Exact and Numerical Solution of the Fractional Sturm–Liouville Problem with Neumann Boundary Conditions
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
3.1. Case I—One Numerical Integration Scheme in the Construction of Discrete Integral FSLPN
3.2. Case II—Hybrid Numerical Integration Scheme in the Construction of Discrete Integral FSLPN
4. Examples of Numerical Solution
4.1. Example I
4.2. Example II
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zettl, A. Sturm–Liouville Theory; Mathematical Surveys and Monographs; American Mathematical Society: Providence, RI, USA, 2010; Volume 121. [Google Scholar]
- Zettl, A. Recent Developments in Sturm–Liouville Theory; De Gruyter Studiesin Mathematics; De Gruyter: Berlin, German, 2021; Volume 76. [Google Scholar]
- Hempel, R.; Kriecherbauer, T.; Plankensteiner, P. Discrete and cantor spectrum for Neumann Laplacians of combs. Math. Nachrichten 1997, 188, 141–168. [Google Scholar] [CrossRef]
- Derakhshan, M.H.; Ansari, A. Fractional Sturm–Liouville problems for Weber fractional derivatives. Int. J. Comput. Math. 2018, 96, 1–21. [Google Scholar] [CrossRef]
- Klimek, M.; Agrawal, O.P. Fractional Sturm–Liouville Problem. Comput. Math. Appl. 2013, 66, 795–812. [Google Scholar] [CrossRef]
- D’Ovidio, M. From Sturm–Liouville problems to to fractional and anomalous diffusions. Stochastic Process. Appl. 2012, 122, 3513–3544. [Google Scholar] [CrossRef] [Green Version]
- Ozarslan, R.; Bas, E.; Baleanu, D. Representation of solutions for Sturm–Liouville eigenvalue problems with generalized fractional derivative. Chaos Interdiscip. J. Nonlinear Sci. 2020, 30, 033137. [Google Scholar] [CrossRef]
- Pandey, P.K.; Pandey, R.K.; Agrawal, O.P. Variational approximation for fractional Sturm–Liouville problem. Fract. Calc. Appl. Anal. 2020, 23, 861–874. [Google Scholar] [CrossRef]
- Rivero, M.; Trujillo, J.J.; Velasco, M.P. A fractional approach to the Sturm–Liouville problem. Cent. Eur. J. Phys. 2013, 11, 1246–1254. [Google Scholar] [CrossRef]
- Siedlecki, J. The fourth-order ordinary differential Equation with the fractional initial/boundary conditions. J. Appl. Math. Comput. Mech. 2020, 19, 79–87. [Google Scholar] [CrossRef]
- Zayernouri, M.; Karniadakis, G.E. Fractional Sturm–Liouville eigen-problems: Theory and numerical approximation. J. Comput. Phys. 2013, 252, 495–517. [Google Scholar] [CrossRef]
- Zayernouri, M.; Ainsworth, M.; Karniadakis, G.E. Tempered fractional Sturm–Liouville eigenproblems. SIAM J. Sci. Comput. 2015, 37, A1777–A1800. [Google Scholar] [CrossRef] [Green Version]
- Pandey, P.K.; Pandey, R.K.; Yadav, S.; Agrawal, O.P. Variational Approach for Tempered Fractional Sturm–Liouville Problem. Int. J. Appl. Comput. Math. 2021, 7, 51. [Google Scholar] [CrossRef]
- Al-Refai, M.; Abdeljawad, T. Fundamental results of conformable Sturm–Liouville eigenvalue problems. Complexity 2017, 2017, 3720471. [Google Scholar] [CrossRef] [Green Version]
- Allahverdiev, B.P.; Tuna, H.; Yalçinkaya, Y. Conformable fractional Sturm–Liouville equation. Math. Meth. Appl. Sci. 2019, 42, 3508–3526. [Google Scholar] [CrossRef]
- Allahverdiev, B.P.; Tuna, H. Conformable fractional Sturm–Liouville problems on time scales. Math. Meth. Appl. Sci. 2021, 1–16. [Google Scholar] [CrossRef]
- Mortazaasl, H.; Akbarfam, A.A.J. Two classes of conformable fractional Sturm–Liouville problems: Theory and applications. Math. Meth. Appl. Sci. 2021, 44, 166–195. [Google Scholar] [CrossRef]
- Li, J.; Qi, J. On a nonlocal Sturm–Liouville problem with composite fractional derivatives. Math. Meth. Appl. Sci. 2021, 44, 1931–1941. [Google Scholar] [CrossRef]
- Derakhshan, M.H.; Ansari, A. Numerical approximation to Prabhakar fractional Sturm–Liouville problem. Comput. Appl. Math. 2019, 38, 71. [Google Scholar] [CrossRef]
- Klimek, M. Spectrum of fractional and fractional Prabhakar Sturm–Liouville problems with homogeneous Dirichlet boundary conditions. Symmetry 2021, 13, 2265. [Google Scholar] [CrossRef]
- Al-Mdallal, Q.M. An efficient method for solving fractional Sturm–Liouville problems. Chaos Solitons Fractals 2009, 40, 183–189. [Google Scholar] [CrossRef]
- Al-Mdallal, Q.M. On the numerical solution of fractional Sturm–Liouville problems. Int. J. Comput. Math. 2010, 87, 2837–2845. [Google Scholar] [CrossRef]
- Duan, J.-S.; Wang, Z.; Liu, Y.-L.; Qiu, X. Eigenvalue problems for fractional ordinary differential equations. Chaos Solitons Fractals 2013, 46, 46–53. [Google Scholar] [CrossRef]
- Erturk, V.S. Computing eigenelements of Sturm–Liouville Problems of fractional order via fractional differential transform method. Math. Comput. Appl. 2011, 16, 712–720. [Google Scholar] [CrossRef]
- Hajji, M.A.; Al-Mdallal, Q.M.; Allan, F.M. An efficient algorithm for solving higher-order fractional Sturm–Liouville eigenvalue problems. J. Comput. Phys. 2014, 272, 550–558. [Google Scholar] [CrossRef]
- Jin, B.; Lazarov, R.; Pasciak, J.; Rundell, W. Variational formulation of problems involving fractional order differential operators. Math. Comp. 2015, 84, 2665–2700. [Google Scholar] [CrossRef] [Green Version]
- Jin, B.; Lazarov, R.; Lu, X.; Zhou, Z. A simple finite element method for boundary value problems with a Riemann-Liouville derivative. J. Comput. Appl. Math. 2016, 293, 94–111. [Google Scholar] [CrossRef]
- Aleroev, T.S.; Aleroeva, H.T.; Nie, N.-M.; Tang, Y.-F. Boundary value problems for differential equations of fractional order. Mem. Differ. Equ. Math. Phys. 2010, 49, 21–82. [Google Scholar] [CrossRef] [Green Version]
- Aleroev, T.S.; Kirane, M.; Tang, Y.-F. Boundary-value problems for differential equations of fractional order. J. Math. Sci. 2013, 194, 499–512. [Google Scholar] [CrossRef] [Green Version]
- Aleroev, T.; Kekharsaeva, E. Boundary value problems for differential equations with fractional derivatives. Integral Transform. Spec. Funct. 2017, 28, 900–908. [Google Scholar] [CrossRef]
- Aleroev, T. On one problem of spectral theory for ordinary differential equations of fractional order. Axioms 2019, 8, 117. [Google Scholar] [CrossRef] [Green Version]
- Atanackovic, T.M.; Stankovic, S. Generalized wave Equation in nonlocal elasticity. Acta Mech. 2009, 208, 1–10. [Google Scholar] [CrossRef]
- Qi, J.; Chen, S. Eigenvalue problems of the model from nonlocal continuum mechanics. J. Math. Phys. 2011, 52, 073516. [Google Scholar] [CrossRef]
- Klimek, M.; Agrawal, O.P. On a regular fractional Sturm–Liouville problem with derivatives of order in (0, 1). In Proceedings of the 13th International Carpathian Control Conference, High Tatras, Slovakia, 28–31 May 2012. [Google Scholar] [CrossRef]
- Diethelm, K. The Analysis of Fractional Differential Equations; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 2010; Volume 2004. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Malinowska, A.B.; Torres, D.F.M. Introduction to the Fractional Calculus of Variations; Imperial College Press: London, UK, 2012. [Google Scholar]
- Malinowska, A.B.; Odzijewicz, T.; Torres, D.F.M. Advanced Methods in the Fractional Calculus of Variations; Springer International Publishing: London, UK, 2015. [Google Scholar]
- Rangaig, N. New aspects on the fractional Euler-Lagrange Equation with non-singular kernels. J. Appl. Math. Comput. Mech. 2020, 19, 89–100. [Google Scholar] [CrossRef]
- Agrawal, O.P.; Hasan, M.M.; Tangpong, X.W. A numerical scheme for a class of parametric problem of fractional variational calculus. J. Comput. Nonlinear Dyn. 2012, 7, 021005. [Google Scholar] [CrossRef]
- Baleanu, D.; Asad, J.H.; Petras, I. Fractional Bateman-Feshbach Tikochinsky Oscillator. Commun. Theor. Phys. 2014, 61, 221–225. [Google Scholar] [CrossRef]
- Baleanu, D.; Sajjadi, S.S.; Jajarmi, A.; Asad, J.H. New features of the fractional Euler-Lagrange equations for a physical system within non-singular derivative operator. Eur. Phys. J. Plus 2019, 134, 181. [Google Scholar] [CrossRef]
- Blaszczyk, T.; Ciesielski, M. Fractional oscillator Equation -transformation into integral Equation and numerical solution. Appl. Math. Comput. 2015, 257, 428–435. [Google Scholar] [CrossRef]
- Bourdin, L.; Cresson, J.; Greff, I.; Inizan, P. Variational integrator for fractional Euler-Lagrange equations. Appl. Numer. Math. 2013, 71, 14–23. [Google Scholar] [CrossRef] [Green Version]
- Almeida, R.; Malinowska, A.B.; Morgado, M.L.; Odzijewicz, T. Variational methods for the solution of fractional discrete/continuous Sturm–Liouville problems. J. Mech. Mater. Struct. 2017, 12, 3–21. [Google Scholar] [CrossRef] [Green Version]
- Blaszczyk, T.; Ciesielski, M. Numerical solution of fractional Sturm–Liouville Equation in integral form. Fract. Calc. Appl. Anal. 2014, 17, 307–320. [Google Scholar] [CrossRef] [Green Version]
- Ciesielski, M.; Klimek, M.; Blaszczyk, T. The Fractional Sturm–Liouville Problem -Numerical Approximation and Application in Fractional Diffusion. J. Comput. Appl. Math. 2017, 317, 573–588. [Google Scholar] [CrossRef]
- Klimek, M.; Ciesielski, M.; Blaszczyk, T. Exact and numerical solutions of the fractional Sturm–Liouville problem. Fract. Calc. Appl. Anal. 2018, 21, 45–71. [Google Scholar] [CrossRef] [Green Version]
- Klimek, M.; Odzijewicz, T.; Malinowska, A.B. Variational methods for the fractional Sturm–Liouville problem. J. Math. Anal. Appl. 2014, 416, 402–426. [Google Scholar] [CrossRef]
- Klimek, M.; Malinowska, A.B.; Odzijewicz, T. Applications of the fractional Sturm–Liouville problem to the space-time fractional diffusion in a finite domain. Fract. Calc. Appl. Anal. 2016, 19, 516–550. [Google Scholar] [CrossRef]
- Klimek, M. Simple case of fractional Sturm–Liouville problem with homogeneous von Neumann boundary conditions. In Proceedings of the MMAR 2018 International Confenerence on Methods and Models in Automation and Robotics, Miedzyzdroje, Poland, 27–30 August 2018. [Google Scholar] [CrossRef]
- Klimek, M. Homogeneous Robin boundary conditions and discrete spectrum of fractional eigenvalue problem. Fract. Calc. Appl. Anal. 2019, 22, 78–94. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
1 | 250 | 9.8694745 | - | 7.8556424 | - | 5.4750947 | - |
500 | 9.8695719 | 1.997 | 7.8571537 | 1.610 | 5.5029938 | 1.191 | |
1000 | 9.8695963 | 2.000 | 7.8576488 | 1.607 | 5.5152125 | 1.197 | |
2000 | 9.8696024 | 2.024 | 7.8578113 | 1.608 | 5.5205439 | 1.199 | |
4000 | 9.8696039 | - | 7.8578646 | - | 5.5228666 | - | |
2 | 250 | 39.476340 | - | 20.327286 | - | 10.008656 | - |
500 | 39.477898 | 1.998 | 20.337158 | 1.602 | 10.102136 | 1.182 | |
1000 | 39.478288 | 2.007 | 20.340410 | 1.602 | 10.143348 | 1.192 | |
2000 | 39.478385 | 2.015 | 20.341481 | 1.601 | 10.161385 | 1.197 | |
4000 | 39.478409 | - | 20.341834 | - | 10.169253 | - | |
3 | 250 | 88.815920 | - | 38.881625 | - | 16.167499 | - |
500 | 88.823810 | 2.000 | 38.917945 | 1.603 | 16.412925 | 1.170 | |
1000 | 88.825782 | 2.000 | 38.929901 | 1.603 | 16.522008 | 1.187 | |
2000 | 88.826275 | 1.991 | 38.933836 | 1.603 | 16.569919 | 1.195 | |
4000 | 88.826399 | - | 38.935131 | - | 16.590853 | - | |
4 | 250 | 157.88042 | - | 59.665008 | - | 21.512600 | - |
500 | 157.90536 | 2.001 | 59.749754 | 1.599 | 21.948949 | 1.159 | |
1000 | 157.91159 | 1.998 | 59.777723 | 1.601 | 22.144364 | 1.182 | |
2000 | 157.91315 | 2.000 | 59.786945 | 1.601 | 22.230487 | 1.192 | |
4000 | 157.91354 | - | 59.789984 | - | 22.268175 | - | |
5 | 250 | 246.65895 | - | 85.292837 | - | 27.925213 | - |
500 | 246.71982 | 2.000 | 85.466870 | 1.600 | 28.665274 | 1.147 | |
1000 | 246.73504 | 2.002 | 85.524297 | 1.602 | 28.999570 | 1.177 | |
2000 | 246.73884 | 2.000 | 85.543221 | 1.602 | 29.147466 | 1.190 | |
4000 | 246.73979 | - | 85.549456 | - | 29.212295 | - | |
6 | 250 | 355.13747 | - | 112.54371 | - | 33.623633 | - |
500 | 355.26368 | 2.000 | 112.84505 | 1.596 | 34.701683 | 1.135 | |
1000 | 355.29524 | 2.000 | 112.94470 | 1.600 | 35.192608 | 1.171 | |
2000 | 355.30313 | 2.002 | 112.97757 | 1.599 | 35.410598 | 1.187 | |
4000 | 355.30510 | - | 112.98842 | - | 35.506312 | - | |
7 | 250 | 483.29886 | - | 144.00145 | - | 40.125471 | - |
500 | 483.53266 | 2.000 | 144.49694 | 1.596 | 41.671012 | 1.122 | |
1000 | 483.59113 | 2.001 | 144.66082 | 1.600 | 42.381118 | 1.165 | |
2000 | 483.60574 | 1.997 | 144.71487 | 1.601 | 42.697703 | 1.185 | |
4000 | 483.60940 | - | 144.73269 | - | 42.836953 | - | |
8 | 250 | 631.12288 | - | 176.75038 | - | 45.983903 | - |
500 | 631.52170 | 2.000 | 177.49404 | 1.594 | 48.024089 | 1.110 | |
1000 | 631.62143 | 2.000 | 177.74045 | 1.598 | 48.969362 | 1.160 | |
2000 | 631.64637 | 2.001 | 177.82183 | 1.600 | 49.392428 | 1.182 | |
4000 | 631.65260 | - | 177.84867 | - | 49.578838 | - |
1 | 250 | 7.0687342 | - | 6.2956345 | - | 4.6051127 | - |
500 | 7.0687782 | 2.000 | 6.2967500 | 1.622 | 4.6361847 | 1.195 | |
1000 | 7.0687892 | 1.974 | 6.2971124 | 1.620 | 4.6497610 | 1.199 | |
2000 | 7.0687920 | 2.000 | 6.2972303 | 1.615 | 4.6556764 | 1.200 | |
4000 | 7.0687927 | - | 6.2972688 | - | 4.6582511 | - | |
2 | 250 | 24.644959 | - | 12.771392 | - | 6.4333679 | - |
500 | 24.646018 | 1.999 | 12.777978 | 1.602 | 6.4923883 | 1.181 | |
1000 | 24.646283 | 2.005 | 12.780147 | 1.603 | 6.5184265 | 1.192 | |
2000 | 24.646349 | 1.957 | 12.780861 | 1.597 | 6.5298259 | 1.197 | |
4000 | 24.646366 | - | 12.781097 | - | 6.5347998 | - | |
3 | 250 | 70.274276 | - | 30.075510 | - | 12.136357 | - |
500 | 70.279914 | 1.999 | 30.101699 | 1.604 | 12.331176 | 1.174 | |
1000 | 70.281324 | 2.002 | 30.110313 | 1.604 | 12.417505 | 1.189 | |
2000 | 70.281676 | 2.000 | 30.113146 | 1.604 | 12.455371 | 1.195 | |
4000 | 70.281764 | - | 30.114078 | - | 12.471906 | - | |
4 | 250 | 127.27968 | - | 46.851483 | - | 16.228206 | - |
500 | 127.29583 | 1.999 | 46.912533 | 1.602 | 16.596768 | 1.171 | |
1000 | 127.29987 | 2.000 | 46.932645 | 1.603 | 16.760495 | 1.187 | |
2000 | 127.30088 | 2.014 | 46.939266 | 1.603 | 16.832387 | 1.195 | |
4000 | 127.30113 | - | 46.941446 | - | 16.863793 | - | |
5 | 250 | 197.81960 | - | 67.232260 | - | 20.906261 | - |
500 | 197.88521 | 1.999 | 67.418158 | 1.600 | 21.637418 | 1.143 | |
1000 | 197.90162 | 2.001 | 67.479487 | 1.602 | 21.968596 | 1.175 | |
2000 | 197.90572 | 2.007 | 67.499697 | 1.602 | 22.115285 | 1.189 | |
4000 | 197.90674 | - | 67.506354 | - | 22.179616 | - | |
6 | 250 | 285.02794 | - | 89.803850 | - | 25.836658 | - |
500 | 285.14300 | 2.000 | 90.081339 | 1.598 | 26.887072 | 1.144 | |
1000 | 285.17177 | 2.001 | 90.173017 | 1.600 | 27.362312 | 1.175 | |
2000 | 285.17896 | 1.998 | 90.203255 | 1.601 | 27.572716 | 1.189 | |
4000 | 285.18076 | - | 90.213224 | - | 27.664975 | - | |
7 | 250 | 381.52715 | - | 112.94393 | - | 30.374162 | - |
500 | 381.75312 | 2.000 | 113.43053 | 1.598 | 31.911832 | 1.117 | |
1000 | 381.80962 | 2.001 | 113.59131 | 1.601 | 32.620555 | 1.164 | |
2000 | 381.82374 | 1.996 | 113.64431 | 1.601 | 32.936757 | 1.185 | |
4000 | 381.82728 | - | 113.66178 | - | 33.075861 | - | |
8 | 250 | 495.02316 | - | 136.38509 | - | 34.838979 | - |
500 | 495.40389 | 2.000 | 137.06049 | 1.593 | 36.579470 | 1.111 | |
1000 | 495.49909 | 2.000 | 137.28436 | 1.598 | 37.385104 | 1.159 | |
2000 | 495.52289 | 2.000 | 137.35829 | 1.600 | 37.745787 | 1.182 | |
4000 | 495.52884 | - | 137.38267 | - | 37.904751 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klimek, M.; Ciesielski, M.; Blaszczyk, T. Exact and Numerical Solution of the Fractional Sturm–Liouville Problem with Neumann Boundary Conditions. Entropy 2022, 24, 143. https://doi.org/10.3390/e24020143
Klimek M, Ciesielski M, Blaszczyk T. Exact and Numerical Solution of the Fractional Sturm–Liouville Problem with Neumann Boundary Conditions. Entropy. 2022; 24(2):143. https://doi.org/10.3390/e24020143
Chicago/Turabian StyleKlimek, Malgorzata, Mariusz Ciesielski, and Tomasz Blaszczyk. 2022. "Exact and Numerical Solution of the Fractional Sturm–Liouville Problem with Neumann Boundary Conditions" Entropy 24, no. 2: 143. https://doi.org/10.3390/e24020143
APA StyleKlimek, M., Ciesielski, M., & Blaszczyk, T. (2022). Exact and Numerical Solution of the Fractional Sturm–Liouville Problem with Neumann Boundary Conditions. Entropy, 24(2), 143. https://doi.org/10.3390/e24020143