Effect of Quantum Coherence on Landauer’s Principle
Abstract
:1. Introduction
2. Thermal Quantum Information Erasure
- the protocol involves an information-bearing system S and a thermal reservoir R, both described by certain Hamiltonians, denoted and , respectively,
- the reservoir R is initially in the thermal equilibrium with a certain inverse temperature , , where is the reduced density operator of R,
- the system S and the reservoir R are initially uncorrelated, , where is the total density operator of S+R and is the reduced density operator of S,
- the erasure process itself proceeds by a unitary evolution generated by the total Hamiltonian , where is an interaction between S and R.
3. Lower Bounds for the Energy Dissipation
3.1. Entropic Bound
3.2. Thermodynamic Bound
4. Full-Counting Statistics Formalism
5. Spin—Boson Model
5.1. Model
5.2. The Bloch Vector Representation
6. Relative Tightness of the Bounds
6.1. Dependence on Initial State
6.2. Dependence on Quantum Coherence
7. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Appendix A. The Bloch Equation Including the Counting Field
Appendix B. A Single Spin Subjected to a Tilted Magnetic Field
References
- Landauer, R. Irreversibility and Heat Generation in the Computing Process. IBM J. Res. Dev. 1961, 5, 183. [Google Scholar] [CrossRef]
- Penrose, O. Foundations of Statistical Mechanics: A Deductive Treatment; Pergamon: New York, NY, USA, 1970. [Google Scholar]
- Bennet, C.H. Logical Reversibility of Computation. IBM J. Res. Dev. 1973, 17, 525. [Google Scholar] [CrossRef]
- Landauer, R. Information is Physical. Phys. Today 1991, 44, 23. [Google Scholar] [CrossRef]
- Plenio, M.B.; Vitelli, V. The physics of forgetting: Landauer’s erasure principle and information theory. Contemp. Phys. 2001, 42, 25. [Google Scholar] [CrossRef] [Green Version]
- Shizume, K. Heat generation required by information erasure. Phys. Rev. E 1995, 52, 3495. [Google Scholar] [CrossRef]
- Piechocinska, B. Information erasure. Phys. Rev. A 2000, 61, 062314. [Google Scholar] [CrossRef]
- Toyabe, S.; Sagawa, T.; Ueda, M.; Muneyuki, E.; Sano, M. Experimental demonstration of information-to-energy conversion and validation of the generalized Jarzynski equality. Nat. Phys. 2010, 6, 988. [Google Scholar] [CrossRef] [Green Version]
- Orlov, A.O.; Lent, C.S.; Thorpe, C.C.; Boechler, G.P.; Snider, G.L. Experimental Test of Landauer’s Principle at the Sub-kBT Level. Jpn. J. Appl. Phys. 2012, 51, 06FE10. [Google Scholar] [CrossRef]
- Bérut, A.; Arakelyan, A.; Petrosyan, A.; Ciliberto, S.; Dillenschneider, R.; Lutz, E. Experimental verification of Landauer’s principle linking information and thermodynamics. Nature 2012, 483, 187. [Google Scholar] [CrossRef]
- Jun, Y.; Gavrilov, M.; Bechhoefer, J. High-Precision Test of Landauer’s Principle in a Feedback Trap. Phys. Rev. Lett. 2014, 113, 190601. [Google Scholar] [CrossRef] [Green Version]
- Hilt, S.; Shabbir, S.; Anders, J.; Lutz, E. Landauer’s principle in the quantum regime. Phys. Rev. E 2011, 83, 030102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reeb, D.; Wolf, M.M. An improved Landauer principle with finite-size corrections. New J. Phys. 2014, 16, 103011. [Google Scholar] [CrossRef]
- Sagawa, T.; Ueda, M. Minimal Energy Cost for Thermodynamic Information Processing: Measurement and Information Erasure. Phys. Rev. Lett. 2009, 102, 250602. [Google Scholar] [CrossRef] [Green Version]
- Faist, P.; Dupuis, F.; Oppenheim, J.; Renner, R. The minimal work cost of information processing. Nat. Commun. 2015, 6, 7669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammady, M.H.; Mohseni, M.; Omar, Y. Minimising the heat dissipation of quantum information erasure. New J. Phys. 2016, 18, 015011. [Google Scholar] [CrossRef] [Green Version]
- Bedingham, D.J.; Maroney, O.J.E. The thermodynamic cost of quantum operations. New J. Phys. 2016, 18, 113050. [Google Scholar] [CrossRef] [Green Version]
- Peterson, J.P.S.; Sarthour, R.S.; Souza, A.M.; Oliveira, I.S.; Goold, J.; Modi, K.; Soares-Pinto, D.O.; Céleri, L.C. Experimental demonstration of information to energy conversion in a quantum system at the Landauer limit. Proc. R. Soc. A 2016, 472, 20150813. [Google Scholar] [CrossRef] [Green Version]
- Chitambar, E.; Gour, G. Quantum resource theories. Rev. Mod. Phys. 2019, 91, 025001. [Google Scholar] [CrossRef] [Green Version]
- Goold, J.; Huber, M.; Riera, A.; del Rio, L.; Skrzypczyk, P. The role of quantum information in thermodynamics—A topical review. J. Phys. A Math. Theor. 2016, 49, 143001. [Google Scholar] [CrossRef]
- Millen, J.; Xuereb, A. Perspective on quantum thermodynamics. New J. Phys. 2016, 18, 011002. [Google Scholar] [CrossRef]
- Goold, J.; Paternostro, M.; Modi, K. Nonequilibrium Quantum Landauer Principle. Phys. Rev. Lett. 2015, 114, 060602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guarnieri, G.; Campbell, S.; Goold, J.; Pigeon, S.; Vacchini, B.; Paternostro, M. Full counting statistics approach to the quantum non-equilibrium Landauer bound. New J. Phys. 2017, 19, 103038. [Google Scholar] [CrossRef] [Green Version]
- Campbell, S.; Guarnieri, G.; Paternostro, M.; Vacchini, B. Nonequilibrium quantum bounds to Landauer’s principle: Tightness and effectiveness. Phys. Rev. A 2017, 96, 042109. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, K.; Vacchini, B.; Uchiyama, C. Lower bounds for the mean dissipated heat in an open quantum system. Phys. Rev. A 2020, 101, 052114. [Google Scholar] [CrossRef]
- Miller, H.J.D.; Guarnieri, G.; Mitchison, M.T.; Goold, J. Quantum Fluctuations Hinder Finite-Time Information Erasure near the Landauer Limit. Phys. Rev. Lett. 2020, 125, 160602. [Google Scholar] [CrossRef] [PubMed]
- Vu, T.V.; Saito, S. Finite-Time Quantum Landauer Principle and Quantum Coherence. Phys. Rev. Lett. 2022, 128, 010602. [Google Scholar]
- Uchiyama, C. Nonadiabatic effect on the quantum heat flux control. Phys. Rev. E 2014, 89, 052108. [Google Scholar] [CrossRef] [Green Version]
- Guarnieri, G.; Uchiyama, C.; Vacchini, B. Energy backflow and non-Markovian dynamics. Phys. Rev. A 2016, 93, 012118. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, K.; Uchiyama, C. Nonadiabaticity in Quantum Pumping Phenomena under Relaxation. Entropy 2019, 21, 842. [Google Scholar] [CrossRef] [Green Version]
- Esposito, M.; Lindenberg, K.; Van den Broeck, C. Entropy production as correlation between system and reservoir. New J. Phys. 2010, 12, 013013. [Google Scholar] [CrossRef]
- Esposito, M.; Harbola, U.; Mukamel, S. Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems. Rev. Mod. Phys. 2009, 81, 1665. [Google Scholar] [CrossRef] [Green Version]
- Kubo, R. Stochastic Liouville Equations. J. Math. Phys. 1963, 4, 174. [Google Scholar] [CrossRef]
- Van Kampen, N.G. A cumulant expansion for stochastic linear differential equations. I. Physica 1974, 74, 215. [Google Scholar] [CrossRef]
- Van Kampen, N.G. A cumulant expansion for stochastic linear differential equations. II. Physica 1974, 74, 239. [Google Scholar] [CrossRef]
- Hashitsume, N.; Shibata, F.; Shingu, M. Quantal master equation valid for any time scale. J. Stat. Phys. 1977, 17, 155. [Google Scholar] [CrossRef]
- Shibata, F.; Takahashi, Y.; Hashitsume, N. A generalized stochastic liouville equation. Non-Markovian versus memoryless master equations. J. Stat. Phys. 1977, 17, 171. [Google Scholar] [CrossRef]
- Chaturvedi, S.; Shibata, F. Time-convolutionless projection operator formalism for elimination of fast variables. Applications to Brownian motion. Z. Phys. B Condens. Matter 1979, 35, 297. [Google Scholar] [CrossRef]
- Shibata, F.; Arimitsu, T. Expansion Formulas in Nonequilibrium Statistical Mechanics. J. Phys. Soc. Jpn. 1980, 49, 891. [Google Scholar] [CrossRef]
- Uchiyama, C.; Shibata, F. Unified projection operator formalism in nonequilibrium statistical mechanics. Phys. Rev. E 1999, 60, 2636. [Google Scholar] [CrossRef]
- Breuer, H.-P.; Petruccione, F. The Theory of Open Quantum Systems; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- Shirai, Y.; Hashimoto, K.; Tezuka, R.; Uchiyama, C.; Hatano, N. Non-Markovian effect on quantum Otto engine: Role of system-reservoir interaction. Phys. Rev. Res. 2021, 3, 023078. [Google Scholar] [CrossRef]
- Breuer, H.-P.; Burgarth, D.; Petruccione, F. Non-Markovian dynamics in a spin star system: Exact solution and approximation techniques. Phys. Rev. B 2004, 70, 045323. [Google Scholar] [CrossRef] [Green Version]
- Cucchietti, F.M.; Paz, J.P.; Zurek, W.H. Decoherence from spin environments. Phys. Rev. A 2005, 72, 052113. [Google Scholar] [CrossRef] [Green Version]
- Camalet, S.; Chitra, R. Effect of random interactions in spin baths on decoherence. Phys. Rev. B 2007, 75, 094434. [Google Scholar] [CrossRef] [Green Version]
- Segal, D. Two-level system in spin baths: Non-adiabatic dynamics and heat transport. J. Chem. Phys. 2014, 140, 164110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirza, A.R.; Zia, M.; Chaudhry, A.Z. Master equation incorporating the system-environment correlations present in the joint equilibrium state. Phys. Rev. A 2021, 104, 042205. [Google Scholar] [CrossRef]
- Taylor, J.M.; Marcus, C.M.; Lukin, M.D. Long-Lived Memory for Mesoscopic Quantum Bits. Phys. Rev. Lett. 2003, 90, 206803. [Google Scholar] [CrossRef]
- Wu, L.-A. Dressed qubits in nuclear spin baths. Phys. Rev. A 2010, 81, 044305. [Google Scholar] [CrossRef] [Green Version]
- Jing, J.; Wu, L.-A. Decoherence and control of a qubit in spin baths: An exact master equation study. Sci. Rep. 2018, 8, 1471. [Google Scholar] [CrossRef] [Green Version]
- Ivády, V. Longitudinal spin relaxation model applied to point-defect qubit systems. Phys. Rev. B 2020, 101, 155203. [Google Scholar] [CrossRef] [Green Version]
- Kwiatkowski, D.; Szańkowski, P.; Cywiński, Ł. Influence of nuclear spin polarization on the spin-echo signal of an NV-center qubit. Phys. Rev. B 2020, 101, 155412. [Google Scholar] [CrossRef] [Green Version]
- Vaccaro, J.A.; Barnett, S.M. Information erasure without an energy cost. Proc. R. Soc. A 2011, 467, 1770. [Google Scholar] [CrossRef] [Green Version]
- Croucher, T.; Vaccaro, J.A. Thermodynamics of memory erasure via a spin reservoir. Phys. Rev. E 2021, 103, 042140. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hashimoto, K.; Uchiyama, C. Effect of Quantum Coherence on Landauer’s Principle. Entropy 2022, 24, 548. https://doi.org/10.3390/e24040548
Hashimoto K, Uchiyama C. Effect of Quantum Coherence on Landauer’s Principle. Entropy. 2022; 24(4):548. https://doi.org/10.3390/e24040548
Chicago/Turabian StyleHashimoto, Kazunari, and Chikako Uchiyama. 2022. "Effect of Quantum Coherence on Landauer’s Principle" Entropy 24, no. 4: 548. https://doi.org/10.3390/e24040548
APA StyleHashimoto, K., & Uchiyama, C. (2022). Effect of Quantum Coherence on Landauer’s Principle. Entropy, 24(4), 548. https://doi.org/10.3390/e24040548