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Abstract: In this paper, four kinds of shadowing properties in non-autonomous discrete dynamical
systems (NDDSs) are discussed. It is pointed out that if an NDDS has a F -shadowing property (resp.
ergodic shadowing property, d shadowing property, d shadowing property), then the compound
systems, conjugate systems, and product systems all have accordant shadowing properties. Moreover,
the set-valued system (K(X), f̄1,∞) induced by the NDDS (X, f1,∞) has the above four shadowing
properties, implying that the NDDS (X, f1,∞) has these properties.
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1. Introduction

Non-autonomous discrete dynamical systems (NDDSs) are a generalization of au-
tonomous discrete dynamical systems (ADDSs). NDDSs are more flexible for describing
some dynamic and dynamical behaviors in the real world, and have important theoretical
and applied value. The dynamical properties of NDDSs have attracted wide attention from
scholars. Since 1996, the chaos of NDDSs began to be of concern. Currently, some studies
about the sensitivity and transitivity in NDDSs can be found in [1–4]. For some studies of
Li–Yorke chaos, distributional chaos, dense chaos, Ruelle–Takens chaos, or Kato’s chaos in
NDDSs, see [5,6] and others.

The shadowing property of a dynamical system is one of the most important notions
in dynamical systems. It is an important tool for studying the chaotic properties of discrete
dynamical systems. From the numerical point of view, if a dynamical system has the
shadowing property, then numerically obtained orbits reflect the real behavior of trajec-
tories of the systems (see [7–9]). With the deepening of research, various new shadowing
properties are emerging. The ergodic shadowing property was introduced by Fakhari
in [10]. Then, the d shadowing property and d shadowing property were introduced by
Dastjerdi [11], which are on the basis of the ergodic shadowing property. In addition,
Oprocha [12] used the Furstenberg family to describe the shadowing property and gave
the definition of the F -shadowing property. There exist abundant research results on
these shadowing properties. In 2011, Niu [13] studied that if f has the average-shadowing
property and the minimal points of f are dense in X, then f is weakly mixing and fully
strongly ergodic. In 2017, Ma [14] determined that a nonuniformly expanding map f with
the d shadowing property or d shadowing property is topologically transitive. In 2019,
Parham [15] showed that every uniformly equicontinuous non-autonomous discrete-time
system with the ordinary shadowing and topologically mixing properties has the ergodic
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shadowing property. In 2021, Vasisht and Das [16] gave an interrelation among the shad-
owing property, periodic shadowing property and local weak specification property of
an expansive non-autonomous system. Koo [17] proved that an expansive system has
the periodic shadowing property if, and only if, its induced hyperspatial system has the
periodic shadowing property. Some scholars generalized the notion of the shadowing
property to iterated function systems (IFS). In 2016, Nia [18] proved that every uniformly
contracting IFS has the asymptotic average shadowing property. If a continuous surjective
IFS, F, on a compact metric space, X, has the asymptotic average shadowing property, then
F is chain transitive. In [18], the author determined that for every IFS with a shadowing
property, chain mixing and topological mixing properties are equivalent. For more research
on the shadowing property, see references [19–23] and other works in the literature.

However, most of the literature on shadowing properties is not discussed in NDDSs.
In order to generalize the existing conclusions or obtain new results, this paper introduces
the concepts of four kinds of shadowing properties in NDDSs. Then, the retentivity of them
under the cases of compound, topological conjugate, or product are studied. Further, the
relationship of the shadowing properties between non-autonomous discrete dynamical
system (X, f1,∞) and the induced set-valued system (K(X), f̄1,∞) is discussed. The structure
of this paper is as follows. In Section 2, some basic definitions and concepts are introduced.
In Section 3, the main results are established and proved.

2. Preliminaries
2.1. Non-Autonomous Discrete Dynamical Systems

In this paper, let X = [0, 1], and the metric on X is denoted as d. fn : X → X(n ∈ N)
is a mapping sequence, and denoted by f1,∞ = ( f1, f2, · · · ). This sequence defines a non-
autonomous discrete dynamical system (NDDS) (X, f1,∞). Under this mapping sequence,
the orbit of a point x ∈ X is Orb(x, f1,∞) = ( f n

1 (x))(n ∈ N), where f n
1 = fn ◦ · · · ◦ f1, f 0

1
denotes the identity mapping. Similarly, f k

n = fn+k−1 ◦ · · · ◦ fn+1 ◦ fn.
For any m ∈ N, denote

h1 = fm ◦ · · · ◦ f1, h2 = f2m ◦ · · · ◦ fm+1, · · · , hp = fpm ◦ · · · ◦ f(p−1)m+1, · · ·

(X, h1,∞) is called a compound system of (X, f1,∞). To make it easier to see the relationship
between system (X, h1,∞) and system (X, f1,∞), the compound system h1,∞ is also denoted

by f [m]
1,∞.
The product system (X×Y, f1,∞ × g1,∞) of NDDSs (X, f1,∞) and (Y, g1,∞) (the metric

of X and Y are d1 and d2, respectively) is defined as (X × Y, ( f1 × g1, f2 × g2, · · · , fn ×
gn, · · · )), where

fn × gn((x, y)) = ( fn(x), gn(y)) (∀(x, y) ∈ X×Y, n ∈ N).

Then,

f n
1 × gn

1 ((x, y)) = ( fn × gn) · · · ( f1 × g1)(x, y) = ( f n
1 (x), gn

1 (y)).

The metric d′ on X×Y is given by

d′((x1, y1), (x2, y2)) = max{d1(x1, x2), d2(y1, y2)}

for all (x1, y1), (x2, y2) ∈ X×Y.

2.2. Set-Valued Systems

Let K(X) be the hyperspace on X. That is, K(X) is the space of nonempty compact
subsets of X with the Hausdorff metric

dH(A, B) = max{sup
x∈A

inf
y∈B

d(x, y), sup
y∈B

inf
x∈A

d(x, y)}
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for any A, B ∈ K(X). Clearly, (K(X), dH) is a compact metric space. Then the system
(X, f1,∞) induces a set-valued dynamical system (K(X), f̄1,∞), where f̄1,∞ : K(X)→ K(X)
is defined as f̄1,∞(A) = f1,∞(A) for any A ∈ K(X). For any finite collection A1, · · · , An of
nonempty subsets of X, let

〈A1, · · · , An〉 = {A ∈ K(X) : A ⊂
n⋃

i=1

Ai, A ∩ Ai 6= , 1 ≤ i ≤ n},

where the topology on K(X) given by the metric dH is the same as the Vietoris or finite
topology, which is generated by a basis consisting of all sets of the form, 〈U1, · · · , Un〉,
where {U1, · · · , Un} is an arbitrary finite collection of nonempty open subsets of X.

2.3. Basic Definitions

In this section, some definitions of the shadowing properties in NDDSs are given.

Definition 1 ([24]). Let P be the collection of all subsets of Z+. A collection F ⊂ P is called a
Furstenberg family if it is hereditary upwards, i.e., F1 ⊂ F2 and F1 ⊂ F imply F2 ⊂ F .

Definition 2 ([10]). For a δ > 0, a sequence {xi}∞
i=0 ⊂ X is called a δ-ergodic pseudo-orbit of

f1,∞ if

lim
n→∞

1
n
|{0 ≤ i < n : d( fi+1(xi), xi+1) < δ}| = 1.

Definition 3 ([10–12]). An NDDS (X, f1,∞) has

(1) F -shadowing property if for any ε > 0 there exists a δ > 0 such that every δ-ergodic pseudo-
orbit {xi}∞

i=0 ⊂ X is F -ε-shadowed by a point z ∈ X, i.e., {i ∈ Z+ : d( f i
1(z), xi) < ε} ∈ F ,

where F is a Furstenberg family;
(2) Ergodic shadowing property if for any ε > 0, there exists a δ > 0 such that every δ-ergodic

pseudo-orbit {xi}∞
i=0 ⊂ X is ε-ergodic shadowed by a point z ∈ X, i.e.,

lim
n→∞

1
n
|{0 ≤ i < n : d( f i

1(z), xi) < ε}| = 1;

(3) d shadowing property if for any ε > 0 there exists a δ > 0 such that every δ-ergodic pseudo-
orbit {xi}∞

i=0 is ε-shadowed by a point z ∈ X in a way such that

lim sup
n→∞

1
n
|{0 ≤ i < n : d( f i

1(z), xi) < ε}| > 1
2

;

(4) d shadowing property if for any ε > 0 there exists a δ > 0 such that every δ-ergodic pseudo-
orbit {xi}∞

i=0 is ε-shadowed by a point z ∈ X in a way such that

lim inf
n→∞

1
n
|{0 ≤ i < n : d( f i

1(z), xi) < ε}| > 0.

Definition 4 ([25]). Let (X, d1) and (Y, d2) be two metric spaces with non-autonomous mapping
sequences f1,∞ = { fn}∞

n=1 and g1,∞ = {gn}∞
n=1, respectively. If there is a homeomorphism

h : X → Y such that h ◦ fn = gn ◦ h, for all n = 1, 2, · · · , then f1,∞ and g1,∞ are said to be
topologically conjugate.

3. Main Results
3.1. The Retentivity of Shadowing Properties

In this section, we prove some results related to compound operation, topological
conjugacy and product for NDDSs with shadowing properties.
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Theorem 1. Let (X, f1,∞) be an NDDS. If (X, f1,∞) has the F -shadowing property (resp., ergodic
shadowing property, d shadowing property, d shadowing property), then so does (X, f [m]

1,∞).

Proof. If m = 1, it is obvious. Suppose that m ≥ 2. Let ε > 0 be given. By the F -shadowing
property of f1,∞, for any ε > 0, there exists a δ > 0 such that each δ-ergodic pseudo-orbit
of f1,∞ is F -ε-shadowed by some points in X. Let {yi}∞

i=0 be a δ-ergodic pseudo-orbit for

h1,∞ = f [m]
1,∞, then

lim
n→∞

1
n
|{0 ≤ i < n : d(hi+1(yi), yi+1) < δ}| = 1.

Since hi+1 = f (i+1)m
im+1 , then

lim
n→∞

1
n
|{0 ≤ i < n : d( f (i+1)m

im+1 (yi), yi+1) < δ}| = 1.

For 0 ≤ j < m and i ≥ 0, put xim+j = f im+j
im+1(yi). One can claim that {xi}∞

i=0 is a δ-ergodic
pseudo-orbit for f1,∞. So

lim
n→∞

1
n
|{0 ≤ i < n : d( fim+j+1(xim+j), xim+j+1) < δ}| = 1

for 0 ≤ j < m. Choose any i ≥ 0. For any j : 0 ≤ j ≤ m− 2,

fim+j+1(xim+j) = fim+j+1( f im+j
im+1(yi)) = f im+j+1

im+1 (yi) = xim+j+1.

Therefore, d( fim+j+1(xim+j), xim+j+1) = 0 < δ for all j : 0 ≤ j ≤ m− 2. Now for j = m− 1,
for every k ∈ N, set xmk = yk, then

lim
n→∞

1
n
|{0 ≤ i < n : d( fim+m(xim+m−1), xim+m) < δ}| = 1,

where
d( fim+m(xim+m−1), xim+m) = d( fim+m( f im+m−1

im+1 (yi)), x(i+1)m)

= d( f (i+1)m
im+1 (yi), yi+1)

= d(hi+1(yi), yi+1)

< δ.

Hence {xi}∞
i=0 is a δ-ergodic pseudo-orbit for f1,∞. So, by the F -shadowing property

of (X, f1,∞), there is a point z ∈ X such that {xi}∞
i=0 is F -ε-shadowed by z, that is,

{i ∈ Z+ : d( f i
1(z), xi) < ε} ∈ F .

In particular, taking the value of index i being mi, one has

{i ∈ Z+ : d( f mi
1 (z), xmi) < ε} = {i ∈ Z+ : d( f mi

1 (z), yi) < ε}
= {i ∈ Z+ : d(hi

1(z), yi) < ε}
∈ F .

So, z is a point of X which is F -ε-shadowing the δ-ergodic pseudo-orbit {yi}∞
i=0 of f [m]

1,∞.

Thus, (X, f [m]
1,∞) has a F -shadowing property.

Similarly, one can prove the results about the ergodic shadowing property, d shadow-
ing property, and d shadowing property.
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Theorem 2. Let (X, d1) and (Y, d2) be metric spaces with non-autonomous mapping sequences
f1,∞ and g1,∞ defined on them, respectively. If f1,∞ is topologically conjugate to g1,∞, then (X, f1,∞)
has an ergodic shadowing property (resp., d shadowing property, d shadowing property, and F -
shadowing property) if, and only if, (Y, g1,∞) also does.

Proof. Let ε2 > 0 be given. Since f1,∞ is topologically conjugate to g1,∞, there exists a
homeomorphism h : X → Y such that h ◦ fn = gn ◦ h or fn ◦ h−1 = h−1 ◦ gn for all
n ≥ 0. By the uniform continuity of h, for every ε2 > 0, d1(x, y) < ε1 for a ε1 > 0 implies
d2(h(x), h(y)) < ε2. Since f1,∞ has an ergodic shadowing property, then for the above
ε1 > 0, there exists a δ1 > 0 such that, δ1-ergodic pseudo-orbit {xi}∞

i=0 of f1,∞ can be
ε1-ergodic shadowed by some points in X. By the uniform continuity of h−1, for δ1 > 0,
there is a δ2 > 0 such that d2(x, y) < δ2 implies d1(h−1(x), h−1(y)) < δ1. The following
will prove that each δ2-ergodic pseudo-orbit of g1,∞ can be ε2-ergodic shadowed by some
points in Y.

Suppose that {yi}∞
i=0 is a δ2-ergodic pseudo-orbit of g1,∞, and put xi = h−1(yi) for all

i ∈ N. Since
lim

n→∞

1
n
|{0 ≤ i < n : d2(gi+1(yi), yi+1) < δ2}| = 1,

then
lim

n→∞

1
n
|{0 ≤ i < n : d1(h−1(gi+1(yi)), h−1(yi+1)) < δ1}| = 1,

so
lim

n→∞

1
n
|{0 ≤ i < n : d1(h−1(gi+1(yi)), h−1(yi+1)) < δ1}|

= lim
n→∞

1
n
|{0 ≤ i < n : d1( fi+1(h−1(yi)), h−1(yi+1)) < δ1}|

= lim
n→∞

1
n
|{0 ≤ i < n : d1( fi+1(xi), xi+1) < δ1}|

= 1.

Thus {xi}∞
i=0 is a δ1-ergodic pseudo-orbit of f1,∞ and there exists a z ∈ X such that

lim
n→∞

1
n
|{0 ≤ i < n : d1( f i

1(z), xi) < ε1}| = 1.

Let Fi = f i
1 = fi ◦ · · · ◦ f1, Gi = gi

1 = gi ◦ · · · ◦ g1, then

lim
n→∞

1
n
|{0 ≤ i < n : d1(Fi(z), xi) < ε1}|

= lim
n→∞

1
n
|{0 ≤ i < n : d2(h(Fi(z)), h(xi)) < ε2}|

= lim
n→∞

1
n
|{0 ≤ i < n : d2(Gi(h(z)), yi) < ε2}|

= 1.

So h(z) is the point in (Y, g1,∞) that {yi}∞
i=0 is ε2-ergodic shadowed. Therefore, (Y, g1,∞)

has an ergodic shadowing property.
On the other hand, let (Y, g1,∞) has an ergodic shadowing property, one can prove

that (X, f1,∞) has an ergodic shadowing property.
The proofs of the d shadowing property, d shadowing property and F -shadowing

property are similar to that given above.

Theorem 3. Let (X, d1) and (Y, d2) be metric spaces with non-autonomous mapping sequences
f1,∞ and g1,∞ defined on them, respectively. Then

(1) (X, f1,∞) and (Y, g1,∞) have a d shadowing property if, and only if, the product system
(X×Y, f1,∞ × g1,∞) also does;
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(2) (X, f1,∞) and (Y, g1,∞) have a d shadowing property if, and only if, the product system
(X×Y, f1,∞ × g1,∞) also does;

(3) (X, f1,∞) and (Y, g1,∞) haveF -shadowing property if, and only if, the product system (X×Y,
f1,∞ × g1,∞) also does;

(4) (X, f1,∞) and (Y, g1,∞) have an ergodic shadowing property if, and only if, the product system
(X×Y, f1,∞ × g1,∞) also does.

Proof. (1) (Necessity) Let ε > 0, then there exists a δ1 > 0 such that every δ1-ergodic pseudo-
orbit {xi}∞

i=0 of (X, f1,∞) can be ε-shadowed by some points of (X, f1,∞), and there exists a
δ2 > 0 such that every δ2-ergodic pseudo-orbit {yi}∞

i=0 of (Y, g1,∞) can be ε-shadowed by
some points of (Y, g1,∞). Choose δ = max{δ1, δ2}. Then

lim
n→∞

1
n
|{0 ≤ i < n : d1( fi+1(xi), xi+1) < δ}| = 1,

lim
n→∞

1
n
|{0 ≤ i < n : d2(gi+1(yi), yi+1) < δ}| = 1.

So
lim

n→∞

1
n
|{0 ≤ i < n : d′(( fi+1 × gi+1)(xi, yi), (xi+1, yi+1)) < δ}|

= lim
n→∞

1
n
|{0 ≤ i < n : max{d1( fi+1(xi), xi+1), d2(gi+1(yi), yi+1)} < δ|

= 1.

Therefore, {(xi, yi)}∞
i=0 is a δ-ergodic pseudo-orbit for (X×Y, f1,∞ × g1,∞).

Assume that the NDDSs (X, f1,∞) and (Y, g1,∞) both have the d shadowing property.
Then there exist a ∈ X and b ∈ Y such that

lim sup
n→∞

1
n
|{0 ≤ i < n : d1( f i

1(a), xi) < ε}| > 1
2

,

lim sup
n→∞

1
n
|{0 ≤ i < n : d2(gi

1(b), yi) < ε}| > 1
2

.

Since
d′(( f i

1 × gi
1)(a, b), (xi, yi)) = max{d1( f i

1(a), xi), d2(gi
1(b), yi)} < ε,

then
lim sup

n→∞

1
n
|{0 ≤ i < n : d′(( f i

1 × gi
1)(a, b), (xi, yi)) < ε}| > 1

2
.

Thus, the δ-ergodic pseudo-orbit {(xi, yi)}∞
i=0 is ε-shadowed by a point (a, b) in X×Y. That

is to say, (X×Y, f1,∞ × g1,∞) has a d shadowing property.
(Sufficiency) Suppose that (X×Y, f1,∞ × g1,∞) has a d shadowing property, then for

any ε > 0, there exists a δ > 0 such that δ-ergodic pseudo-orbit {(xi, yi)}∞
i=0 of f1,∞ × g1,∞

can be ε-shadowed by a point (a, b) in X×Y. Then

lim sup
n→∞

1
n
|{0 ≤ i < n : d′(( f i

1 × gi
1)(a, b), (xi, yi)) < ε}| > 1

2
.

Since
d′(( f i

1 × gi
1)(a, b), (xi, yi)) = max{d1( f i

1(a), xi), d2(gi
1(b), yi)},

then
d1( f i

1(a), xi) ≤ d′(( f i
1 × gi

1)(a, b), (xi, yi)) < ε,

d2(gi
1(b), yi) ≤ d′(( f i

1 × gi
1)(a, b), (xi, yi)) < ε.
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Thus
lim sup

n→∞

1
n
|{0 ≤ i < n : d1( f i

1(a), xi) < ε}| > 1
2

,

lim sup
n→∞

1
n
|{0 ≤ i < n : d2(gi

1(b), yi) < ε}| > 1
2

.

Because {(xi, yi)}∞
i=0 is a δ-ergodic pseudo-orbit of (X×Y, f1,∞ × g1,∞), it is easy to obtain

that {xi}∞
i=0, {yi}∞

i=0 are δ-ergodic pseudo-orbit of f1,∞ and g1,∞, respectively. Therefore, a
δ-ergodic pseudo-orbit {xi}∞

i=0 is ε-shadowed by a point a in X, and a δ-ergodic pseudo-
orbit {yi}∞

i=0 is ε-shadowed by a point b in Y. Hence (X, f1,∞) and (Y, g1,∞) have a d
shadowing property.

(2) The proof is similar to (1).
(3) (Necessity) Let ε > 0, there exist δ1 > 0 and δ2 > 0 such that every δ1-ergodic

pseudo-orbit of (X, f1,∞) and every δ2-ergodic pseudo-orbit of (Y, g1,∞) can beF -ε-shadowed
by some point of (X, f1,∞) and (Y, g1,∞), respectively. Choose δ = max{δ1, δ2} and let
{(xi, yi)}∞

i=0 be a δ-ergodic pseudo-orbit for (X×Y, f1,∞ × g1,∞).
Assume that the NDDSs (X, f1,∞) and (Y, g1,∞) both have the F -shadowing property.

Then, there exist a ∈ X and b ∈ Y such that

{i ∈ Z+ : d1( f i
1(a), xi) < ε} ∈ F ,

{i ∈ Z+ : d2(gi
1(b), yi) < ε} ∈ F .

Since
d′(( f i

1 × gi
1)(a, b), (xi, yi)) = max{d1( f i

1(a), xi), d2(gi
1(b), yi)},

then
{i ∈ Z+ : d′(( f i

1 × gi
1)(a, b), (xi, yi)) < ε} ∈ F .

Thus, the δ-ergodic pseudo-orbit {(xi, yi)}∞
i=0 is F -ε-shadowed by a point (a, b) in X×Y,

i.e., (X×Y, f1,∞ × g1,∞) has a F -shadowing property.
(Sufficiency) Suppose that (X×Y, f1,∞ × g1,∞) has a F -shadowing property, then for

any ε > 0, there exists a δ > 0 such that δ-ergodic pseudo-orbit {(xi, yi)}∞
i=0 of f1,∞ × g1,∞

can be F -ε-shadowed by a point (a, b) in X×Y. Then

{i ∈ Z+ : d′(( f i
1 × gi

1)(a, b), (xi, yi)) < ε} ∈ F .

For any integer i ∈ {i ∈ Z+ : d′(( f i
1 × gi

1)(a, b), (xi, yi)) < ε}, one can obtain

d1( f i
1(a), xi) ≤ max{d1( f i

1(a), xi), d2(gi
1(b), yi) = d′(( f i

1 × gi
1)(a, b), (xi, yi)) < ε,

d2(gi
1(b), yi) ≤ max{d1( f i

1(a), xi), d2(gi
1(b), yi) = d′(( f i

1 × gi
1)(a, b), (xi, yi)) < ε.

Thus,
{i ∈ Z+ : d1( f i

1(a), xi) < ε} ∈ F ,

{i ∈ Z+ : d2(gi
1(b), yi) < ε} ∈ F .

Therefore, the δ-ergodic pseudo-orbit {xi}∞
i=0 of f1,∞ is F -ε-shadowed by a point a in X, the

δ-ergodic pseudo-orbit {yi}∞
i=0 of g1,∞ is F -ε-shadowed by a point b in Y. Hence (X, f1,∞)

and (Y, g1,∞) have the F -shadowing property.
(4) (Necessity) Let ε > 0, then there exist δ1 > 0 and δ2 > 0 such that every δ1-ergodic

pseudo-orbit of (X, f1,∞) and every δ2-ergodic pseudo-orbit of (Y, g1,∞) can be ε-ergodic
shadowed by some points of (X, f1,∞) and (Y, g1,∞), respectively. Choose δ = max{δ1, δ2}
and let {(xi, yi)}∞

i=0 be a δ-ergodic pseudo-orbit for (X×Y, f1,∞ × g1,∞).
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Assume that the NDDSs (X, f1,∞) and (Y, g1,∞) both have the ergodic shadowing
property. Then, there exist a ∈ X and b ∈ Y such that

lim
n→∞

1
n
|{0 ≤ i < n : d1( f i

1(a), xi) < ε}| = 1,

lim
n→∞

1
n
|{0 ≤ i < n : d2(gi

1(b), yi) < ε}| = 1.

Similar to (3), one can obtain

lim
n→∞

1
n
|{0 ≤ i < n : d′(( f i

1 × gi
1)(a, b), (xi, yi)) < ε}| = 1.

So, the δ-ergodic pseudo-orbit {(xi, yi)}∞
i=0 is ε-ergodic shadowed by a point (a, b) in X×Y.

Thus, (X×Y, f1,∞ × g1,∞) has an ergodic shadowing property.
(Sufficiency) Suppose that (X × Y, f1,∞ × g1,∞) has an ergodic shadowing property,

then for any ε > 0, there exists a δ > 0 such that δ-ergodic pseudo-orbit {(xi, yi)}∞
i=0 of

f1,∞ × g1,∞ can be ε-ergodic shadowed by a point (a, b) in X×Y. Then

lim
n→∞

1
n
|{0 ≤ i < n : d′(( f i

1 × gi
1)(a, b), (xi, yi)) < ε}| = 1.

So

d1( f i
1(a), xi) ≤ max{d1( f i

1(a), xi), d2(gi
1(b), yi) = d′(( f i

1 × gi
1)(a, b), (xi, yi)) < ε,

d2(gi
1(b), yi) ≤ max{d1( f i

1(a), xi), d2(gi
1(b), yi) = d′(( f i

1 × gi
1)(a, b), (xi, yi)) < ε.

Thus
lim

n→∞

1
n
|{0 ≤ i < n : d1( f i

1(a), xi) < ε}| = 1,

lim
n→∞

1
n
|{0 ≤ i < n : d2(gi

1(b), yi) < ε}| = 1.

Therefore, the δ-ergodic pseudo-orbit {xi}∞
i=0 of f1,∞ is ε-ergodic shadowed by a point a

in X, the δ-ergodic pseudo-orbit {yi}∞
i=0 of g1,∞ is ε-ergodic shadowed by a point b in Y.

Hence (X, f1,∞) and (Y, g1,∞) have an ergodic shadowing property.

3.2. The Relationship of Shadowing Properties between f1,∞ and f̄1,∞

Now, the relationship of the above four kinds of shadowing properties between
NDDSs and the set-valued systems are discussed.

Theorem 4. Let (K(X), f̄1,∞) be a set-valued dynamical system induced by (X, f1,∞).

(1) If (K(X), f̄1,∞) has a F -shadowing property, then (X, f1,∞) has a F -shadowing property;
(2) If (K(X), f̄1,∞) has an ergodic shadowing property, then (X, f1,∞) has an ergodic shadow-

ing property;
(3) If (K(X), f̄1,∞) has a d shadowing property, then (X, f1,∞) has a d shadowing property;
(4) If (K(X), f̄1,∞) has a d shadowing property, then (X, f1,∞) has a d shadowing property.

Proof. (1) Let ε > 0, then there exists a δ > 0 such that every δ-ergodic pseudo-orbit of f̄1,∞
is F -ε-shadowed by some elements of K(X). Let {xi : i ∈ N} be a δ-ergodic pseudo-orbit
of f1,∞, then {{xi} : i ∈ N} is a δ-ergodic pseudo-orbit of f̄1,∞. Since

lim
n→∞

1
n
|{0 ≤ i < n : dH( f̄i+1({xi}), {xi+1}) < δ}| = 1,

where
dH( f̄i+1({xi}), {xi+1}) = d( fi+1(xi), xi+1),
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then
lim

n→∞

1
n
|{0 ≤ i < n : d( fi+1(xi), xi+1) < δ}| = 1.

Then {xi : i ∈ N} is a δ-ergodic pseudo-orbit of f1,∞. So we can find an element A ∈ K(X)
such that {i ∈ Z+ : dH( f̄ i

1(A), {xi}) < ε} ∈ F , where

dH( f̄ i
1(A), {xi}) = sup

y∈A
d( f i

1(y), xi) < ε

for all i ∈ Z+. So, d( f i
1(y), xi) < ε for any y ∈ A and all i ∈ Z+. Then {i ∈ Z+ :

d( f i
1(y), xi) < ε} ∈ F . Hence, for given ε > 0, there is a δ > 0 such that every δ-ergodic

pseudo-orbit {xi : i ∈ N} of f1,∞ is F -ε-shadowed by some y ∈ X. This implies that f1,∞
has a F -shadowing property.

(2) Let ε > 0, then there exists a δ > 0 such that every δ-ergodic pseudo-orbit of f̄1,∞ is
ε-ergodic shadowed by some element of K(X). Let {xi : i ∈ N} be a δ-ergodic pseudo-orbit
of f1,∞ and {{xi} : i ∈ N} is a δ-ergodic pseudo-orbit of f̄1,∞. One can find an element
A ∈ K(X) such that

lim
n→∞

1
n
|{0 ≤ i < n : dH( f̄ i

1(A), {xi}) < ε}| = 1,

where
dH( f̄ i

1(A), {xi}) = sup
y∈A

d( f i
1(y), xi) < ε

for all i ∈ N. So, d( f i
1(y), xi) < ε for any y ∈ A and all i ∈ N. Then

lim
n→∞

1
n
|{0 ≤ i < n : d( f i

1(y), xi) < ε}| = 1.

Hence, for given ε > 0, there is a δ > 0 such that every δ-ergodic pseudo-orbit {xi : i ∈ N}
of f1,∞ is ε-ergodic shadowed by some y ∈ X. This implies that f1,∞ has an ergodic
shadowing property.

(3) Let ε > 0, then there exists a δ > 0 such that every δ-ergodic pseudo-orbit of f̄1,∞ is
ε-shadowed by some elements of K(X). Let {xi : i ∈ N} be a δ-ergodic pseudo-orbit of f1,∞
and {{xi} : i ∈ N} be a δ-ergodic pseudo-orbit of f̄1,∞. One can find an element A ∈ K(X)
such that

lim sup
n→∞

1
n
|{0 ≤ i < n : dH( f̄ i

1(A), {xi}) < ε}| > 1
2

,

where
dH( f̄ i

1(A), {xi}) = sup
y∈A

d( f i
1(y), xi) < ε

for all i ∈ N. So any y ∈ A will satisfy d( f i
1(y), xi) < ε for all i ∈ N. Then

lim sup
n→∞

1
n
|{0 ≤ i < n : d( f i

1(y), xi) < ε}| > 1
2

.

Hence, for given ε > 0, there is a δ > 0 such that every δ-ergodic pseudo-orbit {xi : i ∈ N}
of f1,∞ is ε-shadowed by some y ∈ X. This implies that f1,∞ has a d shadowing property.

(4) The proof is similar to (3).

4. Conclusions

In this paper, under the cases of compound, topological conjugate, or product, the
retentivity of four kinds of shadowing properties are obtained. Moreover, it is proved that
the shadowing properties of f̄1,∞ imply the shadowing properties of f1,∞. However, this
paper does not obtain the inverse as being true. Is the reverse of Theorem 4 true? Moreover,
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are other kinds of shadowing properties consistent under topological conjugation (resp.
compound and product)? There remain many problems to study in the future.
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