Numerical Study of Entropy Generation in Fully Developed Turbulent Circular Tube Flow Using an Elliptic Blending Turbulence Model
Abstract
:1. Introduction
2. Numerical Modeling
2.1. Governing Equations
2.2. Entropy Generations
2.3. Numerical Procedures
2.4. Computational Grid and Boundary Conditions
2.5. Data Reduction
3. Results and Discussion
3.1. Validation of the Friction Factor and Nusselt Number
3.2. Rate of Entropy Generation Due to Heat Transfer Irreversibility
3.3. Rate of Entropy Generation Due to Friction Irreversibility
3.4. Rate of Entropy Generation Due to Heat Transfer Irreversibility with Large
3.5. Effect of the Temperature-Dependent Fluid Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bejan, A. A study of entropy generation in fundamental convective heat transfer. J. Heat Transf. 1979, 101, 718–725. [Google Scholar] [CrossRef]
- Sciacovelli, A.; Verda, V.; Sciubba, E. Entropy generation analysis as a design tool—A review. Renew. Sustain. Energy Rev. 2015, 43, 1167–1181. [Google Scholar] [CrossRef]
- Bejan, A. Entropy Generation Minimization: The Method of Thermodynamic Optimization on Finite-Size Systems and Finite-Time Processes; CRC Press: New York, NY, USA, 1996. [Google Scholar]
- Zimparov, V. Extended performance evaluation criteria for enhanced heat transfer surfaces: Heat transfer through ducts with constant wall temperature. Int. J. Heat Mass Transf. 2000, 43, 3137–3155. [Google Scholar] [CrossRef]
- Ratts, E.B.; Raut, A.G. Entropy generation minimization of fully developed internal flow with constant heat flux. J. Heat Transf. 2004, 126, 656–659. [Google Scholar] [CrossRef]
- Shuja, S.Z.; Yilbas, B.S.; Budair, M.O. Local entropy generation in an impinging jet: Minimum entropy concept evaluating various turbulence models. Comput. Methods Appl. Mech. Eng. 2001, 190, 3623–3644. [Google Scholar] [CrossRef]
- Mwesigye, A.; Bello-Ochende, T.; Meyer, J.P. Numerical investigation of entropy generation in a parabolic trough receiver at different concentration ratios. Energy 2013, 53, 114–127. [Google Scholar] [CrossRef] [Green Version]
- Saqr, K.M.; Shehata, A.I.; Taha, A.A.; Abo ElAzm, M.M. CFD modelling of entropy generation in turbulent pipe flow: Effects of temperature difference and swirl intensity. Appl. Therm. Eng. 2016, 100, 999–1006. [Google Scholar] [CrossRef]
- Wang, W.; Wang, J.; Liu, H.; Jiang, B.-y. CFD prediction of airfoil drag in viscous flow using the entropy generation method. Math. Probl. Eng. 2018, 2018, 4347650. [Google Scholar] [CrossRef] [Green Version]
- Ghorani, M.M.; Sotoude Haghighi, M.H.; Maleki, A.; Riasi, A. A numerical study on mechanisms of energy dissipation in a pump as turbine (PAT) using entropy generation theory. Renew. Energy 2020, 162, 1036–1053. [Google Scholar] [CrossRef]
- Yu, A.; Tang, Q.; Chen, H.; Zhou, D. Investigations of the thermodynamic entropy evaluation in a hydraulic turbine under various operating conditions. Renew. Energy 2021, 180, 1026–1043. [Google Scholar] [CrossRef]
- Yu, A.; Tang, Y.; Tang, Q.; Cai, J.; Zhao, L.; Ge, X. Energy analysis of Francis turbine for various mass flow rate conditions based on entropy production theory. Renew. Energy 2022, 183, 447–458. [Google Scholar] [CrossRef]
- Pidaparthi, B.; Li, P.; Missoum, S. Entropy-based optimization for heat transfer enhancement in tubes with helical fins. J. Heat Transf. 2022, 144, 012001. [Google Scholar] [CrossRef]
- Bianco, V.; Manca, O.; Nardini, S. Entropy generation analysis of turbulent convection flow of Al2O3–water nanofluid in a circular tube subjected to constant wall heat flux. Energy Convers. Manag. 2014, 77, 306–314. [Google Scholar] [CrossRef]
- Bianco, V.; Manca, O.; Nardini, S. Performance analysis of turbulent convection heat transfer of Al2O3 water-nanofluid in circular tubes at constant wall temperature. Energy 2014, 77, 403–413. [Google Scholar] [CrossRef]
- Mwesigye, A.; Huan, Z. Thermodynamic analysis and optimization of fully developed turbulent forced convection in a circular tube with water–Al2O3 nanofluid. Int. J. Heat Mass Transf. 2015, 89, 694–706. [Google Scholar] [CrossRef]
- Rashidi, M.M.; Nasiri, M.; Shadloo, M.S.; Yang, Z. Entropy generation in a circular tube heat exchanger using nanofluids: Effects of different modeling approaches. Heat Transf. Eng. 2017, 38, 853–866. [Google Scholar] [CrossRef]
- Bazdidi-Tehrani, F.; Vasefi, S.I.; Anvari, A.M. Analysis of particle dispersion and entropy generation in turbulent mixed convection of CuO-Water nanofluid. Heat Transf. Eng. 2019, 40, 81–94. [Google Scholar] [CrossRef]
- Fadodun, O.G.; Amosun, A.A.; Okoli, N.L.; Olaloye, D.O.; Ogundeji, J.A.; Durodola, S.S. Numerical investigation of entropy production in SWCNT/H2O nanofluid flowing through inwardly corrugated tube in turbulent flow regime. J. Therm. Anal. Calorim. 2020, 144, 1451–1466. [Google Scholar] [CrossRef]
- Bahiraei, M.; Naseri, M.; Monavari, A. A second law analysis on flow of a nanofluid in a shell-and-tube heat exchanger equipped with new unilateral ladder type helical baffles. Powder Technol. 2021, 394, 234–249. [Google Scholar] [CrossRef]
- Yang, X.L.; Yang, L.; Huang, Z.W.; Liu, Y. Development of a k–ω–ϕ–α turbulence model based on elliptic blending and applications for near-wall and separated flows. J. Turbul. 2017, 18, 36–60. [Google Scholar] [CrossRef]
- Yang, X.L.; Liu, Y.; Yang, L. A shear stress transport incorporated elliptic blending turbulence model applied to near-wall, separated and impinging jet flows and heat transfer. Comput. Math. Appl. 2020, 79, 3257–3271. [Google Scholar] [CrossRef]
- Shih, T.-H.; Liou, W.W.; Shabbir, A.; Yang, Z.; Zhu, J. A new k-ε eddy viscosity model for high Reynolds number turbulent flows. Comput. Fluids 1995, 24, 227–238. [Google Scholar] [CrossRef]
- Menter, F.R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 1994, 32, 1598–1605. [Google Scholar] [CrossRef] [Green Version]
- Drost, M.K.; White, M.D. Numerical predictions of local entropy generation in an impinging jet. J. Heat Transf. 1991, 113, 823–829. [Google Scholar] [CrossRef]
- Shuja, S.Z.; Yilbas, B.S.; Budair, M.O. Entropy generation due to jet impingement on a surface: Effect of annular nozzle outer angle. Int. J. Numer. Methods Heat Fluid Flow 2007, 17, 677–691. [Google Scholar] [CrossRef]
- Kock, F.; Herwig, H. Local entropy production in turbulent shear flows: A high-Reynolds number model with wall functions. Int. J. Heat Mass Transf. 2004, 47, 2205–2215. [Google Scholar] [CrossRef]
- Kock, F.; Herwig, H. Entropy production calculation for turbulent shear flows and their implementation in CFD codes. Int. J. Numer. Methods Heat Fluid Flow 2005, 26, 672–680. [Google Scholar] [CrossRef]
- Bergman, T.L.; Lavine, A.S.; Incropera, F.P.; Dewitt, D.P. Fundamentals of Heat and Mass Transfer, 7th ed.; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Menter, F.; Ferreira, J.C.; Esch, T.; Konno, B. The SST turbulence model with improved wall treatment for heat transfer predictions in gas turbines. In Proceedings of the International Gas Turbine Congress 2003, Tokyo, Japan, 2–7 November 2003; pp. 2–7. [Google Scholar]
- Chen, H.C.; Patel, V.C. Near-wall turbulence models for complex flows including separation. AIAA J. 1988, 26, 641–648. [Google Scholar] [CrossRef]
- Kays, W.M. Turbulent Prandtl number—Where are we? J. Heat Transf. 1994, 116, 284–295. [Google Scholar] [CrossRef]
- Abbasian Arani, A.A.; Amani, J. Experimental investigation of diameter effect on heat transfer performance and pressure drop of TiO2–water nanofluid. Exp. Therm. Fluid Sci. 2013, 44, 520–533. [Google Scholar] [CrossRef]
y+ | f | Nu | |||
---|---|---|---|---|---|
17.9 | 6.769 × 10−2 | 4809.66 | 1.538 × 10−4 | 13.666 × 10−4 | |
1.65 | 1.991 × 10−2 | 753.14 | 1.209 × 10−4 | 4.192 × 10−4 | |
0.34 | 1.818 × 10−2 | 595.42 | 1.576 × 10−3 | 3.836 × 10−4 | |
0.08 | 1.809 × 10−2 | 583.33 | 1.662 × 10−3 | 3.863 × 10−4 | |
Ref. | — | 1.797 × 10−2 | 598.95 | 1.621 × 10−3 | 3.840 × 10−4 |
ρ (kg/m3) | cp (J/kg·K) | μ (Pa·s) | λ (W/m·K) |
---|---|---|---|
998.2 | 4182 | 1.004 × 10−3 | 0.599 |
Ac (m2) | q″ (W/m2) | Re | |
---|---|---|---|
Section 3.1, Section 3.2 and Section 3.3 | 0.000005 | 50,000 | 104–105 |
0.0005 | 5000 | ||
0.05 | 500 | ||
Section 3.4 | 0.05 | 500–30,000 | 104 |
Section 3.5 | 0.05 | 2000–20,000 | 104 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Yang, L. Numerical Study of Entropy Generation in Fully Developed Turbulent Circular Tube Flow Using an Elliptic Blending Turbulence Model. Entropy 2022, 24, 295. https://doi.org/10.3390/e24020295
Yang X, Yang L. Numerical Study of Entropy Generation in Fully Developed Turbulent Circular Tube Flow Using an Elliptic Blending Turbulence Model. Entropy. 2022; 24(2):295. https://doi.org/10.3390/e24020295
Chicago/Turabian StyleYang, Xianglong, and Lei Yang. 2022. "Numerical Study of Entropy Generation in Fully Developed Turbulent Circular Tube Flow Using an Elliptic Blending Turbulence Model" Entropy 24, no. 2: 295. https://doi.org/10.3390/e24020295
APA StyleYang, X., & Yang, L. (2022). Numerical Study of Entropy Generation in Fully Developed Turbulent Circular Tube Flow Using an Elliptic Blending Turbulence Model. Entropy, 24(2), 295. https://doi.org/10.3390/e24020295