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Abstract: Satellite communication is expected to play a vital role in realizing Internet of Remote
Things (IoRT) applications. This article considers an intelligent reflecting surface (IRS)-assisted
downlink low Earth orbit (LEO) satellite communication network, where IRS provides additional
reflective links to enhance the intended signal power. We aim to maximize the sum-rate of all the
terrestrial users by jointly optimizing the satellite’s precoding matrix and IRS’s phase shifts. However,
it is difficult to directly acquire the instantaneous channel state information (CSI) and optimal
phase shifts of IRS due to the high mobility of LEO and the passive nature of reflective elements.
Moreover, most conventional solution algorithms suffer from high computational complexity and
are not applicable to these dynamic scenarios. A robust beamforming design based on graph
attention networks (RBF-GAT) is proposed to establish a direct mapping from the received pilots
and dynamic network topology to the satellite and IRS’s beamforming, which is trained offline
using the unsupervised learning approach. The simulation results corroborate that the proposed
RBF-GAT approach can achieve more than 95% of the performance provided by the upper bound
with low complexity.

Keywords: intelligent reflecting surface; low Earth orbit satellite; graph attention networks; unsuper-
vised learning; beamforming

1. Introduction

With the advantages of providing global-coverage, high-throughput capability, and
low-cost internet access, satellite communication has drawn significant attention from
both industry and academia and is regarded as a promising solution for meeting the
needs of the Internet of Remote Things (IoRT) [1,2]. Currently, there are three types of
satellites in space that provide global service, including geosynchronous Earth orbit (GEO)
satellites, medium Earth orbit (MEO) satellites and low Earth orbit (LEO) satellites [3].
Compared with GEO and MEO satellites, LEO satellites have recently become popular
due to their lower development costs, better signal strength, and the potential for large-
scale LEO satellite networks that can guarantee lower transmission delays [4,5]. More
than 40,000 LEO satellites are planned by SpaceX Starlink alone. On the other hand,
LEO satellites are deployed at an altitude of 500–1500 km with an orbital period shorter
than 2 h. The fast movement of LEO satellites results in a very limited window for
transmission to ground devices, approximately 10 min/pass [6]. The maximum completion
time optimization for the Internet of Things (IoT) in LEO satellite-terrestrial integrated
networks (STINs) was investigated in [7], and a cooperative nonorthogonal multiple
access (NOMA) scheme for data transmission was proposed. As the amount of data
transferred continues to increase, it becomes increasingly challenging for LEO satellites
to transmit all data within such a small transmission window, especially in remote rural
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areas with no terrestrial infrastructure. Moreover, in practical satellite systems, line-of-
sight (LoS) communication between satellite and terrestrial users is difficult to maintain
due to obstacles and shadowing [8]. In [9], the authors investigated unmanned aerial
vehicle (UAV) swarms and LEO satellite constellation-assisted data collection for IoRT
networks, where UAV swarms were used as relays to improve the channel environment.
UAVs have the benefits of high mobility, flexible deployment, and LoS transmission [10,11].
However, when introducing UAVs in LEO-assisted IoRT networks, data transmission
becomes more challenging because of the different channel characteristics of UAV-ground
and UAV-satellite links, as well as the battery and cache capacity limitations of UAVs.

Considered promising technology, intelligent reflecting surfaces (IRSs) have recently
received substantial attention [12–16]. IRS consists of a large number of passive elements
which can introduce controllable phase shifts. Intelligently adjusting these phases can change
the reflected signal propagation. Therefore, it has been widely deployed in wireless communi-
cation systems to enhance the intended signal power at the receiver or mitigate the cochannel
interference [14–16]. Refs. [14,15] investigated the weighted sum rate and transmitted power
in an IRS-aided MISO system, respectively, by jointly optimizing the transmit beamforming
vectors at the base stations (BSs) and the reflective beamforming vector at the IRS. Ref. [16]
studied the secure transmission optimization for IRS-assisted STINs.

Most of the existing literature assumes that the perfect channel state information (CSI)
is known. However, this assumption is impractical because the number of IRS reflecting
elements is large and not capable of performing active transmission/reception and signal
processing [17]. Previous studies proposed various channel estimation schemes in the
IRS-assisted multiuser system [17–20]. However, the abovementioned methods are based
on the BSs have fixed locations, and the variation of BS-IRS common channel is feeble.
These approaches cannot be efficiently applied to the IRS-assisted LEO satellite system
since the high-speed scenarios with fast time-varying channels would be updated more
frequently. In actual deployment, the high complexity channel estimation schemes and
beamforming algorithms may cause the instantaneous CSI obtained by LEO satellites to be
out of date [21], which would dramatically diminish the system’s performance.

Fortunately, artificial intelligence (AI) technology provides simple approaches to
address such complex problems [21–24]. Yang et al. [22] investigated secure physical
communication based on IRS under the condition of time-varying channel coefficients
and proposed a deep reinforcement learning approach to jointly optimize both BS and IRS
beamforming. Ge et al. [23] established a deep transfer learning framework to solve the
beamforming optimization problem for the IRS-assisted MISO system. Jiang et al. [24]
trained a graph neural network (GNN) architecture to directly map the received pilots to
the IRS’s phase shifts and BS beamforming matrix. However, Ref. [24] merges user location
and pilots directly, resulting in the location features being easily ignored. In addition, due
to the long distance between the satellite and users, the pilots received by the satellite is
insensitive to user position information. Therefore, this approach cannot be effectively
utilized in our system. Note that existing research on IRS mainly focuses on the ground
cellular network system, and most research has been based on a static environment. When
the application is extended to LEO satellite and the users’ location may also change, the
algorithm’s computational complexity has a significant impact on performance.

In this paper, we commit to applying AI technology to solve the complex beamforming
design problem in an IRS-assisted LEO satellite communication system. Specifically, the
IRS is used to provide additional reflective links to overcome the serious attenuation caused
by occlusion between the LEO satellites and users’ direct links. In our work, we establish a
global optimization problem for maximizing the sum-rate of mobile users by optimizing
both active and passive beamforming schemes jointly. To solve this problem, we propose a
robust beamforming approach based on graph attention networks (RBF-GAT). Here are the
main contributions of this paper:

First, we propose a novel architecture for LEO satellite IoT networks assisted with IRS.
A deep neural network (DNN) architecture based on graph attention networks (GAT) [25]
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is constructed to capture dynamic network topology in real-time as a result of the mobility
of the satellite and its users.

Second, a composite neural network combining a GAT layer and multiple fully con-
nected (FC) layers is used to directly map the received pilots and network topology to the
satellite and IRS beamforming, eliminating the necessity for channel estimation. To reduce
the complexity of the RBF-GAT model, the mapping neural networks of satellite and IRS
use the same feature extraction layers before the last normalization layer.

Third, we define a loss function to implement unsupervised training offline, thereby
avoiding the labeling overhead that occurs in traditional supervised learning. Simulation
results demonstrate that the proposed RBF-GAT approach, in well-trained conditions, will
be able to approach upper-bound sum rate with a low level of computational complexity.

The remainder of this paper is organized as follows. Section 2 introduces the IRS-
assisted LEO satellite communication system model. Section 3 describes the detailed
architecture of RBF-GAT and the training process. Section 4 gives the simulation results
and the complexity analysis. Section 5 presents the concluding remarks of this paper.

Notations: Boldface letters are used to denote vectors or matrices. Cm×n, Rm×n, and
Rm represent the m× n complex, real matrices and m-dimensional real vector, respectively.
The distribution of complex Gaussian random variables with mean µ and variance σ2 are
denoted by (µ,σ2). The term diag(·) denotes the diagonalization of the vector, and (·)T

denotes the transpose of the matrices. The symbol ◦ denotes the Hadamard product.

2. System Model
2.1. Signal Model

As illustrated in Figure 1, this paper considers an IRS-assisted downlink LEO satellite
communication system in IoRT networks. The LEO satellite is equipped with an array-fed
reflector antenna, which comprises M feeds and can mostly provide M beams. Within the
coverage area of a satellite beam, there are K randomly distributed single-antenna mobile
users. The direct link between the satellite and users suffers severe attenuation due to
heavy shadowing, thus, an IRS is implemented to assist the communications. The IRS is
composed of N = Nt × Nt reflecting elements and is attached to a smart controller for
tuning phase shifts at each reflecting element. Nt represents the number of array elements
uniformly placed along the axis. The channels from the LEO satellite to IRS and user
k,k = 1, · · · , K are denoted by G ∈ CN×M and hd

k ∈ C 1×M, respectively, while that from
the IRS to user k is denoted by hr

k ∈ C 1×N . As such, we let Θ = diag[ejθ1 , · · · , ejθN ] be the
phase shift matrix of IRS, where θn ∈ [0, 2π] is the phase shift of the n-th reflection element.

This paper considers that the LEO satellite carries out superposition coding before
broadcasting signals to the users. Thus, the transmitted signal for all users at the satellite
at time t is written as x(t) = ∑K

k=1 wkxk(t), where wk ∈ CM×1 and xk(t) represent the
precoding vector and transmitted symbol for the k-th user, respectively. Hence, the signal
received by the k-th user can be given as [15]:

yk(t) =
(

hd
k + hr

kΘG
) K

∑
i=1

wixi(t) + nk(t) (1)

where nk(t) is additive white Gaussian noise (AWGN) at the k-th user with a zero mean
and unit variance. Accordingly, the signal-to-interference plus noise ratio (SINR) of user k
can be expressed as:

SNIRk =

∣∣∣(hd
k + hr

kΘG
)

wk

∣∣∣2
∑

i 6=k

∣∣∣(hd
k + hr

kΘG
)

wi

∣∣∣2 + σ2
k

(2)
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Figure 1. IRS-assisted downlink LEO satellite communication system.

In addition, we assume that the Doppler shift caused by the LEO satellite and users’
mobility can be perfectly compensated at the received end. Therefore, we ignore its
influence in the following.

2.2. Channel Model

To realistically model the propagation characteristics of the satellite channel, the impact
of path loss, atmospheric attenuation, and satellite beam gain should be accounted for. The
downlink channel between the satellite and the ground device k can be expressed as [26]:

hk =
√

Ckb
1
2
k ◦ r

1
2
k ◦ h̃k, k = 0, 1, · · · , K (3)

where Ck is the large-scale fading efficient, which can be calculated by:

Ck =

(
λ

4πdk

)2 Gk
κTB

(4)

where dk, λ and Gk represent the propagation distance, carrier wavelength and receive
antenna gain, respectively. κ = 1.38 × 10−23J/m is Boltzman’s constant, B is the car-
rier bandwidth, and T represents the receive noise temperature. bk= [bk,1, · · · , bk,M]T in
Equation (3) is an M-dimensional beam radiation pattern vector, where the m-th element bk
can be approximated by [26,27]:

bk,m = bmax

(
J1(uk,m)

2uk,m
+ 36

J3(uk,m)

2u2
k,m

)2

(5)

where uk,m = 2.07123 sin(ϕk,m)/ sin(ϕk,3dB) , ϕk,m is the angle between the m-th satellite
beam centre and user k, ϕk,3dB is the 3-dB angle for the k-th user. bmax is the maximal
satellite antenna gain. J1(·) and J3(·) are the first and third orders of the first-kind Bessel
function, respectively. Moreover, rk in Equation (3) is also an M-dimensional vector in which
represents the rain attenuation coefficient and its form of dB follows lognormal random
distribution ln(20lg(rk,m)) ∼ (µm,σ2

m). Moreover, we adopt shadowed Rician fading as
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the satellite channel fading model, which is proposed in [28] and has been widely used in

prior studies. In this model, the probability density function of
∣∣∣h̃k

∣∣∣2 can be expressed as:

f|h̃k |2
(x) =

(
2λkmk

2λkmk + Ωk

)mk 1
2λk

exp(− x
2λk

) · 1F1

(
mk, 1,

Ωkx
2λk(2λkmk + Ωk)

)
, x ≥ 0 (6)

where 1F1(a; b; c) is the confluent hypergeometric function and 2λk and Ωk are the average
power of the scatter component and LoS component, respectively. mk ≥ 0 denotes the
Nakagami-m parameter. Therefore, the channel fading coefficient h̃k can be represented as
h̃k = (λk, mk, Ωk). When k = 0, we denote h0 represents the channel between the satellite
and IRS. In this paper, we assume that the channels of satellite-IRS links undergo infrequent
light shadowing (ILS), while satellite-user links experience frequent heavy shadowing
(FHS) [29], i.e., h0 > hk, ∀k ∈ {1, 2, · · · , K}.

For the channel model between IRS and user k, both LoS and no line-of-sight (NLoS)
components are considered, so we model channel hr

k as Rician fading channels:

hr
k = βk

(√
ξ

1 + ξ
h̃los

k +

√
1

1 + ξ
h̃nlos

k

)
(7)

where βk is the path loss from the IRS to user k and can be modelled as 30 + 22 log(dk),
dk is the distance between the RIS and the k-th user. ξ is the Rician factor, and h̃nlos

k is the
NLoS component vector, which is a complex Gaussian distributed with zero mean and
unit variance. Moreover, h̃los

k = [a(φk, ψk)1, · · · , a(φk, ψk)N ]
T represents the LoS component

vector, and the n-th element a(φk, ψk)n can be given by:

a(φk, ψk)n = ej 2πd
λ {sn sin(φk) cos(ψk)+in sin(ψk)} (8)

where sn = mod(n− 1, Nt) and in = b(n− 1)/Ntc. φk and ψk are the azimuth and elevation
angles of arrival (AoA) from the IRS to user k. d is the interelement spacing of IRS, and we
assume d/λ = 2.

2.3. Problem Formulation

This paper aims to enable LEO satellites to transmit as much data as possible within a
limited time window. Thus, we investigate a sum-rate maximization problem by jointly
optimizing the precoding matrix at the LEO satellite and reflect beamforming at the IRS,
which can be given as:

P1 : max
w,Θ

K
∑

k=1
Rk

s.t. θn ∈ [0, 2π], ∀n ∈ {1, 2, · · · , N},
K
∑

k=1
‖wk‖2 ≤ PL.

(9)

where the constraints of (9) are the phase shift of IRS and the maximum transmit power of
the LEO satellite, respectively. Due to the objective function (9) is nonconvex [14], and the
traditional optimization algorithms usually require many iterations and are not suitable for
high-speed scenarios. To solve the problem with low complexity, we propose an RBF-GAT
to establish a direct mapping from the received pilots and network topology to the satellite
and IRS beamforming.

3. Proposed RBF-GAT Framework

To acquire the downlink instantaneous CSI of the LEO satellite, we follow the liter-
ature [19] and propose a pilot transmission strategy to design the uplink pilots and the
IRS phase shifts in the pilot phase. Specifically, all users send their pilot sequences with
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length L to the satellite simultaneously. Each pilot can be decorrelated at the LEO satellite
because all users’ pilot sequences are designed to be orthogonal. We denote the received
pilots of user k at the satellite as pk, which contains rich CSI between satellite and user k.
The conventional approach of acquiring CSI uses minimum mean-squared error (MMSE),
and its calculation is very complicated, especially for the IRS cascade channel.

Notably, GAT is an effective way to process structured data that are represented as a
graph. In this work, the distribution of users can be regarded as a graph. K users constitute
nodes of the graph, and each node is encoded as a feature vector denoted as ak, which is
transmitted to the satellite via uplink and contains the common features (e.g., the locations
of IRS and satellite) and the private features (e.g., user locations, category and priority).
GAT can track the spatial fluctuations of the network in real-time by processing this feature.

In this section, we commit to training an RBF-GAT network to directly establish the
mapping from pk and ak to the precoding matrix and reflect beamforming to maximize the
system sum rate. We first introduce the RBF-GAT architecture in detail and then discuss
the unsupervised training approach.

3.1. RBF-GAT Architecture

Our network consists of multiple GATs layers and multiple FC layers, as illustrated
in Figure 2. First, for the raw feature ak obtained from the scenario, we need to map such
vectors into a higher-dimensional space by a GAT layer, since the raw low-dimension
feature contains less network topological information. The input to the GAT layer is a set
of node features, a = {a1, a2, · · · , aK}, ak ∈ RF, where F is the dimension of raw features
in each user. To transform ak into a higher-level feature space of F′ dimension, a shared
weight matrix, W ∈ RF′×F, is applied to perform a linear transformation. We implement a
shared self-attention mechanism Atten(·, ·) to calculate the attention coefficients of the user
and its adjacent users:

eij = Atten(Wai, Waj), Atten : RF ×RF′ → R (10)
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Note that to indicate the topological information of the network, we computed the
attention coefficients only when the distance between user i and user j was within certain
threshold. For easy comparison, a softmax function is applied to normalize the coefficients
across different adjacent users, and the final normalized coefficients αij are obtained as:

αij = softmax(eij) =
exp(eij)

∑j∈li exp(eij)
(11)
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where li is the set of adjacent users including itself in the current neighbourhood scope
of the i-th user. Then, these coefficients are used to calculate a linear combination of the
features to produce the output features for the current network user:

a′k = σ

(
∑
j∈lk

αkjWaj

)
(12)

where σ(·) represents a nonlinear activation function and a′k ∈ RF′ is the output vector of
the single-head attention mechanism. To make the self-attention learning process more
stable, a multi-head attention mechanism is used in this paper, which can be regarded as
multiple single-head attentions executed independently in parallel, and taking the average
as the output, can be represented by:

a′k = σ

(
1
H

H

∑
h=1

∑
j∈lk

αh
kj

Whaj

)
(13)

where H is the number of attention heads, Wh represents the shared weight matrix of the
h-th attention head.

Then, we concatenate the received pilot pk and the output features a′k as the composite
features of user k and denote them as ck, which is a (2ML + F′) dimensional vector because
all received pilots are decomposed into real and imaginary parts.

ck= [( pk)
T, (a′k)

T
]T (14)

Significantly, ck contains rich information about both the instantaneous CSI and net-
work topology structure, so we use it as the input to the composite neural network. After
ck pass through the GAT-2 layer, D FC layers and a normalization layer, the final output can
be mapped directly to the precoding matrix of the satellite and the phase shift of the IRS.

We denote c0
k as the output of the second GAT layer, which is also the input of the first

FC layer. According to Equation (13), c0
k can be expressed as:

c0
k = σ

(
1
H

H

∑
h=1

∑
j∈lk

α′hkjW1
hck

)
(15)

where α′hkj and W1
h ∈ RF′′×(2ML+F′) are the normalized attention coefficients and the shared

weight matrix of the h-th multihead attentions, respectively. In addition, we chosethe node-
wise mean function as an aggregation function to aggregate the output characteristics of
the GAT layer and concatenate it into each FC layer by using skip connect.

After D FC layers, the final output vectors, denoted as cD
k , are passed to the normaliza-

tion layer to produce the precoding matrix w and phase shift matrix Θ while ensuring the
constraint of phase shift and transmit power. As with [20], we input cD

k to the linear layer
fw(·) with 2MK FC units and the linear layer fΘ(·) with 2N FC units. Then, the normaliza-
tion layer outputs the real and imaginary components of the optimization variables. Finally,
the complex solution can be obtained by combining the real and imaginary components.

3.2. Unsupervised Training

Since it is difficult for the IRS-assisted LEO satellite system to obtain data labels, we
cannot train it by a classic deep learning algorithm with supervised learning techniques. Thus,
unsupervised training is adopted for training the network. We define the loss function as:

Loss = − 1
T

T

∑
i=1

K

∑
k=1

wkRk (16)
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where T represents the total number of training samples in a batch. To generate a training
dataset, first, we generate the channel data according to the channel model discussed in
Section 2. Then, all users transmit orthogonal pilot signals and additional information (i.e.,
location, priority, etc.) to the satellite. The LEO satellite can recover the pilots of all users
from the received pilots and use it as part of the input of the neural network. The details of
the training procedure are summarized in Algorithm 1.

Note that our model is trained offline, thus, the training process does not increase its
computational complexity. During training, we use the stochastic gradient descent method
to update the neural network parameters to minimize the loss function, which is equivalent
to maximizing the objective function P1.

Algorithm 1 Training procedure for RBF-GAT.

Input: learning rate α, maximal epoch Ep, batch size Nb, training samples T,Iite.
Output: Optimal network weights parameter Φ

1: Randomly initialize network parameter Φ.
2: Calculate loss L0 according to Equation (16) and initialize s = 0.
3: for i = 1, · · · , Ep do
4: for jite = 1, · · · , Iite do
5: Initialize the phase shift matrix Θ and generate received pilot according to [19]
6: Randomly select T samples to compose a batch task.
7: Update the network weights parameter as Φ′ by Adam optimizer.
8: end for
9: Calculate loss Li according to Equation (16).
10: if Li > Li−1 do
11: Set s = 0, Φ← Φ′ and save network weights.
12: else
13: Update s← s + 1 and judge whether the learning rate α needs to be updated.
14: end if
15: end for

4. Simulation and Numerical Results

This section uses numerical simulations to evaluate the performance achieved by the
proposed RBF-GAT for the sum-rate maximization problem. We first set the simulation
parameters of the training neural network and IRS-assisted LEO satellite communication
system. Then, we compare the RBF-GAT with several benchmarks proposed in prior works.
Finally, we show the simulation results and analyze the computational complexities of the
proposed RBF-GAT method. The simulation experiments conducted in this study were
performed on a computer equipped with an Intel(R) Core(TM) i7-8700 processor @3.19 GHz,
64 GB RAM. The simulation platform utilized Python 3.6, and the neural network in the
RBF-GAT was constructed using TensorFlow 1.6.

4.1. Simulation Parameter Setting

We use four attention heads (H = 4) and adopt three FCs (D = 3) in the proposed
network. The names of the FC layers are denoted as f1, f2 and f3, respectively. In addition,
we set ak as a 10-dimensional vector (F = 10) that contains the priority information and
the location information of user k, IRS and LEO satellites. The parameters of all layers are
summarized in Table 1.
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Table 1. The parameters of RBF-GAT.

Layer Name Input Dimension Output Dimension Activation Function

GAT1 K × 10 K × 512 LeakyReLU
GAT2 K × (512 + 2ML) K × 1024 LeakyReLU

f 1 K × 1024 2048 ReLU
f 2 2048 1024 ReLU
f 3 1024 512 ReLU
fw 512 2MK ReLU
fΘ 512 2N ReLU

For network training, we use the Adam optimizer with an initial learning rate α = 0.001,
the number of maximal epochs Ep is set to 350, and for each epoch, we generate Iite = 100
iterations to update the weights of the network. The batch size Nb is set to 1000. To accelerate
the convergence, the learning rate decays by a factor of 0.3 when the validation loss does
not decrease for 5 consecutive epochs. Due to the statistical properties of the channel and
the noise in the uplink pilot transmission, all the calculation results are generated based on
averaging over 1000 instances.

For the considered IRS-assisted LEO satellite system, we assume that the LEO satellite
altitude is 1000 km and that the satellite is equipped with M = 8 antennas. An IRS with
64 passive element locations at (0,0) and height 20 m. IRS is configured as an 8 × 8 uniform
rectangular array. There are 6 terrestrial users uniformly distributed in a square area of
[0, 200] m × [0, 200] m. We set the length of the uplink pilots to L = 20 for each user, and
the user’s transmission power to 15 dBm. The uplink channels from users to IRS, from
IRS to the LEO satellite, and from users to the LEO satellite are generated according to the
channel model discussed in Section 2. The details of the coefficients are given in Table 2.

Table 2. Simulation parameters in the IRS-assisted LEO satellite communication network.

Parameter Definition Value

PL Satellite maximum transmit power 30 dBW
ν/λ Carrier frequency 20 GHz

Gk/T User received gain per to noise
temperature 15 dB/K

B Bandwidth 25 MHz

ϕk,m
Beam angles between IRS/user and

satellite 0.01◦~0.5◦

ϕk,3dB 3-dB angle 0.4◦

bmax Maximal satellite antenna gain. 52 dBi
µm Rain fading mean −2.6 dB
σ2

m Rain fading variance 1.63 dB
ξ Rician factor 10

h̃0
ILS fading parameters between

satellite to IRS channel (19.4, 0.158, 1.29)

h̃k
HFS fading parameters between

satellite to user channel (0.739, 0.063, 8.97× 10−4)

4.2. Benchmark Schemes for Comparison

After the RBF-GAT was trained offline, we compared its performance with the follow-
ing benchmarks:

Upper Bound: Let the CSI of all channels is perfectly known at the IRS and the LEO
satellite, and we optimize the sum-rate maximization problem by the block coordinate descent
(BCD) algorithm proposed in [14], which can be treated as the system performance upper
bound but, in reality, it is difficult to realize. We stop the BCD algorithm after 2000 iterations.

Deep Learning(GNN): Adopt a GNN architecture proposed in [24] to capture the
interactions among all users and the LEO satellite. The user locations and received pilots
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are directly concatenated as the input feature, and then train the model offline in an
unsupervised manner.

Deep Learning(MLP): Design a multi-layer perceptron (MLP), which is composed of a
simple network including multiple layers with several neurons, to establish the mapping
from pilots and location to beamforming. This method has been studied in [30].

Without IRS: Let N = 0, and then the precoding matrix of the LEO satellite is optimized
using the alternating optimization algorithm presented in [14].

Random Phase: The IRS phase shift matrix is initialized with random value, and
the alternating optimization algorithm proposed in [14] is then applied to optimize the
precoding matrix of the LEO satellite.

4.3. Numerical Results

In this subsection, we present the numerical results of the proposed approach. We
assume that the users’ locations are fixed within a time slot, the time slot is small enough
and the low-complexity RBF-GAT can implement active and passive beamforming within
the time slot.

To verify the convergence rate of the proposed RBF-GAT scheme, we plot the loss
value during training versus the number of epochs with three different training parameters.
Figure 3 shows that the proposed scheme converges to a locally optimal solution in less than
200 training epochs. In addition, the smaller the number of IRS reflection elements or users,
the faster the convergence speed of the algorithm. This is because the number of users or IRS
elements is positively correlated with the number of weight parameters to be trained.
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Figure 4 shows the sum-rate versus the number of users under different schemes. The
sum-rates under all considered schemes increase with an increasing number of users K, and
the larger the value of K is, the slower the growth trend. This phenomenon can be explained
by the concavity of the log function from the sum rate. It is seen that those methods aided
with IRS observably exceed the one without IRS, and the performance gain by deploying
IRS is inappreciable if the phase shift matrix is initialized by random value. Moreover,
both RBF-GAT and GNN can achieve performance close to the upper boundary, but the
proposed RBF-GAT consistently outperforms GNN, and the gap increases with K. The
reason for the increase is that the LEO satellite is insensitive to user’s location information,
in contrast to GNN directly merging the position coordinates of the user, RBF-GAT can
effectively capture the dynamic network topology by GAT layers. Thus, the proposed
RBF-GAT is more suitable for IRS-aided LEO satellite dynamic scenario communication.
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Figure 5 illustrates the sum-rate of different schemes with respect to the transmit
power PL when N = 64. It is observed that the sum-rate increases for all considered schemes
as the transmission power increases, and the random phase method still has only a weak
gain. As we expected, the performance of RBF-GAT is always closest to the upper boundary
under the condition of equal pilot length. In addition, as the pilot length increases, the rate
sum also increases but never exceeds the upper boundary. This is because the longer the
pilot signal received is, the richer the CSI contained. Thus, more features can be learned by
the neural network. On the other hand, increasing the pilot length will also lead to a larger
delay in data transmission. In practical applications, we should make trade-offs according
to different requirements.
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Figure 6 shows the sum-rate versus the number of elements of the IRS in four different
schemes. In Figure 6, we set the number of feeds at LEO satellite as M = 8, pilot length as
L = 20, and the transmit power of LEO satellite as PL = 30 dBW. We can find that the sum-
rate of the without IRS method remains constant and the random phase method increase
slightly as the numbers of IRS element grows. From Figures 5 and 6, we can calculate that
the proposed RBF-GAT approach can achieve more than 95% of the performance provided
by the upper bound. In addition, both the number of IRS elements and the increase in
transmit power can improve the sum-rate. However, compared to increasing the transmit



Entropy 2022, 24, 326 12 of 14

power, increasing the IRS elements to improve the sum-rate performance is a more energy-
efficient scheme due to the IRS elements being passive. The above numerical simulations
further validate the robustness and effectiveness of our proposed RBF-GAT schemes.
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4.4. Computational Complexity Analysis

The complexity of the BCD is O(Io(2NMK + KM2 + K2M2)) [14], where Io is the
number of iterations and does not include the complexity of the channel estimation. For
IRSs with passive elements, the conventional least square channel estimation methods
have a computational complexity of O(LKMN) with L < NM. In our proposed RBF-GAT
method, the channel estimation is omitted. For the training stage, let Z1, Z2, and Z3 denote
the number of neurons in the three FC layers in turn. The computational complexity of the
proposed RBF-GAT scheme in each iteration is O(KFF′ + KF′′ (2ML + F′) + F′′Z1 + Z1Z2 +
Z2Z3 + 2Z3MK + 2Z3N). In the training phase, the model is trained for Ep epochs, with
each epoch being Iite iterations. Hence, the total computational complexity of the proposed
method is O(Ep Iite(KFF′ + KF′′ (2ML + F′) + F′′Z1 + Z1Z2 + Z2Z3 + 2Z3MK + 2Z3N)).
The high computational complexity training process is performed offline. Therefore, the
actual computational complexity of our proposed method is only linear in M, N and K.

Due to the GNN and MLP methods are also established by neural networks, and
they have approximate computational complexity as the proposed RBF-GAT. However, the
proposed method achieves better performance, which is shown in the previous subsection.
It is easy to see that the proposed RBF-GAT method has lower computational complexity
and has significant advantages in the dynamic scenarios of satellite communication.

5. Conclusions

In this paper, we investigated the IRS-aided LEO satellite communication system.
Specifically, we formulated a sum-rate maximization problem by optimizing the satellite
precoding and IRS beamforming jointly. To tackle the time-varying network topology and
high transmission delay of satellite communication, an RBF-GAT was presented to establish
a direct mapping from the received pilots and network topology to the satellite and IRS
beamforming, and the unsupervised learning mechanism was used to train this network
offline. Compared with traditional beamforming methods, the proposed approach has
the ability to capture the dynamic network topology and lower computational complexity.
Therefore, it is more suitable for dynamic LEO satellite communication scenarios. The simu-
lation results corroborated that the proposed scheme can achieve approximate performance
compared with an optimal solution.
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