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Abstract: The estimation of average treatment effect (ATE) as a causal parameter is carried out in
two steps, where in the first step, the treatment and outcome are modeled to incorporate the potential
confounders, and in the second step, the predictions are inserted into the ATE estimators such as
the augmented inverse probability weighting (AIPW) estimator. Due to the concerns regarding the
non-linear or unknown relationships between confounders and the treatment and outcome, there
has been interest in applying non-parametric methods such as machine learning (ML) algorithms
instead. Some of the literature proposes to use two separate neural networks (NNs) where there
is no regularization on the network’s parameters except the stochastic gradient descent (SGD) in
the NN’s optimization. Our simulations indicate that the AIPW estimator suffers extensively if no
regularization is utilized. We propose the normalization of AIPW (referred to as nAIPW) which
can be helpful in some scenarios. nAIPW, provably, has the same properties as AIPW, that is, the
double-robustness and orthogonality properties. Further, if the first-step algorithms converge fast
enough, under regulatory conditions, nAIPW will be asymptotically normal. We also compare the
performance of AIPW and nAIPW in terms of the bias and variance when small to moderate L1

regularization is imposed on the NNs.

Keywords: causal inference; instrumental variables; neural networks; doubly robust estimation;
semi-parametric theory

1. Introduction

Estimation of causal parameters such as the average treatment effect (ATE) in observa-
tional data requires confounder adjustment. The estimation and inference are carried out
in two steps: In step 1, the treatment and outcome are predicted by a statistical models or
machine learning (ML) algorithm, and in the second step the predictions are inserted into
the causal effect estimator. If ML algorithms are employed in step 1, the non-linear rela-
tionships can potentially be taken into account. The relationship between the confounders
and the treatment and outcome can be non-linear which make the application of machine
learning (ML) algorithms, which are non-parametric models, appealing. Farrell et al. [1]
proposed to use two separate neural networks (double NNs or dNNs) where there is no
regularization on the network’s parameters except the stochastic gradient descent (SGD)
in the NN’s optimization [2–5]. They derive the generalization bounds and prove that
the NN’s algorithms are fast enough so that the asymptotic distribution of causal estima-
tors such as the augmented inverse probability weighting (AIPW) estimator [6–8] will be
asymptotically linear, under regulatory conditions and the utilization of cross-fitting [9].

Farrell et al. [1] argue that the fact that SGD-type algorithms control the complexity of
the NN algorithm to some extent [2,10] is sufficient for the first step. Our initial simulations
and analyses, however, contradict this claim in scenarios where strong confounders and
instrumental variables (IVs) exist in the data.

Conditioning on IVs is harmful to the performance of the causal effect estimators such
as ATE (Myers et al. [11]) but there may be no prior knowledge about which covariates
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are IVs, confounders or otherwise. The harm comes from the fact that the complex NNs
can provide near-perfect prediction in the treatment model which violates the empirical
positivity assumption [12].

The positivity assumption (Section 2) is fundamental to hold to have an identifiable
causal parameter in a population. However, in a finite sample, although the parameter is
identifiable by making the positivity assumption, the bias and variance of the estimator can
be inflated if the estimated propensity scores are close to zero or one bounds (or become
zero or one by rounding errors). This is referred to as the empirical positivity assumption
which is closely related to the concept of sparsity studied in Chapter 10 of Van der Laan and
Rose [8]. The violation of the empirical positivity assumption can cause the inflation of the
bias and variance of inverse probability weighting (IPW)-type and AIPW-type estimators.

The inverse probability weighting method dates at least back to Horvitz and Thompson [13]
in the literature of sampling with unequal selection probabilities in sub-populations. IPW-
type and matching methods have been extensively studied Lunceford and Davidian [7],
Rubin [14], Rosenbaum and Rubin [15,16], Busso et al. [17]. IPW is proven to be a consistent
estimator of ATE if the propensity scores (that are the conditional probability of treatment
assignments) are estimated by a consistent parameter or non-parametric model. The other
set of ATE estimators include those involving the modeling of the outcome and inserting
the predictions directly into the ATE estimator (Section 2). They are referred to as single
robust (SR) estimators as they provide

√
n−consistent estimators for ATE if the outcome

model is
√

n−consistent. In this sense, IPW is also single robust as it is consistent if the
treatment (or the propensity score) model is

√
n−consistent. The focus of this work is to

study the augmented IPW-type methods as they involve modeling both treatment and
outcome and can be

√
n−consistent estimators of ATE if either of the models is consistent.

We propose and study a simple potential remedy to the empirical positivity violation
issue by studying the normalization of the AIPW estimator (similar to the normalization of
IPW [7]), here referred to as nAIPW. In fact, both AIPW and nAIPW can be viewed as a
more general estimator which is derived via the efficient influence function of ATE [18,19].

A general framework of estimators that includes nAIPW as a special case was pro-
posed by [20]. In their work, the authors did not consider machine learning algorithms for
the first-step estimation, but rather assumed parametric statistical models estimated by
likelihood-based approaches. They focused on how to consistently estimate ATE within
different sub-populations imposed by the covariates. There is a lack of numerical experi-
mentation on these estimators especially when IVs and strong confounders exist in the set
of candidate covariates.

To the best of our knowledge, the performance of nAIPW has not been previously
studied in the machine learning context, with the assumption that strong confounders and
IVs exist in the data. We will prove that this estimator has the doubly robust [6] and the
rate doubly robust [19] property, and illustrate that it is robust against extreme propensity
score values. Further, nAIPW (similar to AIPW), has the orthogonality property [9] which
means that it is robust against small variations in the predictions of the outcome and
treatment assignment predictions. One theoretical difference is that AIPW is the most
efficient estimator among all the double robust estimators of ATE given both treatment
and outcome models are correctly specified [21]. In practice, however, often there is no a
priori knowledge about the true outcome and propensity score relationships with the input
covariates and thus this feature of AIPW is probably of less practical use.

We argue that for causal parameter estimation, dNN with no regularization may lead
to high variance for the causal estimator used in the second step. We compare AIPW and
nAIPW through a simulation study where we allow for moderate to strong confounding
and instrumental variable effects, that is, we allow for possible violation of the empirical
positivity assumption. Further, a comparison between AIPW and nAIPW is made on the
Canadian Community Health Survey (CCHS) dataset where the intervention/treatment is
the food security vs. food insecurity and the outcome is individuals’ body mass index (BMI).
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Our contributions include presenting the proof for the orthogonality, doubly robust
and rate doubly robust property of nAIPW. Further, it is proven that, under certain assump-
tions, nAIPW is asymptotically normal and we provide its consistent variance estimator.
We analyze the estimation of ATE in the presence of not only confounders, but also IVs, y-
predictors and noise variables. We demonstrate that in the presence of strong confounders
and IVs, if complex neural networks without L1 regularizations are used in the step 1
estimation, both AIPW and nAIPW estimators and their asymptotic variances perform
poorly, but, relatively speaking, nAIPW performs better. In this paper, the NNs are mostly
used as means of estimating the outcome and treatment predictions.

Organization of the article is as follows. In Section 2 we will formally introduce the
nAIPW estimator to the readers and state its double robustness property, and in Section 3
we present the first-step prediction model, double neural networks. In Sections 4 and 5 we
will present the theoretical aspects of the paper, including the asymptotic normality, doubly
robustness and rate doubly robustness orthogonality of the proposed estimator (nAIPW)
and the asymptotic normality. We will present the simulation scenarios and results of
comparing the nAIPW estimator with other conventional estimators in Section 6. We apply
the estimators on a real dataset in Section 7. The article will be concluded with a short
discussion on the findings in Section 8. The proofs are straightforward but long and thus
are included in Appendix A.

2. Normalized Doubly Robust Estimator

Let data O = (O1, O2, ..., On) be generated by a data generating process P, where Oi is a
finite dimensional vector Oi = (Yi, Ai, Wi), with W being the adjusting factors. P is the true
observed data distribution, P̂n is the distribution of O such that its marginal distribution
with respect to W is its empirical distribution and the expectation of the conditional
distribution Y|A = a, W, for a = 0, 1, can be estimated. We denote the prediction function
of the observed outcome given explanatory variables in the treated group Q1 := Q(1, W) =
E[Y|A = 1, W], and that in the untreated group Q0 := Q(0, W) = E[Y|A = 0, W], and the
propensity score as g(W) = E[A|W]. Throughout, the expectations E are with respect to P.
The symbol ˆ on the population-level quantities indicates the corresponding finite sample
estimator, and P is replaced by P̂n.

Let the causal parameter of interest be the average treatment effect (ATE)

βATE = E[Y1 −Y0] = E
[
E[Y1 −Y0|W]

]
=

E
[
E[Y|A = 1, W]

]
−E

[
E[Y|A = 0, W]

]
, (1)

where Y1 and Y0 are the potential outcomes of the treatment and controls [6].
For identifiablity of the parameter, the following assumptions must hold true. The

first assumption is the conditional independence, or unconfoundedness stating that, given
the confounders, the potential outcomes are independent of the treatment assignments
(Y0, Y1 ⊥ A|W). The second assumption is positivity which entails that the assignment
of treatment groups is not deterministic (0 < Pr(A = 1|W) < 1). The third assump-
tion is consistency which states that the observed outcomes equal their corresponding
potential outcomes (YA = y). There are other modeling assumptions made such as time
order (i.e., the covariates W are measured before the treatment), IID subjects and a linear
causal effect.
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A list of first candidates to estimate ATE are

naive ATE β̂naiveATE =
1
n1

∑
i∈A1

Q̂1
i −

1
n0

∑
i∈A0

Q̂0
i ,

SR β̂SR = Ê
[
Ê[Y1 −Y0|W]

]
=

1
n

n

∑
i=1

Q̂1
i − Q̂0

i ,

IPW β IPW = Ê
[ Y1

Ê[A|W]
− Y0

1− Ê[A|W]

]
=

1
n

n

∑
i=1

(Aiyi
ĝi
− (1− Ai)yi

1− ĝi

)
,

nIPW β̂nIPW =
n

∑
i=1

( Aiw
(1)
i yi

∑n
j=1 Ajw

(1)
j

− (1− Ai)w
(0)
i yi

∑n
j=1(1− Aj)w

(0)
j

)
.

(2)

The naive average treatment effect (naive ATE) is a biased (due to the selection bias)
estimator of ATE [22] and is the poorest estimator among all the candidates. The single
robust (SR) is not an orthogonal estimator [9] and if ML algorithms which do not belong to
the Donsker class ([23], Section 19.2) or have entropy that grows with the sample size are
used, this estimator also becomes biased and is not asymptotically normal. The inverse
probability weighting (IPW) [13] and its normalization versions adjust (or weight) the
observations in the treatment and control groups. IPW and nIPW are also not orthogonal
estimators and are similar to SR in this respect. In addition, both β̂SR and β̂ IPW (and β̂nIPW)
are single robust, that is, they are consistent estimators of ATE if the models used are√

n-consistent [7]. IPW is an unbiased estimator of ATE if g is correctly specified, but
nIPW is not unbiased, but is less sensitive to extreme predictions. The augmented inverse
probability weighting (AIPW) estimator [21] is an improvement over SR, IPW and nIPW,
which involves the predictions for both treatment (the propensity score), and the causal
parameter can be expressed as:

β = E
[(AY−Q(1, W)(A−E[A|W])

E[A|W]

)
−

( (1− A)Y + Q(0, W)(A−E[A|W])

1−E[A|W]

)]
, (3)

and the sample version estimator of (3) is

β̂AIPW =
1
n

n

∑
i=1

[(AiYi − Q̂(1, Wi)(Ai − Ê[Ai|Wi])

Ê[Ai|Wi]

)
−

( (1− Ai)Yi + Q̂(0, Wi)(Ai − ĝi)

1− Ê[Ai|Wi]

)]
=

1
n

n

∑
i=1

(Ai(yi − Q̂1
i )

ĝi
− (1− Ai)(yi − Q̂0

i )

1− ĝi

)
+ β̂SR, (4)

where Q̂k
i = Q̂(k, Wi) = Ê[Yi|Ai = k, Wi] and ĝi = Ê[Ai|Wi].

Among all the doubly robust estimators of ATE, AIPW is the most efficient estimator if
both of the propensity score or outcome models are correctly specified, but is not necessarily
efficient under incorrect model specification. In fact, this nice feature of AIPW may be less
relevant in real-life problems as we might not have a priori knowledge about the predictors
of the propensity score and outcome and we cannot correctly model them. Further, in
practice, perfect or near-perfect prediction of the treatment assignment can inflate the
variance of the AIPW estimator [8]. As a remedy, similar to the normalization of the
IPW estimator, we can define a normalized version of the AIPW estimator which is less
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sensitive to extreme values of the predicted propensity score, referred to as the normalized
augmented inverse probability weighting (nAIPW) estimator:

β̂nAIPW =
n

∑
i=1

(Ai(yi − Q̂1
i )w

(1)
i

∑n
j=1 Ajw

(1)
j

− (1− Ai)(yi − Q̂0
i )w

(0)
i

∑n
j=1(1− Aj)w

(0)
j

)
+ β̂SR, (5)

where w(1)
k = 1

ĝk
and w(0)

k = 1
1−ĝk

. Both AIPW and nAIPW estimators add adjustment
factors to the SR estimator which involve both models of the treatment and the outcome.

Both AIPW and nAIPW are examples of a class of estimators where

β̂GDR =
1
n

n

∑
i=1

(Ai(yi − Q̂1
i )

ĥ1
i

− (1− Ai)(yi − Q̂0
i )

ĥ0
i

)
+ β̂SR, (6)

where we refer to this general class as the general doubly robust (GDR) estimator. Let-
ting ĥ1 = ĝ and ĥ0 = 1 − ĝ gives the AIPW estimators and letting ĥ1 = ĝÊ A

ĝ and

ĥ0 = (1− ĝ)Ê 1−A
1−ĝ gives the nAIPW estimator.

The GDR estimator can also be written as

β̂GDR = Ê
([ A

ĥ1
− 1− A

ĥ0

]
y−

(
A− ĥ1)Q̂1 +

(
1− A− ĥ0)Q̂0

)
, (7)

If h1 and h0 are chosen so that

E
[
A− h1] = 0, E

[
1− A− h0] = 0, (8)

by the total law of expectation β̂GDR is an unbiased estimator of β.

3. Outcome and Treatment Predictions

The causal estimation and inference when utilizing the AIPW and nAIPW is carried
out in two steps. In step 1, the treatment and outcome are predicted by a statistical or
machine learning (ML) algorithm, and in the second step the predictions are inserted
into the estimator. The ML algorithms in step 1 can capture the linear and non-linear
relationships between the confounders and the treatment and the outcome.

Neural networks (NNs) [2–4] are a class of non-linear and non-parametric complex
algorithms that can be employed to model the relationship between any set of inputs and
some outcome. There has been a tendency to use NNs as they have achieved great success
in the most complex artificial intelligence (AI) tasks such as computer vision and natural
language understanding [2].

Farrell et al. [1] used two independent NNs for modeling the propensity score model
and the outcome with the rectified linear unit (RELU) activation function [2], here referred
to as the double NN or dNN:

E[Y|A, W] = β0 + βA + Wα + HΓY

E[A|W] = β′0 + W′α′ + H′ΓA,
(9)

where two separate neural nets model y and A (no parameter sharing). Farrell et al. [1]
proved that dNN algorithms almost attain n

1
4 -rates. By employing the cross-fitting method

and theory developed by Chernozhukov et al. [9], an orthogonal causal estimator is asymp-
totically normal, under some regularity and smoothing conditions, if the dNN is used in
the first step (see Theorem 1 in [1]).

These results assume no regularizations imposed on the NNs’ weights, and only the
stochastic gradient descent (SGD) is used. Farrell et al. claim that the fact that SGD controls
the complexity of the NN algorithm to some extent [2,10] is sufficient for the first step.
Our initial simulations, however, contradict this claim and we hypothesize that for causal
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parameter estimation, a dNN with no regularization leads to high variance for the causal
estimator used in the second step. Our initial experiments indicate that L2 regularization
and dropout do not perform well in terms of the mean square error (MSE) of AIPW. The loss
functions we use contain L1 regularization (in addition to SGD during the optimization):

Ly(Py, β, α) =
n

∑
i=1

[
yi − α′ − βAi −Wiα− HT

i ΓY

]2
+ CL1 ∑

ω∈P
|ω|,

LA(PA, α′) =
n

∑
i=1

[
Ai log

(
g
(

HT
i ΓA

))
+ (1− Ai) log

(
1− g

(
HT

i ΓA
))]

+

C′L1 ∑
ω∈P
|ω|,

(10)

where CL1 , C′L1
are hyperparameters that can be set before training or be determined by

cross-validation, that can cause the training to pay more attention to one part of the output
layer. The dNN can have an arbitrary number of hidden layers, or the width of the network
(HL) can be another hyperparameter. For a three-layer network,HL = [l1, l2, ..., lh], where
lj is the number neurons in layer j, j = 1, 2, ..., h. Py,PA are the connection parameters
in the non-linear part of the networks, with Ωs being shared for the two outcome and
propensity models. Note that the gradient descent-type optimizations in the deep learning
platforms (such as pytorch in our case) do not cause the NN parameters to shrink to zero.

4. GDR Estimator Properties

In this section we will see that nAIPW (5) is doubly robust, that is, if either of the
outcome or propensity score models are

√
n-consistent, nAIPW will be consistent. Further,

nAIPW is orthogonal [9] and is asymptotically linear under certain assumptions and we
calculate its asymptotic variance.

4.1. Consistency and Asymptotic Distribution of nAIPW

In causal inference, estimating the causal parameter and drawing inference on the
parameter are two major tasks. Employing a machine learning algorithm to estimate Q and
g in (5) is a means to estimate and draw inference on the causal parameter; the ultimate
goal is the relationship between the treatment and the outcome. This allows people to
use blackbox ML models with no explanation how these models have learned from the
explanatory features. The question is if the consistency and asymptotic normality of the
second step causal estimator are preserved if complex ML algorithms are utilized twice
for the treatment and outcome models, each with a convergence rate smaller than

√
n, and

entropy that grows with n.
Chernozhukov et al. [24] provide numerical experiments illustrating that some estima-

tors are not consistent or asymptotically normal if complex ML models are used that do
not belong to the Donsker class and have entropy that grows with n. They further provide
a solution by introducing “orthogonal” estimators that, under some regulatory conditions
and cross-fitting, are asymptotically normal even if complex ML models can be used as
long as their rates of convergence are as small as n

1
4 .

The next two subsections provide an overview of the general theory and prove that
nAIPW is asymptotically normal.

4.2. The Efficient Influence Function

Hahn [18] derives the efficient influence function (EIF) of β = β1 − β0 as

φ(O, P) =
(A

g
(Y−Q1) + Q1 − β1

)
−
(1− A

1− g
(Y−Q0) + Q0 − β0

)
(11)
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To study the asymptotic behaviour of nAIPW, we write the scaled difference

√
n(β̂− β) =

1√
n

n

∑
i=1

φ(Oi, P)− 1√
n

n

∑
i=1

φ(Oi, P̂n)+

√
n(Pn − P)[φ(Oi, P̂n)− φ(Oi, P)]−

√
nR(P, P̂n), (12)

where the first term is a normal distribution by the central limit theorem, and the third and
fourth terms are controlled if the class of functions are Donsker and standard smoothing
conditions are satisfied ([9,23], Theorem 19.26). If the nuisance parameters are not Donsker,
data splitting and cross-fitting guarantees plus the regulatory conditions are needed to
control these two terms [1,9]. It is unclear, however, how the second term behaves, i.e.,

− 1√
n

φ(O, P̂n) =

− 1√
n

n

∑
i=1

[Ai
gi

(Yi − Q̂1
i )−

1− Ai
1− gi

(Yi − Q̂0
i ) + Q̂1

i − Q̂0
i

]
− β̂, (13)

where β̂ = β(P̂n), as it contains data-adaptive nuisance parameter estimations. There are
different tricks to get rid of this term. One method is the one-step method in which we
move this term to the left to create a new estimator which is exactly the same as the AIPW
estimator with known propensity scores:

√
n(β̂ +

1
n

φ(O, P̂n)− β) =

√
n
( 1

n

n

∑
i=1

[Ai
gi

(Yi − Q̂1
i )−

1− Ai
1− gi

(Yi − Q̂0
i ) + Q̂1

i − Q̂0
i

]
− β

)
. (14)

Another trick is to let this term vanish which results in estimating equations whose
solution is exactly the same as the one-step estimator. The targetted learning strategy is to
manipulate the data generating process which results in a different estimator [8,19] (which
we do not study here).

The requirement in the above estimator is that the propensity score is known, which is
unrealistic. In reality, this quantity should be estimated using the data. However, replacing
g with a data-adaptive estimator changes the remainder term in (12) that needs certain
assumptions to achieve asymptotic properties such as consistency. We replace g and 1− g
in (14) by ĥ1 and ĥ0, respectively, which provides a more general view of the above one-step
estimator.

4.3. Doubly Robustness and Rate Doubly Robustness Properties of GDR

One of the appealing properties of AIPW is its doubly robust property which partially
relaxes the restrictions of IPW and SR which require the consistency of the treatment and
outcome models, respectively. This property is helpful when the first-step algorithms
are
√

n-consistent. The following theorem states that the nAIPW estimator (5) actually
possesses the doubly robustness property.

Theorem 1 (nAIPW Double Robustness). The DR estimator (5) is consistent if Q̂k p−→ Qk,
k = 0, 1 or ĝ

p−→ g.

The proof is left to the appendix. Theorem 1 is useful when we a priori knowledge about
the propensity scores (such as in the experimental studies) or we estimate the propensity
scores with

√
n-rate converging algorithms. In practice, however, the correct specification

is infeasible in the observational data, but
√

n-rate algorithms such as parametric models,
generalized additive models (GAMs) or the models that assume sparsity might be used [25].
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This is restrictive and these model assumptions might not hold in practice which is why
non-parametric ML algorithms such as NNs are used. As mentioned before, the NN
we utilize here does not offer a

√
n-consistent prediction model in the first step of the

estimation [1]. This reduces the usefulness of the double robustness property of the GDR
estimator when using complex ML algorithms. A more useful property when using complex
ML algorithms is the rate double robustness (RDR) property [26]. RDR does not require either
of the prediction models to be

√
n-consistent; it suffices that they are consistent at any rate

but together become
√

n-consistent; that is, if the propensity score and outcome model are
consistent at nrA and nrY , respectively (rY, rA < 0), we must have rA + rY = 1

2 . To see that
the DR has this property (as does DR [25]), note that the remainder (12) can be written as

−
√

nR(P, P̂n) =

√
nE
[( g

ĥ1
− 1
)(

Q1 − Q̂1)]+
√

nE
[(1− g

ĥ0
− 1
)(

Q0 − Q̂0)], (15)

which, by the Hölder inequality, is upper bounded:

−
√

nR(P, P̂n) ≤
[
E
[ g

ĥ1
− 1
]2
] 1

2
[
E
[

Q1 − Q̂1
]2
] 1

2

+

[
E
[1− g

ĥ0
− 1
]2
] 1

2
[
E
[

Q0 − Q̂0
]2
] 1

2

(16)

Making the standard assumptions that

[
E
[

g− ĥk
]2
] 1

2
[
E
[

Qk − Q̂k
]2
] 1

2

= o(n−
1
2 ), k = 0, 1,

E
[

g− ĥk
]2

= o(1), E
[

Qk − Q̂k
]2

= o(1), k = 0, 1,

Empirical Positivity c1 < ĥk < 1− c2, for some c1, c2 > 0,

(17)

implies
−
√

nR(P, P̂n) = o(n−
1
2 ), (18)

that is, the GDR has the rate double robustness property.
The assumptions in (17) are less restrictive than needing at least one of the prediction

models to be
√

n-consistent for the double robust property [19,25]. This means that the
outcome and propensity score models can be at least as fast as o(n−

1
4 ) (which is an attainable

generalization bound for many complex machine learning algorithms [9]), and the GDR
estimator is still consistent. Farrell et al. [1] proves that two neural networks without
regularization (except the one imposed by the stochastic gradient descent optimization) satisfy
such bounds and can provide a convenient first-step prediction algorithm (when they utilize
the AIPW estimator and the cross-fitting strategy proposed by Chernozhukov et al. [9]).

In order for a special case of GDR estimator to outperform the AIPW estimator, we
must have Ah1 ≥ Ag and (1− A)h0 ≥ (1− A)(1− g), in addition to conditions in (17).
Note that these two conditions are satisfied for nAIPW; replacing h1 and h0 with ĝÊ A

ĝ

and (1− ĝ)Ê 1−A
1−ĝ can help stabilize the bias and variance magnitude and help shrink the

remainder (15) to zero. The scenario analysis performed in Section 4.4 provides an insight
about the reduction in the sensitivity to the violation of the empirical positivity assumption.
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4.4. Robustness of nAIPW against Extreme Propensity Scores

There are two scenarios in which the empirical positivity is violated, where the prob-
ability of receiving the treatment for the people who are treated is 1, that is, Ak = 1 and
P(Ak = 1|W) = 1 (or vice versa for the untreated group Ak = 0 and P(Ak = 0|W) = 0),
and where there are a handful of treated subjects whose probability of receiving the treat-
ment is 0, that is, Ak = 1 and P(Ak = 1|W) = 0 (and vice versa for the untreated group,
that is, Ak = 0 and P(Ak = 0|W) = 1). Although the identifiability assumptions guarantee
that such scenarios do not occur, in practice, extremely small or large probabilities similar
to the second scenario above, that is, where there exists a treated individual who has a
near-zero probability of receiving the treatment, can impact the performance of the estima-
tors that involve propensity score weighting. For example, replacing h1 with ĝ and h0 with
1− ĝ in practice can increase both the bias and variance of AIPW [8]. This can be seen by
viewing the bias and variance of these weighting terms. As noted before, the AIPW and
nAIPW add adjustments to the single robust estimator EQ1 −Q0. The adjustments involve
weightings A

g or A
gE A

g
to the residuals of Y and Qk, k = 0, 1. Under a correct specification

of the propensity score g, these weights have the same expectations. The difference is in
their variances:

Var(
A
g
) =

1
g
− 1,

Var
( A

gE A
g

)
=

1
E2 A

g
(

1
g
− 1),

(19)

under the correct specification of the propensity score g. By letting g tend to zero in violation
of the empirical positivity assumption, it can be seen that the nAIPW is less volatile than
the AIPW estimator. That is, the weights in AIPW might have a larger variance than those
in nAIPW.

4.5. Scenario Analysis

A scenario analysis is performed to see how nAIPW stabilizes the estimator: Assume
that the empirical positivity is violated, that is, there is at least an observation k where
Ak = 1 where ĝk is extremely close to zero, such as ĝk = 10−s for s� 0. AIPW will blow
up in this case:

β1,AIPW =
1
n

(
10s(Y1

k −Q1
k) + ∑

i∈I1
−k

Y1
i −Q1

i
gi

)
+

1
n

n

∑
i=1

Q1
i ,

β0,AIPW =
1
n

(
∑

i∈I0

Y0
i −Q0

i
1− gi

)
+

1
n

n

∑
i=1

Q0
i ,

(20)

where Ia = {j : Aj = a}, Ia
−k = {j : Aj = a}, and subscripts a = 1 and a = 0 refer to the

estimators of the first and the second components in ATE (1). However, nAIPW is robust
against this empirical positivity violation:

β1,nAIPW =
( Y1

k −Q1
k

10−s(10s + ∑j 6=k
Aj
gj
)
+ ∑

i∈I1
−k

Y1
i −Q1

i

gi(10s + ∑j 6=k
Aj
gj
)

)
+

1
n

n

∑
i=1

Q1
i , (21)

and

β0,nAIPW =
(0× (Y1

k −Q0
k)

?
+ ∑

i∈I0
−k

Y0
i −Q0

i

(1− gi)(∑n
j=1

1−Aj
1−gj

)

)
+

1
n

n

∑
i=1

Q0
i . (22)
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Thus

β1,nAIPW ≈
( Y1

k −Q1
k

1 + 10−s(n− 1)
+ ∑

i∈I1
−k

Y1
i −Q1

i
gi10s + gi(n− 1)

)
+

1
n

n

∑
i=1

Q1
i , (23)

The factor 10s in (20) can blow up the AIPW if 10s � n (and the outcome estimation is
not close enough to the observer outcome), but this factor does not appear in the numerator
of the nAIPW estimator. For such large factors, (23) can be simplified to

β1,nAIPW ≈ Y1
k −Q1

k +
1
n

n

∑
i=1

Q1
i . (24)

Thus, the extreme probability does not make β1,nAIPW blow up, but the adjustment to the
β1,SR that accounts for confounding effects. The second factor β0,nAIPW is not impacted in
this scenario.

Considering a scenario that there is another treated individual with extremely small
probability, such as ĝl = 10−t, such that, without loss of generality, t > s� 0, we will have:

β1,nAIPW ≈
Y1

k −Q1
k

1 + 10t−s + 10−s(n− 2)
+

Y1
l −Q1

l
1 + 10s−t + 10−t(n− 2)

+
1
n

n

∑
i=1

Q1
i . (25)

Depending on the values s and t, one of the first two terms in (25) might vanish, but the
estimator does not blow up. There is at most only a handful of treated individuals with ex-
tremely small probabilities and, based on the above observation, the nAIPW estimator does
not blow up. That said, nAIPW might not sufficiently correct the βSR for the confounding
effects, although confounders have been taken into account in the calculation of βSR to
some extent.

The same observation can be made in the asymptotic variance of these estimators.
This shows how extremely small probabilities for treated individuals (or extremely large
probabilities for untreated individuals) can result in a biased and unstable estimator, while
neither of the bias or variance of nAIPW suffer as much. Although not performed, the same
observation can be made for the untreated individuals with extremely large probabilities.

The above scenario analysis indicates the bias and variance of nAIPW might go up in
cases of the violation of empirical positivity, but it still is less biased and more stable than
AIPW. The remainder term (15) is also more likely to be o(n−

1
2 ) in nAIPW versus AIPW as

it contains k’s where Ak = 1, gkEn
Ak
gk
≥ gk.

5. Asymptotic Sampling Distribution of nAIPW

Replacing g in the denominator of the von Mises expansion (12) with the normalizing
terms is enough to achieve the asymptotic distribution of the nAIPW and its asymptotic
standard error. However, we can see that nAIPW is also the solution to (extended) esti-
mating equations. The solution to the estimating equations is important as van der Vaart
(Chapters 19 and 25) proves that under certain regulatory conditions, if the prediction
models belong to the Donsker class, the solutions to Z-estimators are consistent and asymp-
totically normal ([23], Theorem 19.26). Thus, nAIPW that is the solution to a Z-estimator
(also referred to an M-estimator) will inherit the consistency and asymptotic normality,
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assuming certain regulatory conditions and that the first-step prediction models belong to
the Donsker class:

E
[

A(Y1 −Q1)

γg
− (1− A)(Y0 −Q0)

λ(1− g)
+ (Q1 −Q0 − β)

]
= 0,

E
[A

g
− γ

]
= 0,

E
[1− A

1− g
− λ

]
= 0.

(26)

The Donsker class assumption prevents too complex algorithms in the first step, algo-
rithms such as tree-based models, NNs, cross-hybrid algorithms or their aggregations [19,27].
The Donsker class assumption can be relaxed if sample splitting (or cross-fitting) is utilized
and the target parameter is orthogonal [9]. In the next section we see that nAIPW is or-
thogonal and, thus, theoretically, we can relax the Donsker class assumption under certain
smoothing regulatory conditions. Before seeing the orthogonality property of nAIPW, let
us review the smoothing regularity conditions necessary for asymptotic normality. Let β
be the causal parameter, η ∈ T be the infinite dimensional nuisance parameters where T
is a convex set with a norm. Additionally, let the score function φ : O×B × T → R be a
measurable function, O be the measurable space of all random variables O with probability
distribution P ∈ Pn and B be an open subset of R containing the true causal parameter.
Let the sample O = (O1, O2, ..., On) be observed and the set of probability measures Pn
expand with sample size n. In addition, let β ∈ B be the solution to the estimating equation
Eφ(O, β, η) = 0. The assumptions that guarantee that the second-step orthogonal estimator
β̂ is asymptotically normal are [9]: (1) β does not fall on the boundary of B; (2) the map
(β, η)→ EPφ

(
O, β, η

)
is twice Gateauax differentiable (this holds by the positivity assump-

tion). β is identifiable; (3) EPφ
(
O, β, η

)
is smooth enough; (4) η̂ ∈ T with high probability

and η ∈ T . η̂ converges to η0 at least as fast as n−
1
4 (similar but slightly stronger than first

two assumptions in (17)); (5) score function(s) φ(., β, η) has finite second moment for all
β ∈ B and all nuisance parameters η ∈ T ; (6) the score function(s) φ(., β, η) is measurable;
(7) the number of folds increases by sample size.

5.1. Orthogonality and the Regulatory Conditions

The orthogonality condition [9] is a property related to the estimating equations

Eφ(O, β, η) = 0. (27)

We refer to an estimator drawn from the estimating Equation (27) as an orthogonal estimator.
Let η ∈ T, where T is a convex set with a norm. Additionally, let the score functions

φ : O×B× T → R be a measurable function, O is measurable space of all random variables
O with probability distribution P ∈ Pn and B is an open subset of R containing the true
causal parameter. Let the sample O = (O1, O2, ..., On) be observed and the set of probability
measures Pn can expand with sample size n. The score function φ follows the Neyman
orthogonality condition with respect to T ⊆ T, if the Gateauax derivative operator exists
for all ε ∈ [0, 1):

∂η̃EPφ
(
O, β0, η̃

)∣∣∣
η̃=η

[η̃ − η] := ∂εEPφ
(
O, β0, η + ε(η̃ − η)

)∣∣∣
ε=0

= 0. (28)

Chernozhukov et al. [24] presents a few examples of orthogonal estimating equations
including the AIPW estimator (4). Utilizing cross-fitting, under standard regulatory con-
ditions, the asymptotic normality of estimators with orthogonal estimating equations is
guaranteed even if the nuisance parameters are estimated by ML algorithms not belonging
to the Donsker class and without finite entropy conditions [24]. The regulatory conditions to
be satisfied are (1) β does not fall on the boundary of B; (2) the map (β, η)→ EPφ

(
O, β, η

)
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is twice Gateauax differentiable. β is identifiable; (3) EPφ
(
O, β, η

)
is smooth enough;

(4) η̂ ∈ T with high probability and η ∈ T . η̂ converges to η0 at least as fast as n−
1
4 ;

(5) score function(s) φ(., β, η) has finite second moment for all β ∈ B and all nuisance
parameters η ∈ T ; (6) the score function(s) φ(., β, η) is measurable; (7) the number of folds
increases by sample size.

By replacing λ and γ in the first line of (26) with their solutions in the second and
third equations:

EPφ
(
O, β, Q1, Q0, g

)
=

E
[

A(Y1 −Q1)

gE A
g

− (1− A)(Y0 −Q0)

(1− g)E 1−A
1−g

+ (Q1 −Q0 − β)

]
= 0, (29)

Implementing the orthogonality condition (28), it can be verified that nAIPW (5) is also an
example of an orthogonal estimator. To see this, we apply the definition of orthogonality [9]:

∂ηEPφ
(
O, β, η

)∣∣∣
η=η0

[η − η0] =

∂ηEP

(
Q1 +

A(Y1 −Q1)

gE A
g

−Q0 − (1− A)(Y0 −Q0)

(1− g)E 1−A
1−g

− β
)
|η=η0 [η − η0]

∝ ∂εEP

(
Q1

ε +
A(Y1 −Q1

ε)

gεE A
gε

−Q0
ε −

(1− A)(Y0 −Q0
ε)

(1− gε)E 1−A
1−gε

− β
)
|ε=0 =

E
(
(Q̃1 −Q1) +

A
gE A

g

(
− (Q̃1 −Q1)

)
+ A(Y−Q1)a(g, g̃− g)

)
−

E
(
(Q̃0 −Q0) +

1− A
(1− g)E 1−A

1−g

(
− (Q̃0 −Q0)

)
+

(1− A)(Y−Q0)b(g, g̃− g)
)
= 0, (30)

where Qk
ε = εQ̃k + (1− ε)Qk, k = 0, 1, and gε = εg̃ + (1− ε)g, and for some functions a

and b. The last equality is because EA(Y − Q1) = 0, E(1− A)(Y − Q0) = 0, E A
gE A

g
= 1

and E 1−A
(1−g)E 1−A

1−g
= 1, under correct specification of the propensity score g.

Thus, nAIPW is orthogonal, and by utilizing cross-fitting for the estimation, nAIPW is
consistent and asymptotically normal, under certain regulatory conditions.

5.2. Asymptotic Variance of nAIPW

To evaluate the asymptotic variance of nAIPW, we employ the M-estimation theory [23,28].
For causal inference for M-estimators, the bootstrap for the estimation of causal estimator
variance is not generally valid even if the nuisance parameter estimators are

√
n-convergent.

However, sub-sampling m out of n observations [29] can be shown to be universally valid,
provided m→ ∞ and m

n → 0. In practice, however, we can face computational issues since
nuisance parameters must be separately estimated (possibly with ML models) for each
subsample/bootstrap sample.

The variance estimator of AIPW (4) is [7]

σ̂2
AIPW =

1
n2

n

∑
i=1

(AiYi − Q̂1
i (Ai − ĝi)

ĝi
− (1− Ai)Yi + Q̂0

i (Ai − ĝi)

1− ĝi
− β̂AIPW

)2
=

1
n2

n

∑
i=1

(Ai(yi − Q̂1
i )

ĝi
− (1− Ai)(yi − Q̂0

i )

1− ĝi
+ β̂SR − β̂AIPW

)2
. (31)
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The theorem below states that the variance estimator of AIPW (31) can intuitively
extend to calculate the variance estimator of nAIPW (5) by moving the denominator n2 to
the square term in the summation and replacing it with ĝÊ

( A
ĝ
)

or (1− ĝ)Ê
( 1−A

1−ĝ
)

in the
terms containing g and 1− g in the denominator, respectively.

Theorem 2. The asymptotic variance of the nAIPW (5) is

σ̂2
nAIPW =

n

∑
i=1

(Ai(yi − Q̂1
i )w

(1)
i

∑n
j=1 Ajw

(1)
j

− (1− Ai)(yi − Q̂0
i )w

(0)
i

∑n
j=1(1− Aj)w

(0)
j

+
1
n
(

β̂SR − β̂nAIPW
))2

, (32)

where Q̂k
i = Q̂(k, Wi) and ĝi = Ê[Ai|Wi].

The proof utilizing the estimating equation technique is straightforward and is left
to Appendix A. The same result can be seen when deriving the estimator in the one-step
method (see (12) and (14)). Since nAIPW is orthogonal, σ̂2

nAIPW is consistent by applying
the theories of [1,9], if the assumptions are met, cross-fitting is used, and the step 1 ML
algorithms have the required convergence rates.

The above theorem states that the variance estimator of AIPW (31) can intuitively
extend to calculate the variance estimator of nAIPW (5) by moving the denominator n2 to
the square term in the summation and replacing it with ĝÊ

( A
ĝ
)

or (1− ĝ)Ê
( 1−A

1−ĝ
)

in the
terms containing g and 1− g in the denominator, respectively. This is intuitive because, by
the law of total probability, E the first two terms is n.

6. Monte Carlo Experiments

A Monte Carlo simulation study (with 100 iterations) was performed to compare AIPW
and nAIPW estimators, where the dNN is used for the first-step prediction. There are a total
of 2 case scenarios according to the size of the data. We fixed the sample sizes to be n = 750
and n = 7500, with the number of covariates being p = 32 and p = 300, respectively. The
predictors include four types of covariates: The confounders, Xc, instrumental variables,
Xiv, the outcome predictors, Xy, and the noise or irrelevant covariates, Xirr. Their sizes for
the scenarios are #Xc = #Xiv = #Xy = #Xirr = 8, 75 and they are independent from each
other and drawn from the multivariate normal (MVN) distribution as X ∼ N (0, Σ), with
Σkj = ρj−k and ρ = 0.5. The models to generate the treatment assignment and outcome
were specified as

A ∼ Ber(
1

1 + e−η ), with η = fa(Xc)γc + ga(Xiv)γiv,

y = 3 + A + fy(Xc)γ
′
c + gy(Xy)γy + ε,

(33)

and β = 1. The functions fa, ga, fy, gy select 20% of the columns and apply interactions
and non-linear functions listed below (35). The strength of the instrumental variable and
confounding effects were chosen as γc, γ′c, γy ∼ Uni f (r1, r2) where (r1 = r2 = 0.25), and
γiv ∼ Uni f (r3, r4) where (r3 = r4 = 0.25).

The non-linearities are randomly selected from among the following functions:

l(x1, x2) = e
x1x2

2

l(x1, x2) =
x1

1 + ex2

l(x1, x2) =
( x1x2

10
+ 2
)3

l(x1, x2) =
(
x1 + x2 + 3

)2

l(x1, x2) = g(x1)× h(x2)

(34)
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where g(x) = −2I(x ≤ −1)− I(−1 ≤ x ≤ 0) + I(0 ≤ x ≤ 2) + 3I(x ≥ 2), and h(x) =
−5I(x ≤ 0)− 2I(0 ≤ x ≤ 1) + 3I(x ≥ 1), or g(x) = I(x ≥ 0) and h(x) = I(x ≥ 1).

The networks’ activation function is rectified linear unit (ReLU), with 3 hidden layers
as large as the input size (p), with L1 regularization and batch size equal to 3 ∗ p and
200 epochs. The adaptive moment estimation (Adam) optimizer [30] with learning rate 0.01
and momentum 0.95 was used to estimate the network’s parameters, including the causal
parameter (ATE).

Simulation Results

The oracle estimations are plotted in all the graphs to compare the real-life situations
with the truth. In almost all the scenarios we cannot obtain perfect causal effect estimation
and inference.

Figure 1 shows the distribution of AIPW and nAIPW for different hyperparameter
settings of NNs. The nAIPW estimator outperforms AIPW in almost all the scenarios. As
the AIPW gives huge values in some simulation iterations, the log of the estimation is taken
in Figure 1.

Figure 1. The distribution of log of the estimated AIPW and nAIPW in the 100 simulated
iterations. The performance of nAIPW is clearly superior to the performance of AIPW as
it is less dispersed and has more stable in terms of different hyperparameter settings. p is
either 32 or 300 for the small or large datasets and q ≈ p

10 , that is 3 or 30.
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Bias δ̂ = β − 1
m

m

∑
j=1

β̂ j

MC std σ̂MC =

√√√√ 1
m

m

∑
j=1

(β̂ j − µ̂)2

MC RMSE RMSE =
√

σ̂2
MC + δ̂2

Asymptotic StdErr σ̂SE =
1
m

m

∑
j=1

σ̂j,

(35)

where β = 1, with β̂ j’s are the AIPW or nAIPW estimations in the jth simulation431

round, µ̂ = 1
m ∑m

j=1 β̂ j and m = 100 is the number of simulation rounds, and σ̂ is432

square root of (31) or (32).433

Figure 2 demonstrates the bias, MC Standard Deviation (MC std) and the434

Root Mean Square Error (RMSE) of AIPW and nAIPW estimators for the scenarios435

where n = 750 and n = 7500, and for 4 hyperparameter sets (L1 regularization436

and width of the dNN). In general, in each figure of the panel, the hyperparameter437

scenarios in the left imply more complex model (with less regularization or narrower438

network). In these graphs, the lower the values, the better the estimator. For the439

smaller data size n = 750 in the left 3 panels, the worst results are attributed to440
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Figure 1. The distribution of log of the estimated AIPW and nAIPW in the 100 simulated iterations.
The performance of nAIPW is clearly superior to the performance of AIPW as it is less dispersed and
is more stable in terms of different hyperparameter settings. p is either 32 or 300 for the small or large
datasets and q ≈ p

10 , that is, 3 or 30.
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We also compare the estimators in different scenarios with bias, variance and their
tradeoff measures:

Bias δ̂ = β− 1
m

m

∑
j=1

β̂ j

MC std σ̂MC =

√√√√ 1
m

m

∑
j=1

(β̂ j − µ̂)2

MC RMSE RMSE =
√

σ̂2
MC + δ̂2

Asymptotic StdErr σ̂SE =
1
m

m

∑
j=1

σ̂j,

(35)

where β = 1, with β̂ js being the AIPW or nAIPW estimations in the jth simulation round,
µ̂ = 1

m ∑m
j=1 β̂ j and m = 100 being the number of simulation rounds and σ̂ being the square

root of (31) or (32).
Figure 2 demonstrates the bias, MC standard deviation (MC std) and the root mean

square error (RMSE) of AIPW and nAIPW estimators for the scenarios where n = 750
and n = 7500, and for four hyperparameter sets (L1 regularization and width of the
dNN). In general, in each figure of the panel, the hyperparameter scenarios in the left
imply a more complex model (with less regularization or a narrower network). In these
graphs, the lower the values, the better the estimator. For the smaller data size n = 750
in the left three panels, the worst results are attributed to AIPW when there is the least
regularization and the hidden layers are as wide as the number of inputs. To have more clear
plots for comparison, we skipped plotting the upper bounds as they were large numbers;
the lower bounds are enough to show the significance of the results. In the scenarios
where there are smaller numbers of hidden neurons with 0.01 L1 regularization, the bias,
variance and their tradeoff (here measured by RMSE) are more stable. By increasing the L1
regularization, these measures go down which indicates the usefulness of regularization
and AIPW normalization for causal estimation and inference. Almost the same pattern is
seen for the larger size (n = 7500) scenario, except for the bump in all the three measures in
the hyperparameter scenario where regularization remains the same (L1 = 0.01) and the
numbers of neurons in the first and last hidden layers are small too. In all three measures
of bias, standard deviation and RMSE, nAIPW is superior to AIPW, or at least there is no
statistically significant difference between AIPW and nAIPW.

We have noted that the results of the step 1 NN architecture without L1 regularization
are too unstable and cannot be visually presented in the graphs. To avoid that, we have
allowed a span of values for the L1 regularization strengths: L1 = 0.01 and L1 = 0.1. The
former case is close to no regularization. So, if the results of the latter are better than the
former’s, this is evidence that enough L1 must be imposed.

Figure 3 illustrates how the theoretical standard error formulas perform in MC experi-
ments, and how accurately they estimate the MC standard deviations. In these two graphs,
smaller does not necessarily imply superiority. In fact, the best results will be achieved
as long as the confidence intervals of asymptotic SEs and MC SDs intersect. In the left
two scenarios where the NN’s complexity is high, the MC std and SE are far from each
other. Additionally, in the hyperparameter scenarios where both the width of the NNs is
small and regularization is higher, the MC std and SE are well separated. The scenario
with largest regularization and wide NN architecture seems to the best scenario. That said,
none of the scenarios confirm the consistency of SEs, which would likely also result in low
coverage probability of the resulting confidence intervals.
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estimators for different data sizes and NN hyperparameters (L1 regularization and width of the
network). p is either 32 or 300 for the small or large datasets and q ≈ p

10 , that is, 3 or 30. The estimates
are capped at −10 and 10.
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different data sizes and NN hyperparameters (L1 regularization and width of the network).
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7. Application: Food Insecurity and BMI

The Canadian Community Health Survey (CCHS) is a cross-sectional survey that
collects data related to health status, health care utilization and health determinants for the
Canadian population in multiple cycles. The 2021 CCHS covers the population 12 years of
age and over living in the ten provinces and the three territorial capitals. Excluded from
the survey’s coverage are: Persons living on reserves and other Aboriginal settlements in
the provinces and some other sub-populations that altogether represent less than 3% of
the Canadian population aged 12 and over. Examples of modules asked in most cycles are:
General health, chronic conditions, smoking and alcohol use. For the 2021 cycle, thematic
content on food security, home care, sedentary behavior and depression, among many
others, was included. In addition to the health component of the survey are questions about
respondent characteristics such as labor market activities, income and socio-demographics.

In this article, we use the CCHS dataset to investigate the causal relationship of food
insecurity and body mass index (BMI). Other gathered information in the CCHS is used
which might contain potential confounders, y-predictors and instrumental variables. The
data are from a survey and need special methods such as the resampling or bootstrap
methods to estimate the standard errors. However, here, we use the data to illustrate the
utilization of a dNN on the causal parameters in the case of empirical positivity violation. In
order to reduce the amount of variability in the data, we have focused on the sub-population
18–65 years of age.

Figure 4 shows the ATE estimates and their 95% asymptotic confidence intervals with
nIPW, DR and nDR methods, with four different neural networks which vary in terms of
width and strength of L1 regularization. The scenario that results in the largest R2 (as a
measure of outcome prediction performance) outperforms the other scenarios. The scenario
that results in the largest AUC (as a measure of treatment model performance) results in
the largest confidence intervals. This is because of more extreme propensity scores in this
scenario. It is worth noting that the normalized IPW has smaller confidence intervals as
compared to AIPW. However, as we do not know the truth about the ATE in this dataset,
we can never know which estimator outperforms the other. To gain insight about this using
the input matrix of this data, we simulated multiple treatments and outcomes with small
to strong confounders and IVs and compared AIPW and nAIPW. In virtually all of them,
the nAIPW is the best one. We do not present these results in this paper, but they can be
provided to readers upon request.
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H_396_396_396_L1_0.5

H_49_396_49_L1_0.2

H_49_396_49_L1_0.5
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−1

−0.5

0

0.5

1

1.5

2

AIPW nAIPW Nipw Max AUC Max R2

Neural Network models

Figure 4. The ATE estimates and their asymptotically calculated 95% confidence intervals with NIPW,
AIPW and nAIPW methods.
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8. Discussion

Utilizing machine learning algorithms such as NNs in the first-step estimation process
is comforting as the concerns with regard to the non-linear relationships between the
confounders and the treatment and outcome are addressed. However, there is no free
lunch, and using NNs has its own caveats including theoretical as well as numerical
challenges. Farrell et al. [1] addressed the theoretical concerns where they calculated the
generalization bounds when two separate NNs are used to model the treatment and the
outcome. However, they did not use or take into account regularization techniques such as
L1 or L2 regularization. As NNs are complex algorithms, they provide perfect prediction
for the treatment when the predictors are strong enough (or might overfit). Through
Monte Carlo (MC) simulations, we illustrated that causal estimation and inference with
double NNs can fail without the usage of regularization techniques such as L1 and/or
extreme propensity scores are not taken care of. If L1 regularization is not used, the
normalization of the AIPW estimator (i.e., nAIPW) is advised to be employed as it dilutes
the extreme predictions of the propensity score model and provides better bias, variance
and RMSE. Our scenario analysis also showed that in the case of violation of the empirical
positivity assumption in AIPW, normalization helps avoid blowing up the estimator (and
standard error), but might be ineffective in taking into account confounding effects for
some observations.

We note that the nAIPW estimator cannot perform better when the empirical positivity
is violated as compared to when it is not. However, when the empirical positivity is
violated, nAIPW can perform better than AIPW. If the empirical positivity is not violated,
our results indicated that AIPW outperforms nAIPW.

An alternative estimator might be trimming the propensity scores to avoid extreme
values. However, the causal effect estimator will no longer be consistent and there is no
determined method for where to trim. We hypothesize that ĥ1 = ĝÊ A

ĝ × I
(

ĝ ∈ (0, ε)
)
+

ĝ× I
(

ĝ ∈ (ε, 1)
)

and ĥ0 = (1− ĝ)Ê 1−A
1−ĝ × I

(
ĝ ∈ (1− ε, 1)

)
+ (1− ĝ)× I

(
ĝ ∈ (0, 1− ε)

)

where ε = 1
n will result in a consistent estimator, making the right assumptions, and will

outperform both AIPW and nAIPW in the case of the empirical positivity violation. We
will study this hypothesis in a future article.

Another reason why NNs without regularization fail in the causal estimation and
inference is that the networks are not targeted, and are not directly designed for these tasks.
NNs are complex algorithms with strong predictive powers. This does not accurately serve
the purpose of causal parameter estimation, where the empirical positivity assumption
can be violated if strong confounders and/or instrumental variables [22] exist in the data.
Ideally, the network should target the confounders and should be able to automatically
limit the strength of predictors so that the propensity scores are not extremely close to 1 or
0. This was not investigated in this article and a solution to this problem is postponed to
another study.

In Section 7, we applied the asymptotic standard errors of both AIPW and nAIPW,
where the latter achieves smaller standard errors. That said, we acknowledge the fact that
the asymptotic standard errors when using complex ML are not reliable and, in fact, they
underestimate the calculated MC standard deviations, as illustrated in the simulations
Section 6. This is partly because of the usage of complex algorithms such as NNs for
estimation of the nuisance parameters in the first step. Further, the asymptotic distributions
of the estimators are not symmetric (and thus are not normal). However, nAIPW is more
symmetric than AIPW, according to the simulations, while both estimators suffer from
outliers. We will investigate the reasons and possible remedies for both the asymptotic
distribution and standard errors of the estimators in a future paper. The consistency of the
variance of nAIPW (and AIPW) relies on meeting the assumptions. More investigations
are needed on how to achieve consistent and asymptotically normal estimators for ATE
with a consistent variance estimator. Potential avenues can include proposing alternative
estimators or improving the step 1 ML algorithms.
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Appendix A

First, let us review the proof sketch of the AIPW double robustness:
(3) can be consistently estimated by

β̂AIPW =
1
n

n

∑
i=1

[(AiYi − Q̂(1, Wi)(Ai − Ê[Ai|Wi])

Ê[Ai|Wi]

)
−

( (1− Ai)Yi + Q̂(0, Wi)(Ai − ĝi)

1− Ê[Ai|Wi]

)]
=

1
n

n

∑
i=1

(
[Ai

ĝi
− 1− Ai

1− ĝi

]
yi −

Ai − ĝi
ĝi(1− ĝi)

[
(1− ĝi)Q̂1

i + ĝiQ̂0
i
]
)

=

1
n

n

∑
i=1

(Ai(yi − Q̂1
i )

ĝi
− (1− Ai)(yi − Q̂0

i )

1− ĝi

)
+

1
n

n

∑
i=1

(
Q̂1

i − Q̂0
i
)

(A1)

The second formula guarantees the consistency of AIPW if ĝ is consistent, and the
third expression shows that the consistency of Q̂0

i and Q̂1
i is consistent.

Theorem A1 (nAIPW double robustness). Let the nAIPW estimator of risk difference be

β̂nAIPW = Ê(Q̂1 − Q̂0) + Ê
(A(Y− Q̂1)

ĝÊ[ A
ĝ ]

− (1− A)(Y− Q̂0)

(1− ĝ)Ê[ 1−A
1−ĝ ]

)
. (A2)

Then, β̂nAIPW is a consistent estimator of β if ĝ
p−→ g or Q̂k p−→ Qk, k = 0, 1.

Proof. From (A2), β̂nAIPW is a consistent estimator of β if Q̂0
i and Q̂1

i are consistent. This is
because the first term Ê(Q̂1 − Q̂0) converges to β, while the second term tends to zero.

By re-expressing (A2), the other argument is clear. Letting ŵ1 = Ê[ A
ĝ ] and ŵ0 = Ê[ 1−A

1−ĝ ],
we have:

β̂nAIPW =
1
n

n

∑
i=1

(
[ Ai

ĝiŵ1
i
− 1− Ai

(1− ĝi)ŵ0
i

]
yi

)
+

Ê
(

Q̂1 − Q̂0 − AiQ̂1

ĝŵ1 +
(1− Ai)Q̂0

(1− ĝ)ŵ0

)
=

1
n

n

∑
i=1

(
[ Ai

ĝiŵ1
i
− 1− Ai

(1− ĝi)ŵ0
i

]
yi−

Q̂1
i
(

Ai − ĝiŵ1
i
)
+ Q̂0

i
(
1− Ai − (1− ĝi)ŵ0

i
)
)

(A3)

The first expression in (A3) is the same as the nIPW estimator which is a consistent
estimator of β [7]. Now, under the consistency of ĝ, the second term tends to zero, as

ŵ1
p−→ 1 and ŵ0

p−→ 1.
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In the theorem below, it is shown that there is an M-estimation equivalent to βnAIPW

and w1 and w0. This, plus the continuous mapping theorem, proves that ∑n
i=1

Ai
ĝi

converges

in probability to n if ĝ
p−→ g.

Theorem A2. The asymptotic variance of the nAIPW (5) is

σ̂2
nAIPW =

n

∑
i=1

(Ai(yi − Q̂1
i )w

(1)
i

∑n
j=1 Ajw

(1)
j

− (1− Ai)(yi − Q̂0
i )w

(0)
i

∑n
j=1(1− Aj)w

(0)
j

+
1
n
(

β̂SR − β̂nAIPW
))2

, (A4)

where Q̂k
i = Q̂(k, Wi) and ĝi = Ê[Ai|Wi].

Proof. Let us define a few notations first:

q = Q1 −Q0,

g = E[A|W],

f = y−Q1,

h = y−Q0,

v =
A
g

,

u =
1− A
1− g

.

(A5)

With this set of notations, the nAIPW estimator (5) can be written as

β̂nAIPW =
n

∑
i=1

( vi fi

∑n
j=1 vj

− uihi

∑n
j=1 uj

+
qi
n

)
, (A6)

Following the methods in [28], to find an estimating equation whose solution is
β̂nAIPW , we introduce two more estimating equations. Employing the M-estimation theory,
we will prove that nAIPW is asymptotically normal, and we will calculate its standard error.

It can be seen that (A6) is not a solution to an M-estimator directly. However, by
defining two more parameters and concatenating their estimating equations, we obtain
3-dim multivariate estimating equations:

n

∑
i=1

(vi fi
γ
− uihi

λ
+

1
n
(qi − β)

)
= 0,

n

∑
i=1

(
vi −

γ

n

)
= 0,

n

∑
i=1

(
ui −

λ

n

)
= 0.

(A7)

To ease the calculations, we modify the first estimating equation with an equivalent
one, but the results will not differ:
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n

∑
i=1

λvi fi − γuihi +
γλ

n
(qi − β) = 0,

n

∑
i=1

vi −
γ

n
= 0,

n

∑
i=1

ui −
λ

n
= 0.

(A8)

By defining the following notations,

ψ =




φ
η
Ω


 =




λv f − γuh + γλ
n (q− β)

v− γ
n

u− λ
n


,

we have ∑n
i=1 ψi = 0, or

n

∑
i=1

φi, = 0,

n

∑
i=1

ηi = 0,

n

∑
i=1

Ωi = 0.

(A9)

The M-estimation theory implies that under regulatory conditions, the solutions to
these estimating equations converge in distribution to a multivariate normal distribution:

√
n




β̂nAIPW
γ̂

λ̂


 ∼ MVN

(
θ , I−1(θ)B(θ)I−1(θ)T)

where

θ =




β
γ
λ


,

I(θ) = −E ∂ψ

∂θT =
1
n




λγ
n E(uh− λ

n (q− β)) −E(v f + γ
n (q− β))

0 1
n 0

0 0 1
n


, (A10)

whose inverse is

I−1(θ) =
n

γλ




1 −nE(uh− λ(q− β)) nE(v f + γ
n (q− β))

0 γλ 0
0 0 γλ


, (A11)

and,

B(θ) = EψψT =




Eφ2 Eφη EφΩ
Eφη Eη2 EηΩ
EφΩ EηΩ EΩ2


. (A12)

In order to estimate the variance of β̂nAIPW , we do not need to calculate all entries of
the variance–covariance matrix, only the first entry:
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1
n
(

n2

(γλ)2 )



Eφ2 + ε ? ?

? ? ?
? ? ?


. (A13)

The ? entries are irrelevant to the calculation of variance of nAIPW and the term ε
is a very long expression which involves terms converging to zero faster than the actual
estimating Equation (A9) [19] (also verified by simulations):

ε = −Eφη(nEuh + λ(β− q)) +EφΩ(nEv f − γ(β− q))−
(nEuh + λ(β− q))(−Eη2(nEuh + λ(β− q)) +EηΩ(nEv f − γ(β− q))+

Eφη) + (nEv f − γ(β− q))(−EηΩ(nEuh + λ(β− q))+

EΩ2(nEv f − γ(β− q)) +EφΩ). (A14)

Further,

√
n




β̂nAIPW
γ̂

Ω̂


 ∼ MVN

(
θ , Î−1(θ̂)B̂(θ̂)Î−1(θ̂)T) (A15)

where we replace E with sample averages in Expressions (A10)–(A12) and θ with their
corresponding solutions to Equation (A8). Following this recipe, we obtain

σ̂2
nAIPW =

1
n
(

n2

(γλ)2 )Êφ2 + ε̂ ≈
n

∑
i=1

(vi fi
γ̂
− uihi

λ̂
+

1
n

qi − β̂nAIPW)
)2

, (A16)

which is the same as (A4).
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20. Słoczyński, T.; Wooldridge, J.M. A general double robustness result for estimating average treatment effects. Econom. Theory 2018,
34, 112–133. [CrossRef]

21. Scharfstein, D.O.; Rotnitzky, A.; Robins, J.M. Adjusting for nonignorable drop-out using semiparametric nonresponse models. J.
Am. Stat. Assoc. 1999, 94, 1096–1120. [CrossRef]

22. Angrist, J.D.; Pischke, J.S. Mostly Harmless Econometrics: An Empiricist’s Companion; Princeton University Press: Princeton, NJ,
USA, 2008.

23. Van der Vaart, A.W. Asymptotic Statistics; Cambridge University Press: Cambridge, UK, 2000; Volume 3.
24. Chernozhukov, V.; Chetverikov, D.; Demirer, M.; Duflo, E.; Hansen, C.; Newey, W.K. Double Machine Learning for Treatment and

Causal Parameters; Technical Report, Cemmap Working Paper; 2016. Available online: https://ifs.org.uk/uploads/cemmap/
wps/cwp491616.pdf (accessed on 12 November 2021).

25. Farrell, M.H. Robust inference on average treatment effects with possibly more covariates than observations. J. Econom. 2015,
189, 1–23. [CrossRef]

26. Smucler, E.; Rotnitzky, A.; Robins, J.M. A unifying approach for doubly-robust l1 regularized estimation of causal contrasts.
arXiv 2019, arXiv:1904.03737.

27. Friedman, J.; Hastie, T.; Tibshirani, R. The Elements of Statistical Learning; Springer Series in Statistics; Springer: New York, NY,
USA, 2001; Volume 1.

28. Stefanski, L.A.; Boos, D.D. The calculus of M-estimation. Am. Stat. 2002, 56, 29–38. [CrossRef]
29. Politis, D.N.; Romano, J.P. The stationary bootstrap. J. Am. Stat. Assoc. 1994, 89, 1303–1313. [CrossRef]
30. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.

http://dx.doi.org/10.1093/biomet/70.1.41
http://dx.doi.org/10.1162/REST_a_00431
http://dx.doi.org/10.2307/2998560
http://dx.doi.org/10.1017/S0266466617000056
http://dx.doi.org/10.1080/01621459.1999.10473862
https://ifs.org.uk/uploads/cemmap/wps/cwp491616.pdf
https://ifs.org.uk/uploads/cemmap/wps/cwp491616.pdf
http://dx.doi.org/10.1016/j.jeconom.2015.06.017
http://dx.doi.org/10.1198/000313002753631330
http://dx.doi.org/10.1080/01621459.1994.10476870

	Introduction
	Normalized Doubly Robust Estimator
	Outcome and Treatment Predictions
	GDR Estimator Properties
	Consistency and Asymptotic Distribution of nAIPW
	The Efficient Influence Function
	Doubly Robustness and Rate Doubly Robustness Properties of GDR
	Robustness of nAIPW against Extreme Propensity Scores
	Scenario Analysis

	Asymptotic Sampling Distribution of nAIPW
	Orthogonality and the Regulatory Conditions
	Asymptotic Variance of nAIPW

	Monte Carlo Experiments
	Application: Food Insecurity and BMI
	Discussion
	Appendix A
	References

