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Abstract: In the spectral analysis of operators associated with Sturm–Liouville-type boundary value
problems for fractional differential equations, the problem of positive definiteness or the problem of
Hermitian nonnegativity of the corresponding kernels plays an important role. The present paper is
mainly devoted to this problem. It should be noted that the operators under study are non-self-adjoint,
their spectral structure is not well investigated. In this paper we use various methods to prove the
Hermitian non-negativity of the studied kernels; in particular, a study of matrices that approximate
the Green’s function of the boundary value problem for a differential equation of fractional order is
carried out. Using the well-known Livshits theorem, it is shown that the system of eigenfunctions of
considered operator is complete in the space L2(0, 1). Generally speaking, it should be noted that this
very important problem turned out to be very difficult.

Keywords: persymmetric matrix; eigenvalues; fractional derivative; positive definiteness

1. Introduction

In the theory of oscillations, the general physical process of reciprocity (when the
source and the observer can exchange places) finds its mathematical expression in the
self-adjointness of the corresponding boundary value problems [1,2]. When we talk about
processes corresponding to structures with fractal geometry, the corresponding processes
are described by non-self-adjoint operators, and here, first of all, we are talking about
integral operators with a persymmetric kernel [1,2]. The spectral structure of such operators
has hardly been studied. The present manuscript is devoted to this question.

2. Main Results

In the present paper we consider the following operator

−Aρu =
1

Γ(ρ−1)

{∫ x

0
(x− t)

1
ρ−1u(t)dt−

∫ 1

0
(x− xt)

1
ρ−1u(t)dt

}
, (1/2 < ρ < 1)

Corresponding to the following problem [3]

D1/ρu =
1

Γ(ρ−1)

d
dx

∫ x

0

u′(t)dt
(x− t)1/ρ−1 = λu,

u(0) = u(1) = 0.

By the Livshits theorem [2,4], the system of eigenfunctions of this operator is complete
in L2(0, 1); precisely, we have
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Theorem 1. (Livshits): if K(x, y), (a ≤ x, y ≤ b) is a bounded kernel, and the “real part”
1
2 (K + K∗) of it is non-negative kernel, then the inequality holds

∞

∑
j=1

Re(1/λj) ≤
b∫

a

ReK(t, t)dt,

where λj is the characteristic numbers of kernel K. The system of main functions of the kernel K is
complete in the domain of values of the integral operator K f if and only if, when there is an equal
sign in the inequality above.

Here, in this theorem characteristic numbers are eigenvalues. It is known that the
operator A is called positive definite (the definition of positivity of the operator and its
properties can be found in [5]) if (Au, u) > 0, (u 6= 0). However, it is very difficult to verify
this condition directly. Therefore, we will use the matrix approximation of the operator
Aρ [1]. As in [1], we denote the corresponding matrix by Tn−1(µ), µ = 1

ρ − 1

Tn−1(µ) =


( 1

n )
µ( n−1

n )µ ( 1
n )

µ( n−2
n )µ · · · ( 1

n )
µ( 1

n )
µ

( 2
n )

µ( n−1
n )µ − ( 1

n )
µ ( 2

n )
µ( n−2

n )µ · · · ( 2
n )

µ( 1
n )

µ

...
...

. . .
...

( n−1
n )µ( n−1

n )µ − ( n−1
n )µ ( n−1

n )µ( n−2
n )µ − ( n−3

n )µ · · · ( n−1
n )µ( 1

n )
µ

.

The matrix Tn−1(µ) has many useful properties. In particular, this matrix is positive,
persymmetric, indecomposable, etc. It is known [1] that one of the necessary conditions for
the positive definiteness of a matrix is the positivity of all its lead main minors. The fact
that these minors are positive was shown in [1,6]. We give a detailed proof of one theorem
from which the above follows.

Theorem 2. The minors

A
(

i1 i2 · · · ir
j1 j2 · · · jr

)
of the matrix

Tn−1(µ) =


( 1

n )
µ( n−1

n )µ ( 1
n )

µ( n−2
n )µ · · · ( 1

n )
µ( 1

n )
µ

( 2
n )

µ( n−1
n )µ − ( 1

n )
µ ( 2

n )
µ( n−2

n )µ · · · ( 2
n )

µ( 1
n )

µ

...
...

. . .
...

( n−1
n )µ( n−1

n )µ − ( n−1
n )µ ( n−1

n )µ( n−2
n )µ − ( n−3

n )µ · · · ( n−1
n )µ( 1

n )
µ

.

for ik ≤ jk, 1 ≤ k ≤ r, are positive. Moreover, they are equal to

(nµ)r−1(n− jr)µ(i1)µbr(r−1)b(r−1)(r−2)...b21,

where

bki =

{
(ik − ji)µ, ik > ji
0, ik < ji

Proof. Let us consider the minor

Mr = A
(

i1 i2 · · · ir
j1 j2 · · · jr

)
.

For ik ≤ jk, 1 ≤ k ≥ r, we to overwrite Mr as follows
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Mr =


iµ
1

iµ
2

iµ
3
...

iµ
r1

((n− j1)µ(n− j2)mu...(n− jr)µ)− nµ


0 0 0 · · · 0

b21 0 0 · · · 0
...

...
. . .

...
br1 br2 br3 · · · br(n−1)


for

bki =

{
(ik − ji)µ, ik > ji
0, ik < ji

To calculate the determinant, Mr we consider

det(Mr − λI) = (−1)r det(λI −Mr) = (−1)r det(Ã− xyT) =

(−1)rλr(1− yT Ã−1x).

Here,

Ã = nµ


λ
nµ 0 0 · · · 0
b21

λ
nµ 0 · · · 0

...
...

. . .
...

br1 br2 br3 · · · λ
nµ

,

x =


iµ
1

iµ
2

iµ
3
...

iµ
r1

, yT = ((n− j1)µ(n− j2)µ...(n− jr)µ).

It is clear that

xr1 = (−nµ

λ
)r−1br(r−1)b(r−1)(r−2)...b21x1... =

= (−1)r−1(
nµ

λ
)r−1br(r−1)b(r−1)(r−2)...b21 + ...

So,

det(Mr − λI) = (−1)rλr(1− yT Ã−1x) =

(−1)rλr(1− (n− jr)µir1xr1 + ...)

from this follows

det(Mr) = (nµ)r−1(n− jr)µ(i1)µbr(r−1)b(r−1)(r−2)...b21

that proves Theorem 2.

To prove that matrix Tn−1(µ) is positive defined, we have

TR =
1
2
(Tn−1(µ) + T∗n−1(µ)).

It is obvious that the matrix TR, in addition to everything else, is also bisymmetric
(symmetric with respect to both the main and secondary diagonals). Using the high-level
mathematical package MATLAB, the eigenvalues of the matrix TR were considered for
various values of µ and the dimension of the matrix N. It was shown that all eigenvalues
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of the matrix TR, for any N ≤ 3000 and µ > 0, are positive; that is, the above calculations
confirm the hypothesis that the matrix TR is positive definite. This became the basis for us
to assume that the matrix T(n−1)(µ) under study is positive definite. Naturally, the operator
Aρ corresponding to the matrix T(n−1)(µ), will also be positive definite [7,8].

We give a strong proof of the positive definiteness of the matrix TR(µ). First, let us
write out the matrices T6(1/2), T∗6 (1/2), TR(1/2) using the MATLAB package

T6(1/2) =



2.4495 2.2361 2 1.7321 1.4142 1
0.8184 3.1623 2.8284 2.4495 2 1.4142
0.5010 1.2272 3.4641 3 2.4495 1.7321
0.3164 0.7305 1.3542 3.4641 2.8284 2
0.1857 0.4174 0.7305 1.2272 3.1623 2.2361
0.0839 0.1857 0.3164 0.5010 0.8184 2.4495



T∗6 (1/2) =



2.4495 0.8184 0.5010 0.3164 0.1857 0.0839
2.2361 3.1623 1.2272 0.7305 0.4174 0.1857

2 2.8284 3.4641 1.3542 0.7305 0.3164
1.7321 2.4495 3 3.4641 1.2272 0.5010
1.4142 2 2.4495 2.8284 3.1623 0.8184

1 1.4142 1.7321 2 2.2361 2.4495



TR(1/2) =



2.4495 1.5272 1.2505 1.0242 0.8 0.5420
1.5272 3.1623 2.0278 1.5900 1.2087 0.8
1.2505 2.0278 3.4641 2.1771 1.59 1.0242
1.0242 1.5900 2.1771 3.4641 2.0278 1.2505

0.8 1.2087 1.59 2.0278 3.1623 1.5272
0.5420 0.8 1.0242 1.5272 1.5272 2.4495


A simple analysis of these matrices shows that the elements from the main diagonal
(including the diagonal itself) increase in rows and columns from the edges to the main
diagonal. That is, the following statements hold:

Lemma 1. For any fixed i0 ≤ j, the relations

ai0,j ≥ ai0,j+1, i0 ≤ j;

ai0,j < ai0,j+1, i0 > j.

Proof. We write the formula for the general element of the matrix

aij = (Ni− ij)µ − θ(i, j)(Ni− Nj)µ,

where

θ(i, j) =
{

0, j ≥ i
1, j < i.

Obviously, the elements under the main diagonal are calculated as follows

aij = (Ni− ij)µ − (Ni− Nj)µ, i > j,

and the elements under the main diagonal are

aij = (Ni− ij)µ, i > j.

From these formulas, it follows that the elements located above the main diagonal decrease.
To consider the elements under the main diagonal, we introduce the generating function

ϕ(x) = (Ni− ix)µ − θ(i, j)(Ni− Nx)µ, µ ∈ (0, 1), x ∈ [1, N].
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Obviously, the derivative of this function is positive on the segment x ∈ [1, N], which
means that the function ϕ(x) increases on the segment x ∈ [1, N]. That is the prove.

Lemma 2. For any fixed j0 < i, the relations

ai,j0 ≥ ai+1,j0 , i ≥ j0;

ai,j0 < ai+1,j0 , i < j0

hold.

Proof. The proof of Lemma 2 is similar to the proof of Lemma 1.

Lemma 3. The statements of Lemmas 1 and 2 are valid for the matrices TT
n (µ) (TT

n (µ) is the
transposed matrix).

Lemma 4. The statements of Lemmas 1,2,3 are also valid for the matrices TR(µ) =
Tn(µ)+TT

n (µ)
2 .

Using these lemmas, we prove the following theorem

Theorem 3. The matrix TR(µ) =
Tn(µ)+TT

n (µ)
2 is a positive defined for µ ∈ [0, 1].

Proof. It is obvious that all the main lead minors of the matrix TR(0) are non-negative.
In the same way, all main lead minors of the matrix TR(1) are positive.

Let us show for µ ∈ (0, 1) that all main lead minors of the matrix are TR(µ) 6= 0. To do
this, it is enough to prove that all the rows (columns) of the leading main lead minors of
the matrix are linearly independent. In proving this statement, without loss of generality,
for definiteness, we consider rows with numbers k and k + 1. Then, it suffices to note that,
by Lemma 4, ak,1

ak+1,1
< 1 and ak,k+1

ak,k
> 1, which proves the linear independence of these rows.

Let us introduce the following function

detTR(µ) = ∆(µ), µ ∈ [0, 1].

It is known that ∆(0) ≥ 0 and ∆(1) ≥ 0.
From the Theorem 3 it follows that the operator Aρ is positive definite for 1/2 < ρ < ∞.
The proof of the positive definiteness of the operator Aρ for 1/2 < ρ < ∞ can also be

carried out as follows. Let us define

1
Γ( 1

ρ )

 x∫
0

(x− t)
1
ρ−1u(t)dt−

1∫
0

x
1
ρ−1

(1− t)
1
ρ−1u(t)dt

 = v(x).

We act on both sides of this equation by the operator D
1
ρ , where D

1
ρ is the fractional

differentiation operator in the Riemann–Liouville sense, then u(x) = D
1
ρ v [5]. Then we

may show that the form (Aρu, u) > 0.
In reality,

−(Aρu, u) = −(v, D
1
ρ v) = −

 1
Γ( 1

ρ )

d
dx

x∫
0

f ′(t)

(x− t)
1
ρ−1

dt, f (x)

 =

 1
Γ( 1

ρ )

d
dx

x∫
0

f ′(t)

(x− t)
1
ρ−1

dt, f ′(x)

 =

(J 1
ρ

f ′, f ′),
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where

(J 1
ρ

f )(t) =
1

Γ( 1
ρ )

t∫
0

(t− s)1− 1
ρ f (s)ds

-is the operator of fractional integration in the Riemann–Liouville sense of order 1
ρ .

Since [1] (J 1
ρ

f ′, f ′) > 0, for 1
ρ < 1, and taking into account that operator Aρ is

kernel [5,9], we prove the following theorem

Theorem 4. The system of eigenfunctions and associated functions Aρ for 1
2 < 1/ρ < 1 is

complete in L2(0, 1).

Corollary 1. Since the operator Aρ is positive definite, then all matrices T(n−1)(µ) for n > N are
positive definite.

Remark 1. The matrix T(n−1)(µ) may be presented as

T(n−1)(µ) = B∗B

where B is the triangular matrix.

3. Discussion

Operators generated (induced) by a differential expression of a fractional order and
boundary conditions of the Sturm–Liouville type are non-self-adjoint and their spectral
structure is almost not studied. The methods proposed by the authors are fundamentally
new. They allow study of the completeness of systems of eigenfunctions and associated
functions of these operators.

4. Conclusions

Thus, our spectral analysis of the operators generated by boundary value problems
for fractional differential equations and boundary conditions of the Sturm–Liouville type,
using matrix calculus, shows that the spectral structure of these operators can be studied
by the matrices we studied above.
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