Adversarial Multiscale Feature Learning Framework for Overlapping Chromosome Segmentation
Abstract
:1. Introduction
- We present an adversarial multiscale feature learning framework to improve the accuracy and adaptability of overlapping chromosome segmentation.
- We use the conditional generative adversarial network to penalize the difference between the generated decision map and the source image, pushing the generator to produce a higher-confidence decision map for the segmentation task.
- Instead of using the single-scale features to represent the chromosome images, we carefully design a nested U-shaped network with dense skip connections as the generator to capture multiscale features to explore the better representation of the chromosome images.
- We replace the common cross-entropy loss with the advanced Lovász-Softmax loss to improve the model’s optimization and accelerate the model’s convergence.
- We carry out extensive experiments and analyze different objective functions that provided baselines for chromosome segmentation.
2. Materials and Methods
2.1. Network Architecture
2.2. Objective Function
2.3. Evaluation Metrics
2.4. Baselines and Implementation
2.5. Selection of the Objective Function and Generator
2.5.1. Selection of the Objective Function
2.5.2. Selection of the Generator
2.6. Preliminary Preparation
2.6.1. Data Preparation and Preprocessing
2.6.2. Implementation
3. Results
3.1. Performance
3.2. Performance Evaluation
3.2.1. Visual Evaluation
3.2.2. Quantitative Evaluation
3.2.3. Computational Efficiency
3.3. Ablation Study
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Basu, A.; Alder, H.; Khiyami, A.; Leahy, P.; Croce, C.M.; Haldar, S. Down Syndrome and Micrornas. Biomed. Rep. 2018, 8, 11–16. [Google Scholar]
- Tramontana, A.; Hartmann, B.; Hafner, E. DiGeorge syndrome chromosome region deletion and duplication: Prenatal genotype-phenotype variability in fetal ultrasound and MRI. Prenat. Diagn. 2019, 39, 1225–1234. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.; Liu, S.; Wang, Y.; Chiang, C.; Liu, C.; Lin, C. Phenotypic features of a microdeletion in chromosome band 20p13: A case report and review of the literature. Mol. Genet. Genom. Med. 2019, 7, e00739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, C.; Zhao, G.; Yin, A.; Yang, Z.; Guo, L.; Chen, H.; Zhao, L.; Li, S.; Luo, H.; Ma, Z. A novel chromosome cluster types identification method using ResNeXt WSL model. Med. Image Anal. 2020, 69, 101943. [Google Scholar] [CrossRef] [PubMed]
- Balagalla, U.B.; Samarabandu, J.; Subasinghe, A. Automated human chromosome segmentation and feature extraction: Current trends and prospects. F1000Research 2022, 11, 301. [Google Scholar] [CrossRef]
- Madian, N.; Jayanthi, K. Analysis of human chromosome classification using centromere position. Measurement 2014, 47, 287–295. [Google Scholar] [CrossRef]
- Minaee, S.; Fotouhi, M.; Khalaj, B.H. A Geometric Approach for Fully Automatic Chromosome Segmentation. In Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium, Philadelphia, PA, USA, 13 December 2014; pp. 1–6. [Google Scholar]
- Karvelis, P.; Tzallas, A.T.; Fotiadis, D.I.; Georgiou, I. A Multichannel Watershed-Based Segmentation Method for Multispectral Chromosome Classification. IEEE Trans. Med. Imaging 2008, 27, 697–708. [Google Scholar] [CrossRef]
- Ritter, G.; Gao, L. Automatic segmentation of metaphase cells based on global context and variant analysis. Pattern Recognit. 2008, 41, 38–55. [Google Scholar] [CrossRef]
- Madian, N.; Jayanthi, K.B. Overlapped Chromosome Segmentation And Separation Of Touching Chromosome For Automated Chromosome Classification. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012; pp. 5392–5395. [Google Scholar] [CrossRef]
- Saiyod, S.; Wayalun, P. A New Technique for Edge Detection of Chromosome G-Band Images for Segmentation. In Advanced Approaches to Intelligent Information and Database Systems; Sobecki, J., Boonjing, V., Chittayasothorn, S., Eds.; Springer: Cham, Switzerland, 2014; Volume 55, pp. 315–323. [Google Scholar]
- Poletti, E.; Zappelli, F.; Ruggeri, A.; Grisan, E. A review of thresholding strategies applied to human chromosome segmentation. Comput. Methods Programs Biomed. 2012, 108, 679–688. [Google Scholar] [CrossRef]
- Calzada-Navarrete, V.; Torres-Huitzil, C. A local adaptive threshold approach to assist automatic chromosome image segmentation. Lat. Am. Appl. Res. Int. J. 2014, 44, 277–282. [Google Scholar] [CrossRef]
- Bashmail, R.; Elrefaei, L.A.; Alhalabi, W. Automatic Segmentation of Chromosome Cells. In Advances in Intelligent Systems and Computing; Hassanien, A., Tolba, M., Shaalan, K., Azar, A., Eds.; Springer: Cham, Switzerland, 2018; Volume 845, pp. 654–663. [Google Scholar]
- Gawande, J.P.; Manohar, R.; Gawande, J.P.; Manohar, R.; Gawande, J.P.; Manohar, R. Watershed and Clustering Based Segmentation of Chromosome Images. In Proceedings of the IEEE 7th International Advance Computing Conference, Hyderabad, India, 5–7 January 2017; pp. 697–700. [Google Scholar]
- Sharma, M.; Saha, O.; Sriraman, A.; Hebbalaguppe, R.; Karande, S. Crowdsourcing for Chromosome Segmentation and Deep Classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 786–793. [Google Scholar]
- Lin, C.; Yin, A.; Wu, Q.; Chen, H.; Guo, L.; Zhao, G.; Fan, X.; Luo, H.; Tang, H. Chromosome Cluster Identification Framework Based on Geometric Features and Machine Learning Algorithms. In Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine, Seoul, Korea, 16–19 December 2020; pp. 2357–2363. [Google Scholar] [CrossRef]
- Mei, L.; Guo, X.; Huang, X.; Weng, Y.; Liu, S.; Lei, C. Dense Contour-Imbalance Aware framework for Colon Gland Instance Segmentation. Biomed. Signal Process. Control 2020, 60, 101988. [Google Scholar] [CrossRef]
- Bhutto, J.A.; Tian, L.; Du, Q.; Sun, Z.; Yu, L.; Tahir, M.F. CT and MRI Medical Image Fusion Using Noise-Removal and Contrast Enhancement Scheme with Convolutional Neural Network. Entropy 2022, 24, 393. [Google Scholar] [CrossRef] [PubMed]
- Pardo, E.; Morgado, J.M.T.; Malpica, N. Semantic segmentation of mFISH images using convolutional networks. Cytom. Part A 2018, 93, 620–627. [Google Scholar] [CrossRef] [PubMed]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar] [CrossRef] [Green Version]
- Saleh, H.M.; Saad, N.H.; Isa, N.A.M. Overlapping Chromosome Segmentation using U-Net: Convolutional Networks with Test Time Augmentation. Procedia Comput. Sci. 2019, 159, 524–533. [Google Scholar] [CrossRef]
- Hu, R.L.; Karnowski, J.; Fadely, R.; Pommier, J.P. Image segmentation to distinguish between overlapping human chromosomes. arXiv 2017, arXiv:1712.07639. [Google Scholar]
- Chen, P.; Cai, J.; Yang, L. Chromosome Segmentation via Data Simulation and Shape Learning. In Proceedings of the 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (Embc), Montreal, QC, Canada, 20–24 July 2020; pp. 1637–1640. [Google Scholar]
- Altinsoy, E.; Yilmaz, C.; Wen, J.; Wu, L.; Yang, J.; Zhu, Y. Raw G-Band Chromosome Image Segmentation Using U-Net Based Neural Network. In Artificial Intelligence and Soft Computing; Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J., Eds.; Springer: Cham, Switzerland, 2019; Volume 3, pp. 117–126. [Google Scholar]
- Chen, P.; Li, P.; Li, Q.; Zhang, D.; Lia, Q. Semi-Supervised Fine-Grained Image Categorization Using Transfer Learning with Hierarchical Multi-Scale Adversarial Networks. IEEE Access 2019, 7, 118650–118668. [Google Scholar] [CrossRef]
- Zhou, Z.; Siddiquee, M.M.R.; Tajbakhsh, N.; Liang, J. UNet++: Redesigning Skip Connections to Exploit Multiscale Features in Image Segmentation. IEEE Trans. Med. Imaging 2020, 39, 1856–1867. [Google Scholar] [CrossRef] [Green Version]
- Isola, P.; Zhu, J.; Zhou, T.; Efros, A.A. Image-To-Image Translation With Conditional Adversarial Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 5967–5976. [Google Scholar]
- Berman, M.; Triki, A.R.; Blaschko, M.B. The Lov’asz-Softmax Loss: A Tractable Surrogate for The Optimization of the Intersection-Over-Union Measure in Neural Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 4413–4421. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Liu, Y.; Wang, J.; Qiu, T.; Qi, W. An Adaptive Deblurring Vehicle Detection Method for High-Speed Moving Drones: Resistance to Shake. Entropy 2021, 23, 1358. [Google Scholar] [CrossRef]
- Guo, X.; Nie, R.; Cao, J.; Zhou, D.; Mei, L.; He, K. FuseGAN: Learning to Fuse Multi-Focus Image via Conditional Generative Adversarial Network. IEEE Trans. Multimed. 2019, 21, 1982–1996. [Google Scholar] [CrossRef]
- Mao, X.; Li, Q.; Xie, H.; Lau, R.Y.K.; Wang, Z.; Smolley, S.P. The Least Squares Generative Adversarial Networks. In Proceedings of the International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2813–2821. [Google Scholar]
- Maas, A.L.; Hannun, A.Y.; Ng, A.Y. The Rectifier Nonlinearities Improve Neural Network Acoustic Models. In Proceedings of the International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013; p. 3. [Google Scholar]
- Radford, A.; Metz, L.; Chintala, S. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. arXiv 2015, arXiv:1511.06434. [Google Scholar]
- Taha, A.A.; Hanbury, A. Metrics for evaluating 3D medical image segmentation: Analysis, selection, and tool. BMC Med. Imaging 2015, 15, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sirinukunwattana, K.; Snead, D.; Rajpoot, N.M. A Stochastic Polygons Model for Glandular Structures in Colon Histology Images. IEEE Trans. Med. Imaging 2015, 34, 2366–2378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paszke, A.; Chaurasia, A.; Kim, S.; Culurciello, E. ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation. arXiv 2018, arXiv:1606.02147. [Google Scholar]
- Yu, C.; Wang, J.; Peng, C.; Gao, C.; Yu, G.; Sang, N. In Bisenet: Bilateral segmentation network for real-time semantic segmentation. In Proceedings of the European Conference on Computer Vision (ECCV 2018), Munich, Germany, 8–14 September 2018; pp. 325–341. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.; Gao, C.; Wang, J.; Yu, G.; Shen, C.; Sang, N. BiSeNet V2: Bilateral Network with Guided Aggregation for Real-Time Semantic Segmentation. Int. J. Comput. Vis. 2021, 129, 3051–3068. [Google Scholar] [CrossRef]
- Chen, L.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution For Semantic Image Segmentation. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 833–851. [Google Scholar]
- Wu, H.; Zhang, J.; Huang, K.; Liang, K.; Yu, Y. Fastfcn: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation. arXiv 2019, arXiv:1903.11816. [Google Scholar]
- Alom, Z.; Yakopcic, C.; Hasan, M.; Taha, T.M.; Asari, V.K. Recurrent residual U-Net for medical image segmentation. J. Med. Imaging 2019, 6, 014006. [Google Scholar] [CrossRef]
- Oktay, O.; Schlemper, J.; Folgoc, L.L.; Lee, M.; Heinrich, M.; Misawa, K.; Mori, K.; Mcdonagh, S.; Hammerla, N.Y.; Kainz, B. Attention U-Net: Learning Where To Look For The Pancreas. arXiv 2018, arXiv:1804.03999. [Google Scholar]
- Wang, F.; Jiang, M.; Qian, C.; Yang, S.; Li, C.; Zhang, H.; Wang, X.; Tang, X. Residual Attention Network for Image Classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 6450–6458. [Google Scholar]
- Pommier, J. Overlapping Chromosomes. Available online: https://www.kaggle.com/jeanpat/overlapping-chromosomes (accessed on 29 March 2022).
- Pommier, J. Overlapping Chromosomes. Available online: https://github.com/jeanpat/DeepFISH/tree/master/dataset (accessed on 13 July 2021).
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Chintala, S. Pytorch: An imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 2019, 32. [Google Scholar] [CrossRef]
- Gu, Z.; Cheng, J.; Fu, H.; Zhou, K.; Hao, H.; Zhao, Y.; Zhang, T.; Gao, S.; Liu, J. CE-Net: Context Encoder Network for 2D Medical Image Segmentation. IEEE Trans. Med. Imaging 2019, 38, 2281–2292. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Li, J.; Ma, J.; Xu, H.; Chen, B.; Zhang, Y.; Feng, T. Segmentation of overlapping chromosome images using U-Net with improved dilated convolutions. J. Intell. Fuzzy Syst. 2021, 40, 5653–5668. [Google Scholar] [CrossRef]
G | Acc | Dice | IOU | Recall | Precision | FNR | FPR | Hausdorff |
---|---|---|---|---|---|---|---|---|
DeepLabV3+ | 99.9149 | 96.4414 | 93.8028 | 96.2027 | 96.9309 | 3.7973 | 0.3094 | 1.4366 |
FastFCN | 99.9130 | 96.5195 | 93.8791 | 96.5454 | 96.7388 | 3.4546 | 0.2450 | 1.4376 |
UNet | 99.9727 | 98.2346 | 96.9548 | 98.2836 | 98.3897 | 1.7164 | 0.0314 | 0.9524 |
R2UNet | 99.9694 | 98.2646 | 97.0231 | 98.6001 | 98.1223 | 1.3999 | 0.0348 | 0.9423 |
AttUNet | 99.971 | 98.2409 | 96.9582 | 98.2301 | 98.4575 | 1.7699 | 0.0304 | 0.9515 |
R2AttUNet | 99.9585 | 97.8592 | 96.4989 | 98.1673 | 97.7693 | 1.8327 | 0.0399 | 1.0054 |
NestedUNet | 99.9776 | 98.6048 | 97.5974 | 98.6550 | 98.7267 | 1.3450 | 0.0227 | 0.8252 |
Method | Acc | Dice | IoU | Recall | Precision | FNR | FPR | Hausdorff |
---|---|---|---|---|---|---|---|---|
Small models | ||||||||
ENet | 99.8707 | 94.5821 | 90.7770 | 94.5365 | 95.0898 | 5.4635 | 0.3791 | 1.5861 |
BiSeNetV1 | 99.7361 | 90.9037 | 85.1075 | 89.3718 | 93.2404 | 10.6282 | 1.4966 | 1.9584 |
BiSeNetV2 | 99.8055 | 93.2973 | 88.8068 | 93.1980 | 93.8226 | 6.8020 | 0.6947 | 1.8145 |
Larger models | ||||||||
DeepLabV3+ | 99.9048 | 95.8592 | 92.8454 | 96.0429 | 96.0126 | 3.9571 | 0.2623 | 1.4886 |
FastFCN | 99.9170 | 96.4061 | 93.6931 | 96.6915 | 96.3868 | 3.3085 | 0.2017 | 1.4452 |
UNet | 99.9684 | 97.8970 | 96.3765 | 97.9654 | 98.0156 | 2.0346 | 0.0331 | 1.0230 |
R2UNet | 99.8659 | 95.1638 | 92.7348 | 96.0719 | 95.1458 | 3.9281 | 0.1046 | 1.2535 |
AttUNet | 99.9625 | 97.6780 | 96.0418 | 97.7765 | 97.8637 | 2.2235 | 0.0395 | 1.0528 |
R2AttUNet | 99.9122 | 95.7752 | 93.6760 | 96.6767 | 95.6791 | 3.3233 | 0.0792 | 1.1688 |
NestedUNet | 99.9625 | 97.9670 | 96.6473 | 98.0266 | 98.0809 | 1.9734 | 0.0341 | 0.9518 |
AMFL | 99.9776 | 98.6048 | 97.5974 | 98.6550 | 98.7267 | 1.345 | 0.0227 | 0.8252 |
Method | Average IoU Scores | Accuracy | |||
---|---|---|---|---|---|
Class 1 | Class 2 | Class 3 | All Classes | ||
Hu et al. [22] | 88.2 | 94.4 | 94.7 | - | 92.22 |
Hu et al. + TTA | - | - | - | - | 99.27 |
Saleh et al. [23] | - | - | - | - | 99.68 |
CE-Net [49] | 96.04 | 97.76 | 90.35 | - | 99.92 |
U-Net-FIGI [50] | - | - | - | 96.32 | 99.78 |
AFML (Ours) | 97.09 | 98.93 | 94.37 | 97.60 | 99.98 |
ENet | BiSeNet V1 | BiSeNet V2 | DeepLab V3+ | FastFCN | UNet | |
Params | 0.35 M | 12.43 M | 2.85 M | 59.46 M | 104.3 M | 34.53 M |
GPU | 63 ms | 19 ms | 34 ms | 72 ms | 78 ms | 19 ms |
CPU | 38 ms | 43 ms | 34 ms | 190 ms | 380 ms | 274 ms |
R2UNet | AttUNet | R2AttUNet | NestedUNet | AMFL (Ours) | - | |
Params | 39.09 M | 34.88 M | 39.44 M | 36.63 M | 36.63 M | - |
GPU | 61 ms | 27 ms | 71 ms | 27 ms | 27 ms | - |
CPU | 715 ms | 285 ms | 734 ms | 568 ms | 568 ms | - |
Method | GAN | Acc | Dice | IOU | Recall | Precision | FNR | FPR | Hausdorff |
---|---|---|---|---|---|---|---|---|---|
NestedUNet with Dice | × | 99.9457 | 97.3146 | 95.596 | 97.4631 | 97.3846 | 2.5369 | 0.0701 | 1.1617 |
NestedUNet with Weight-Dice | × | 99.9434 | 97.1637 | 95.2851 | 97.3318 | 97.3021 | 2.6682 | 0.0929 | 1.2242 |
NestedUNet with CE | × | 99.9625 | 97.9670 | 96.6473 | 98.0266 | 98.0809 | 1.9734 | 0.0341 | 0.9518 |
NestedUNet Weight-CE | × | 99.9529 | 97.7494 | 96.0630 | 98.4318 | 97.3030 | 1.5682 | 0.0256 | 1.2219 |
NestedUNet with Lovász-Softmax | × | 99.9714 | 98.2898 | 97.1699 | 98.3459 | 98.3993 | 1.6541 | 0.0326 | 0.9036 |
AMFL with Dice | √ | 99.9670 | 98.2422 | 97.0882 | 98.228 | 98.4479 | 1.772 | 0.0335 | 0.9166 |
AMFL with Weight-Dice | √ | 99.9699 | 98.3117 | 97.1692 | 98.3524 | 98.4454 | 1.6476 | 0.0381 | 0.9366 |
AMFL with CE | √ | 99.9735 | 98.4012 | 97.3453 | 98.3788 | 98.6395 | 1.6212 | 0.0266 | 0.8388 |
AMFL with Weight-CE | √ | 99.9699 | 98.4557 | 97.3259 | 98.7066 | 98.3769 | 1.2934 | 0.0175 | 0.9988 |
AMFL with Lovász-Softmax | √ | 99.9776 | 98.6048 | 97.5974 | 98.6550 | 98.7267 | 1.3450 | 0.0227 | 0.8252 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mei, L.; Yu, Y.; Shen, H.; Weng, Y.; Liu, Y.; Wang, D.; Liu, S.; Zhou, F.; Lei, C. Adversarial Multiscale Feature Learning Framework for Overlapping Chromosome Segmentation. Entropy 2022, 24, 522. https://doi.org/10.3390/e24040522
Mei L, Yu Y, Shen H, Weng Y, Liu Y, Wang D, Liu S, Zhou F, Lei C. Adversarial Multiscale Feature Learning Framework for Overlapping Chromosome Segmentation. Entropy. 2022; 24(4):522. https://doi.org/10.3390/e24040522
Chicago/Turabian StyleMei, Liye, Yalan Yu, Hui Shen, Yueyun Weng, Yan Liu, Du Wang, Sheng Liu, Fuling Zhou, and Cheng Lei. 2022. "Adversarial Multiscale Feature Learning Framework for Overlapping Chromosome Segmentation" Entropy 24, no. 4: 522. https://doi.org/10.3390/e24040522
APA StyleMei, L., Yu, Y., Shen, H., Weng, Y., Liu, Y., Wang, D., Liu, S., Zhou, F., & Lei, C. (2022). Adversarial Multiscale Feature Learning Framework for Overlapping Chromosome Segmentation. Entropy, 24(4), 522. https://doi.org/10.3390/e24040522