On some operators involving Hadamard derivatives. Integral Transform. Spec. Funct. 2013, 24, 773–782. [Google Scholar] [CrossRef] [Green Version]
- Garra, R.; Orsingher, E.; Polito, F. A note on Hadamard fractional differential equations with varying coefficients and their applications in probability. Mathematics 2018, 6, 4. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Li, C. On Hadamard fractional calculus. Fractals 2017, 25, 1750033. [Google Scholar] [CrossRef]
- Garra, R.; Mainardi, F.; Spada, G. A generalization of the Lomnitz logarithmic creep law via Hadamard fractional calculus. Chaos Solitons Fractals 2017, 102, 333–338. [Google Scholar] [CrossRef] [Green Version]
- Tarasov, V.E. Fractional dynamics with non-local scaling. Commun. Nonlinear Sci. Numer. Simul. 2021, 102, 105947. [Google Scholar] [CrossRef]
- Fahad, H.M.; Fernandez, A.; Rehman, M.U.; Siddiqi, M. Tempered and Hadamard-Type Fractional Calculus with Respect to Functions. Mediterr. J. Math. 2021, 18, 143. [Google Scholar] [CrossRef]
- Erdelyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions; Volume II. (Bateman Manuscript Project); McGraw-Hill: New York, NY, USA, 1953. [Google Scholar]
- Chambadal, P. Evolution and Applications of Concept of Entropy; Dunod: Paris, France, 1963; 220p. [Google Scholar]
- Gibbs, J.W. Elementary Principles in Statistical Mechanics; Charles Scribner’s Sons: New York, NY, USA, 1902; 207p. [Google Scholar]
- Shannon, C.E. A mathematical theory of communication. I Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Shannon, C.E. A mathematical theory of communication. II Bell Syst. Tech. J. 1948, 27, 623–656. [Google Scholar] [CrossRef]
- Khinchin, A.I. Mathematical Foundations of Information Theory; Dover: New York, NY, USA, 1957; 128p, ISBN 978-0486604343. [Google Scholar]
- Shannon, C.E.; Weaver, W. The Mathematical Theory of Communication; University of Illinois Press: Urbana, IL, USA, 1963; 125p. [Google Scholar]
- Renyi, A. On measures of information and entropy. In Proceedings of the 4th Berkeley Symposium on Mathematics, Statistics and Probability; University of California Press: Berkeley, CA, USA, 1960; Volume 547, pp. 547–561. [Google Scholar]
- Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52, 479–487. [Google Scholar] [CrossRef]
- Tsallis, C.; Brigatti, E. Nonextensive statistical mechanics: A brief introduction. Contin. Mech. Thermodyn. 2004, 16, 223–235. [Google Scholar] [CrossRef] [Green Version]
- Tsallis, C. Nonextensive Entropy: Interdisciplinary Applications; Gell-Mann, M., Tsallis, C., Eds.; Oxford University Press: Oxford, UK, 2004. [Google Scholar] [CrossRef]
- Rao, M.; Chen, Y.; Vemuri, B.C.; Wang, F. Cumulative residual entropy: A new measure of information. IEEE Trans. Inf. Theory 2004, 50, 1220–1228. [Google Scholar] [CrossRef]
- Wang, F.; Vemuri, B.C.; Rao, M.; Chen, Y. A new and robust information theoretic measure and its application to image alignment. In Information Processing in Medical Imaging; Taylor, C., Noble, J.A., Eds.; IPMI 2003. Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2003; Volume 2372, pp. 388–400. [Google Scholar] [CrossRef]
- Wang, F.; Vemuri, B.C.; Rao, M.; Chen, Y. Cumulative residual entropy, a new measure of information and its application to image alignment. In Proceedings of the Ninth IEEE International Conference on Computer Vision, Washington, DC, USA, 13–16 October 2013; IEEE Computer Society Press: Silver Spring, MD, USA, 2003; Volume 1, pp. 548–553. [Google Scholar] [CrossRef] [Green Version]
- Navarro, J.; Del Aguila, Y.; Asadi, M. Some new results on the cumulative residual entropy. J. Stat. Plan. Inference 2010, 140, 310–322. [Google Scholar] [CrossRef]
- Rajesh, G.; Abdul-Sathar, E.I.; Muraleedharan Nair, K.R.; Reshmi, V.K. Bivariate extension of dynamic cumulative residual entropy. Stat. Methodol. 2014, 16, 72–82. [Google Scholar] [CrossRef]
- Kazemi, M.R.; Tahmasebi, S.; Cali, C.; Longobardi, M. Cumulative residual extropy of minimum ranked set sampling with unequal samples. Results Appl. Math. 2021, 10, 100156. [Google Scholar] [CrossRef]
- Asadi, M.; Zohrevand, Y. On the dynamic cumulative residual entropy. J. Stat. Plan. Inference 2007, 137, 1931–1941. [Google Scholar] [CrossRef]
- Di Crescenzo, A.; Longobardi, M. On cumulative entropies. J. Stat. Plan. Inference 2009, 139, 4072–4087. [Google Scholar] [CrossRef]
- Giuliano, R.; Macci, C.; Pacchiarotti, B. Asymptotic results for runs and empirical cumulative entropies. J. Stat. Plan. Inference 2015, 157, 77–89. [Google Scholar] [CrossRef]
- Kumar, V. A quantile approach of Tsallis entropy for order statistics. Phys. A Stat. Mech. Its Appl. 2018, 503, 916–928. [Google Scholar] [CrossRef]
- Tahmasebi, S.; Longobardi, M.; Kazemi, M.R.; Alizadeh, M. Cumulative Tsallis entropy for maximum ranked set sampling with unequal samples. Phys. A Stat. Mech. Its Appl. 2020, 556, 124763. [Google Scholar] [CrossRef]
- Lopes, A.M.; Tenreiro Machado, J.A. A review of fractional order entropies. Entropy 2020, 22, 1374. [Google Scholar] [CrossRef]
- Yu, S.; Huang, T.Z.; Liu, X.; Chen, W. Information measures based on fractional calculus. Inf. Process. Lett. 2012, 112, 916–921. [Google Scholar] [CrossRef]
- Ubriaco, M.R. Entropies based on fractional calculus. Phys. Lett. A 2009, 373, 2516–2519. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.A. Extensive generalization of statistical mechanics based on incomplete information theory. Entropy 2003, 5, 220–232. [Google Scholar] [CrossRef]
- Radhakrishnan, C.; Chinnarasu, R.; Jambulingam, S. A fractional entropy in fractal phase space: Properties and characterization. Int. J. Stat. Mech. 2014, 2014, 460364. [Google Scholar] [CrossRef] [Green Version]
- Shiryaev, A.N. Probability-1; Springer: New York, NY, USA, 2016; 624p. [Google Scholar] [CrossRef]
- Borovkov, A.A. Probability Theory; Translation from the 5th edn. of the Russian language edition; Springer: London, UK, 2013. [Google Scholar] [CrossRef]
- Tarasov, V.E. Nonlocal probability theory: General fractional calculus approach. Mathematics 2022, 10, 848. [Google Scholar] [CrossRef]
- Tarasov, V.E. Nonlocal statistical mechanics: General fractional Liouville equations and their solutions. Phys. A Stat. Mech. Its Appl. 2023, 609, 128366. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarasov, V.E. Entropy Interpretation of Hadamard Type Fractional Operators: Fractional Cumulative Entropy. Entropy 2022, 24, 1852. https://doi.org/10.3390/e24121852
Tarasov VE. Entropy Interpretation of Hadamard Type Fractional Operators: Fractional Cumulative Entropy. Entropy. 2022; 24(12):1852. https://doi.org/10.3390/e24121852
Chicago/Turabian StyleTarasov, Vasily E. 2022. "Entropy Interpretation of Hadamard Type Fractional Operators: Fractional Cumulative Entropy" Entropy 24, no. 12: 1852. https://doi.org/10.3390/e24121852
APA StyleTarasov, V. E. (2022). Entropy Interpretation of Hadamard Type Fractional Operators: Fractional Cumulative Entropy. Entropy, 24(12), 1852. https://doi.org/10.3390/e24121852