Simulating Solid-Liquid Phase-Change Heat Transfer in Metal Foams via a Cascaded Lattice Boltzmann Model
Abstract
:1. Introduction
2. Macroscopic Governing Equations
3. Enthalpy-Based CLB Model for Solid-Liquid Phase Change in Metal Foams
3.1. Enthalpy-Based CLB Equation
3.1.1. Thermal CLB Equation for Fluid Phase without Phase-Change Term
3.1.2. Enthalpy-Based CLB Equation for PCM with Phase Change
3.2. Thermal MRT-LB Equation
4. Numerical Simulations
5. Conclusions
- (1)
- The melting front and temperature profiles at different Fourier numbers predicted by the CLB model match well with the available data in previous studies, demonstrating the effectiveness and practicability of the CLB model for investigating heat transfer in solid-liquid PCMs with metal foams.
- (2)
- The empirical correlations of and given by Equation (6) based on packed beds overestimate the PCM’s melting rate when the metal foam’s porosity is high, while the empirical correlations for metal foams such as aluminum foam given by Equation (7) are expected to provide a good estimate of the practical situations.
- (3)
- The PCM’s melting rate increases as the metal foam’s porosity decreases since the total heat transfer from the hot wall is dominated by heat conduction through high thermal conductive metal foam. Moreover, the effect of the Rayleigh number on phase-change process is weak since it has been severely suppressed by the metal foam’s ligament.
- (4)
- Although smaller porosity increases the PCM’s melting rate, it also reduces the volume of PCM for LHS, leading to a lower LHS capability. A further optimization investigation on metal foam’s porosity to balance PCM’s melting rate and LHS capacity is quite necessary.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
heat capacity ratio (metal foam-to-PCM) | |
lattice speed, | |
sound speed, | |
sound speed, | |
temperature | |
gravitational acceleration | |
mean particle diameter or mean diameter of the pores | |
pressure | |
fiber diameter of metal foam | |
Darcy number | |
discrete lattice velocity | |
total body force | |
characteristic length | |
total liquid fraction | |
Fourier number | |
G | buoyancy force |
effective thermal conductivity (metal foam) | |
volumetric heat transfer coefficient | |
viscosity ratio | |
transformation matrix | |
shift matrix | |
Rayleigh number | |
Stefan number | |
reference temperature | |
hot wall’ temperature | |
thermal conductivity ratio (metal foam-to-PCM) | |
cold wall’s temperature | |
initial temperature | |
melting temperature | |
thermal conductivity (PCM) | |
velocity | |
, | coordinates, , |
specific heat | |
thermal dispersion conductivity | |
specific surface area | |
effective thermal conductivity (PCM) | |
interfacial heat transfer coefficient | |
liquid fraction | |
latent heat | |
inertial coefficient | |
permeability | |
Prandtl number | |
Thermal diffusivity (liquid PCM) | |
effective thermal diffusivity (fluid) | |
effective thermal diffusivity (metal foam) | |
thermal expansion coefficient | |
density | |
porosity of metal foam | |
ve | effective kinematic viscosity |
kinematic viscosity (liquid PCM) | |
, | model parameters |
km | thermal conductivity (metal foam) |
lattice spacing | |
time step | |
thermal diffusivity ratio (metal foam-to-PCM) | |
Subscripts | |
fluid (PCM) | |
metal foam | |
liquid PCM | |
solid PCM |
References
- Zalba, B.; Marίn, J.M.; Cabeza, L.F.; Mehling, H. Review on thermal energy storage with phase change: Materials, heat transfer analysis and applications. Appl. Therm. Eng. 2003, 23, 251–283. [Google Scholar] [CrossRef]
- Sharma, A.; Tyagi, V.V.; Chen, C.R.; Buddhi, D. Review on thermal energy storage with phase change materials and applications. Renew. Sustain. Energy Rev. 2009, 13, 318–345. [Google Scholar] [CrossRef]
- Miansari, M.; Nazari, M.; Toghraie, D.; Akbari, O.A. Investigating the thermal energy storage inside a double-wall tank utilizing phase-change materials (PCMs). J. Therm. Anal. Calorim. 2019, 139, 2283–2294. [Google Scholar] [CrossRef]
- Yan, S.; Fazilati, M.A.; Toghraie, D.; Khalili, M.; Karimipour, A. Energy cost and efficiency analysis of greenhouse heating system enhancement using phase change material: An experimental study. Renew. Energy 2021, 170, 133–140. [Google Scholar] [CrossRef]
- Pielichowska, K.; Pielichowski, K. Phase change materials for thermal energy storage. Prog. Mater. Sci. 2014, 65, 67–123. [Google Scholar] [CrossRef]
- Tao, Y.B.; He, Y.-L. A review of phase change material and performance enhancement method for latent heat storage system. Renew. Sustain. Energy Rev. 2018, 93, 245–259. [Google Scholar] [CrossRef]
- Liu, L.; Su, D.; Tang, Y.; Fang, G. Thermal conductivity enhancement of phase change materials for thermal energy storage: A review. Renew. Sustain. Energy Rev. 2016, 62, 305–317. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, C.; Xu, Z.; Xu, H. Modeling metal foam enhanced phase change heat transfer in thermal energy storage by using phase field method. Int. J. Heat Mass Transf. 2016, 99, 170–181. [Google Scholar] [CrossRef]
- Krishnan, S.; Murthy, J.Y.; Garimella, S.V. A two-temperature model for solid-liquid phase change in metal foams. J. Heat Transf. 2004, 127, 995–1004. [Google Scholar] [CrossRef] [Green Version]
- McNamara, G.R.; Zanetti, G. Use of the boltzmann equation to simulate lattice-gas automata. Phys. Rev. Lett. 1988, 61, 2332–2335. [Google Scholar] [CrossRef] [PubMed]
- Frisch, U.; Hasslacher, B.; Pomeau, Y. Lattice-Gas automata for the navier-stokes equation. Phys. Rev. Lett. 1986, 56, 1505–1508. [Google Scholar] [CrossRef] [Green Version]
- He, Y.-L.; Liu, Q.; Tao, W.-Q. Lattice Boltzmann methods for single-phase and solid-liquid phase-change heat transfer in porous media: A review. Int. J. Heat Mass Transf. 2018, 129, 160–197. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Doolen, G.D. Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 1998, 30, 329–364. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Luo, K.; Kang, Q.; He, Y.; Chen, Q. Lattice Boltzmann methods for multiphase flow and phase-change heat transfer. Prog. Energy Combust. Sci. 2015, 52, 62–105. [Google Scholar] [CrossRef] [Green Version]
- De Fabritiis, G.; Mancini, A.; Mansutti, D.; Succi, S. Mesoscopic models of liquid/solid phase transitions. Int. J. Mod. Phys. C 1998, 9, 1405–1415. [Google Scholar] [CrossRef]
- Miller, W.; Succi, S.; Mansutti, D. Lattice Boltzmann model for anisotropic liquid-solid phase transition. Phys. Rev. Lett. 2001, 86, 3578–3581. [Google Scholar] [CrossRef] [PubMed]
- Miller, W.; Rasin, I.; Succi, S. Lattice Boltzmann phase-field modelling of binary-alloy solidification. Phys. A Stat. Mech. Its Appl. 2006, 362, 78–83. [Google Scholar] [CrossRef]
- Jiaung, W.S.; Ho, J.R.; Kuo, C.P. Lattice Boltzmann method for the heat conduction problem with phase change. Numer. Heat Transf. B 2001, 39, 167–187. [Google Scholar]
- Huang, R.; Wu, H.; Cheng, P. A new lattice Boltzmann model for solid–liquid phase change. Int. J. Heat Mass Transf. 2013, 59, 295–301. [Google Scholar] [CrossRef]
- Huang, R.; Wu, H. Phase interface effects in the total enthalpy-based lattice Boltzmann model for solid–liquid phase change. J. Comput. Phys. 2015, 294, 346–362. [Google Scholar] [CrossRef]
- Huang, R.; Wu, H. An immersed boundary-thermal lattice Boltzmann method for solid–liquid phase change. J. Comput. Phys. 2014, 277, 305–319. [Google Scholar] [CrossRef]
- Li, Z.; Yang, M.; Zhang, Y. Numerical simulation of melting problems using the Lattice Boltzmann method with the interfacial tracking method. Numer. Heat Transf. Part A Appl. 2015, 68, 1175–1197. [Google Scholar] [CrossRef]
- Gao, D.; Chen, Z.; Shi, M.; Wu, Z. Study on the melting process of phase change materials in metal foams using lattice Boltzmann method. Sci. China Ser. E Technol. Sci. 2010, 53, 3079–3087. [Google Scholar] [CrossRef]
- Gao, D.; Chen, Z. Lattice Boltzmann simulation of natural convection dominated melting in a rectangular cavity filled with porous media. Int. J. Therm. Sci. 2011, 50, 493–501. [Google Scholar] [CrossRef]
- Jourabian, M.; Darzi, A.A.R.; Akbari, O.A.; Toghraie, D. The enthalpy-based lattice Boltzmann method (LBM) for simulation of NePCM melting in inclined elliptical annulus. Phys. A Stat. Mech. Its Appl. 2019, 548, 123887. [Google Scholar] [CrossRef]
- Liu, Q.; He, Y.-L. Double multiple-relaxation-time lattice Boltzmann model for solid–liquid phase change with natural convection in porous media. Phys. A Stat. Mech. its Appl. 2015, 438, 94–106. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; He, Y.-L. Enthalpy-based multiple-relaxation-time Lattice Boltzmann method for solid-liquid phase-change heat transfer in metal foams. Phys. Rev. E 2017, 96, 023303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, D.; Chen, Z.; Zhang, D.; Chen, L. Lattice Boltzmann modeling of melting of phase change materials in porous media with conducting fins. Appl. Therm. Eng. 2017, 118, 315–327. [Google Scholar] [CrossRef]
- Geier, M.; Greiner, A.; Korvink, J.G. Cascaded digital Lattice Boltzmann automata for high Reynolds number flow. Phys. Rev. E 2006, 73, 066705. [Google Scholar] [CrossRef]
- Fei, L.; Luo, K.H.; Lin, C.; Li, Q. Modeling incompressible thermal flows using a central-moments-based Lattice Boltzmann method. Int. J. Heat Mass Transf. 2018, 120, 624–634. [Google Scholar] [CrossRef]
- Liu, Q.; Feng, X.-B. Numerical modelling of microchannel gas flows in the transition flow regime using the cascaded Lattice Boltzmann method. Entropy 2019, 22, 41. [Google Scholar] [CrossRef] [Green Version]
- Feng, X.-B.; Liu, Q.; He, Y.-L. Numerical simulations of convection heat transfer in porous media using a cascaded lattice Boltzmann method. Int. J. Heat Mass Transf. 2020, 151, 119410. [Google Scholar] [CrossRef]
- Calmidi, V.V. Transport Phenomena in High Porosity Fibrous Metal Foams; University of Colorado: Boulder, CO, USA, 1998. [Google Scholar]
- Calmidi, V.V.; Mahajan, R.L. Forced convection in high porosity metal foams. J. Heat Transf. 2000, 122, 557–565. [Google Scholar] [CrossRef]
- Churchill, S.W.; Chu, H.H. Correlating equations for laminar and turbulent free convection from a horizontal cylinder. Int. J. Heat Mass Transf. 1975, 18, 1049–1053. [Google Scholar] [CrossRef]
- Huang, R.; Wu, H. Total enthalpy-based Lattice Boltzmann method with adaptive mesh refinement for solid-liquid phase change. J. Comput. Phys. 2016, 315, 65–83. [Google Scholar] [CrossRef]
- Guo, Z.L.; Zheng, C.G.; Shi, B.C. Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method. Chin. Phys. 2002, 11, 366. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, X.-B.; Liu, Q. Simulating Solid-Liquid Phase-Change Heat Transfer in Metal Foams via a Cascaded Lattice Boltzmann Model. Entropy 2022, 24, 307. https://doi.org/10.3390/e24030307
Feng X-B, Liu Q. Simulating Solid-Liquid Phase-Change Heat Transfer in Metal Foams via a Cascaded Lattice Boltzmann Model. Entropy. 2022; 24(3):307. https://doi.org/10.3390/e24030307
Chicago/Turabian StyleFeng, Xiang-Bo, and Qing Liu. 2022. "Simulating Solid-Liquid Phase-Change Heat Transfer in Metal Foams via a Cascaded Lattice Boltzmann Model" Entropy 24, no. 3: 307. https://doi.org/10.3390/e24030307
APA StyleFeng, X. -B., & Liu, Q. (2022). Simulating Solid-Liquid Phase-Change Heat Transfer in Metal Foams via a Cascaded Lattice Boltzmann Model. Entropy, 24(3), 307. https://doi.org/10.3390/e24030307