A New Look at Calendar Anomalies: Multifractality and Day-of-the-Week Effect
Abstract
:1. Introduction
2. Methods
- i
- The first step is the integration of the original series to produce
- ii
- Next, the integrated series is divided into non-overlapping segments of a length n, and in each segment , the local trend is estimated as a linear or higher order polynomial least square fit and subtracted from .
- iii
- The detrended variance
- iv
- Repeating this calculation for all box sizes provides the relationship between the fluctuation function and box size n. increases with n according to a power law if long-term correlations are present. The scaling exponent is obtained as the slope of the linear regression of versus .
3. Data
4. Results
4.1. Day-of-the-Week Effect
4.2. Comparison to Bulk Behavior
4.3. Source of Multifractality
4.4. Time Evolution
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fama, E.F. Random Walks in Stock Market Prices. Financ. Anal. J. 1995, 51, 75–80. [Google Scholar] [CrossRef] [Green Version]
- Malkiel, B.G.; Fama, E.F. Efficient capital markets: A review of theory and empirical work. J. Financ. 1970, 25, 383–417. [Google Scholar] [CrossRef]
- Lo, A.W.; MacKinlay, A.C. Stock market prices do not follow random walks: Evidence from a simple specification test. Rev. Financ. Stud. 1988, 1, 41–66. [Google Scholar] [CrossRef]
- Lim, K.P.; Brooks, R. The evolution of stock market efficiency over time: A survey of the empirical literature. J. Econ. Surv. 2011, 25, 69–108. [Google Scholar] [CrossRef]
- Hamid, K.; Suleman, M.T.; Ali Shah, S.Z.; Akash, I.; Shahid, R. Testing the weak form of efficient market hypothesis: Empirical evidence from Asia-Pacific markets. Int. Res. J. Financ. Econ. 2017, 58, 121–133. [Google Scholar] [CrossRef] [Green Version]
- Ito, M.; Sugiyama, S. Measuring the degree of time varying market inefficiency. Econ. Lett. 2009, 103, 62–64. [Google Scholar] [CrossRef]
- Latif, M.; Arshad, S.; Fatima, M.; Farooq, S. Market efficiency, market anomalies, causes, evidences, and some behavioral aspects of market anomalies. Res. J. Financ. Account. 2011, 2, 1–13. [Google Scholar]
- French, K.R. Stock returns and the weekend effect. J. Financ. Econ. 1980, 8, 55–69. [Google Scholar] [CrossRef]
- Berument, H.; Kiymaz, H. The day of the week effect on stock market volatility. J. Econ. Financ. 2001, 25, 181–193. [Google Scholar] [CrossRef]
- Zhang, J.; Lai, Y.; Lin, J. The day-of-the-week effects of stock markets in different countries. Financ. Res. Lett. 2017, 20, 47–62. [Google Scholar] [CrossRef]
- Kiymaz, H.; Berument, H. The day of the week effect on stock market volatility and volume: International evidence. Rev. Financ. Econ. 2003, 12, 363–380. [Google Scholar] [CrossRef] [Green Version]
- Ariel, R.A. A monthly effect in stock returns. J. Financ. Econ. 1987, 18, 161–174. [Google Scholar] [CrossRef] [Green Version]
- McConnell, J.J.; Xu, W. Equity Returns at the Turn of the Month. Financ. Anal. J. 2008, 64, 49–64. [Google Scholar] [CrossRef] [Green Version]
- Kunkel, R.A.; Compton, W.S.; Beyer, S. The turn-of-the-month effect still lives: The international evidence. Int. Rev. Financ. Anal. 2003, 12, 207–221. [Google Scholar] [CrossRef]
- Sharma, S.S.; Narayan, P.K. New evidence on turn-of-the-month effects. J. Int. Financ. Mark. Inst. Money 2014, 29, 92–108. [Google Scholar] [CrossRef]
- Reinganum, M.R. The anomalous stock market behavior of small firms in January: Empirical tests for tax-loss selling effects. J. Financ. Econ. 1983, 12, 89–104. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Jacobsen, B. Are monthly seasonals real? A three century perspective. Rev. Financ. 2013, 17, 1743–1785. [Google Scholar] [CrossRef] [Green Version]
- Choudhry, T. Month of the year effect and January effect in pre-WWI stock returns: Evidence from a non-linear GARCH model. Int. J. Financ. Econ. 2001, 6, 1–11. [Google Scholar] [CrossRef]
- Haug, M.; Hirschey, M. The january effect. Financ. Anal. J. 2006, 62, 78–88. [Google Scholar] [CrossRef]
- Ariel, R.A. High Stock Returns before Holidays: Existence and Evidence on Possible Causes. J. Financ. 1990, 45, 1611–1626. [Google Scholar] [CrossRef]
- Chong, R.; Hudson, R.; Keasey, K.; Littler, K. Pre-holiday effects: International evidence on the decline and reversal of a stock market anomaly. J. Int. Money Financ. 2005, 24, 1226–1236. [Google Scholar] [CrossRef]
- Białkowski, J.; Etebari, A.; Wisniewski, T.P. Fast profits: Investor sentiment and stock returns during Ramadan. J. Bank. Financ. 2012, 36, 835–845. [Google Scholar] [CrossRef]
- Meneu, V.; Pardo, A. Pre-holiday effect, large trades and small investor behaviour. J. Empir. Financ. 2004, 11, 231–246. [Google Scholar] [CrossRef]
- Cross, F. The Behavior of Stock Prices on Fridays and Mondays. Financ. Anal. J. 1973, 29, 67–69. [Google Scholar] [CrossRef] [Green Version]
- Dubois, M.; Louvet, P. The day-of-the-week effect: The international evidence. J. Bank. Financ. 1996, 20, 1463–1484. [Google Scholar] [CrossRef]
- Seif, M.; Docherty, P.; Shamsuddin, A. Seasonal anomalies in advanced emerging stock markets. Q. Rev. Econ. Financ. 2017, 66, 169–181. [Google Scholar] [CrossRef]
- Apolinario, R.M.C.; Santana, O.M.; Sales, L.J.; Caro, A.R. Day of the week effect on European stock markets. Int. Res. J. Financ. Econ. 2006, 2, 53–70. [Google Scholar]
- Yamori, N.; Kurihara, Y. The day-of-the-week effect in foreign exchange markets: Multi-currency evidence. Res. Int. Bus. Financ. 2004, 18, 51–71. [Google Scholar] [CrossRef]
- Kumar, S. Revisiting calendar anomalies: Three decades of multicurrency evidence. J. Econ. Bus. 2016, 86, 16–32. [Google Scholar] [CrossRef]
- Johnston, E.T.; Kracaw, W.A.; McConnell, J.J. Day-of-the-Week Effects in Financial Futures: An Analysis of GNMA, T-Bond, T-Note, and T-Bill Contracts. J. Financ. Quant. Anal. 1991, 26, 23–44. [Google Scholar] [CrossRef] [Green Version]
- Auer, B.R. Daily seasonality in crude oil returns and volatilities. Energy Econ. 2014, 43, 82–88. [Google Scholar] [CrossRef]
- Blose, L.E.; Gondhalekar, V. Weekend gold returns in bull and bear markets. Account. Financ. 2013, 53, 609–622. [Google Scholar] [CrossRef]
- Caporale, G.M.; Plastun, A. The day of the week effect in the cryptocurrency market. Financ. Res. Lett. 2019, 31, 258–269. [Google Scholar] [CrossRef]
- Philpot, J.; Peterson, C.A. A brief history and recent developments in day-of-the-week effect literature. Manag. Financ. 2011, 37, 808–816. [Google Scholar] [CrossRef]
- Tadepalli, M.S.; Jain, R.K. Persistence of calendar anomalies: Insights and perspectives from literature. Am. J. Bus. 2018, 33, 18–60. [Google Scholar] [CrossRef]
- Ausloos, M. Statistical physics in foreign exchange currency and stock markets. Phys. A Stat. Mech. Its Appl. 2000, 285, 48–65. [Google Scholar] [CrossRef]
- Matteo, T.D.; Aste, T.; Dacorogna, M. Scaling behaviors in differently developed markets. Phys. A Stat. Mech. Its Appl. 2003, 324, 183–188. [Google Scholar] [CrossRef]
- Matia, K.; Ashkenazy, Y.; Stanley, H.E. Multifractal properties of price fluctuations of stocks and commodities. Europhys. Lett. 2003, 61, 422–428. [Google Scholar] [CrossRef] [Green Version]
- Cajueiro, D.O.; Tabak, B.M. Multifractality and herding behavior in the Japanese stock market. Chaos Solitons Fractals 2009, 40, 497–504. [Google Scholar] [CrossRef]
- Zunino, L.; Zanin, M.; Tabak, B.M.; Pérez, D.G.; Rosso, O.A. Complexity-entropy causality plane: A useful approach to quantify the stock market inefficiency. Phys. A Stat. Mech. Its Appl. 2010, 389, 1891–1901. [Google Scholar] [CrossRef] [Green Version]
- Martina, E.; Rodriguez, E.; Escarela-Perez, R.; Alvarez-Ramirez, J. Multiscale entropy analysis of crude oil price dynamics. Energy Econ. 2011, 33, 936–947. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, G.J.; Wang, M.; Bao, W.; Li, W.; Stanley, H.E. Stock market as temporal network. Phys. A Stat. Mech. Its Appl. 2018, 506, 1104–1112. [Google Scholar] [CrossRef] [Green Version]
- Bonanno, G.; Caldarelli, G.; Lillo, F.; Mantegna, R.N. Topology of correlation-based minimal spanning trees in real and model markets. Phys. Rev. E 2003, 68, 046130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stosic, D.; Stosic, D.; Ludermir, T.B.; Stosic, T. Collective behavior of cryptocurrency price changes. Phys. A Stat. Mech. Its Appl. 2018, 507, 499–509. [Google Scholar] [CrossRef]
- Kutner, R.; Ausloos, M.; Grech, D.; Matteo, T.D.; Schinckus, C.; Stanley, H.E. Econophysics and sociophysics: Their milestones & challenges. Phys. A Stat. Mech. Its Appl. 2019, 516, 240–253. [Google Scholar]
- Kantelhardt, J.W.; Zschiegner, S.A.; Koscielny-Bunde, E.; Havlin, S.; Bunde, A.; Stanley, H. Multifractal detrended fluctuation analysis of nonstationary time series. Phys. A Stat. Mech. Its Appl. 2002, 316, 87–114. [Google Scholar] [CrossRef] [Green Version]
- Pettengill, G.N. A survey of the Monday effect literature. Q. J. Bus. Econ. 2003, 42, 3–27. [Google Scholar]
- Kohers, G.; Kohers, N.; Pandey, V.; Kohers, T. The disappearing day-of-the-week effect in the world’s largest equity markets. Appl. Econ. Lett. 2004, 11, 167–171. [Google Scholar] [CrossRef]
- Mehdian, S.; Perry, M.J. The Reversal of the Monday Effect: New Evidence from US Equity Markets. J. Bus. Financ. Account. 2001, 28, 1043–1065. [Google Scholar] [CrossRef]
- Wang, K.; Li, Y.; Erickson, J. A new look at the Monday effect. J. Financ. 1997, 52, 2171–2186. [Google Scholar] [CrossRef]
- Fishe, R.P.; Gosnell, T.F.; Lasser, D.J. Good news, bad news, volume, and the Monday effect. J. Bus. Financ. Account. 1993, 20, 881–892. [Google Scholar] [CrossRef]
- Drożdż, S.; Kowalski, R.; Oświecimka, P.; Rak, R.; Gebarowski, R. Dynamical variety of shapes in financial multifractality. Complexity 2018, 2018, 7015721. [Google Scholar] [CrossRef]
- Stosic, D.; Stosic, D.; Ludermir, T.B.; Stosic, T. Multifractal behavior of price and volume changes in the cryptocurrency market. Phys. A Stat. Mech. Its Appl. 2019, 520, 54–61. [Google Scholar] [CrossRef]
- Stosic, T.; Nejad, S.A.; Stosic, B. Multifractal analysis of Brazilian agricultural market. Fractals 2020, 28, 2050076. [Google Scholar] [CrossRef]
- Muzy, J.F.; Bacry, E.; Arneodo, A. Wavelets and multifractal formalism for singular signals: Application to turbulence data. Phys. Rev. Lett. 1991, 67, 3515–3518. [Google Scholar] [CrossRef]
- Gu, G.F.; Zhou, W.X. Detrending moving average algorithm for multifractals. Phys. Rev. E 2010, 82, 011136. [Google Scholar] [CrossRef] [Green Version]
- Oświȩcimka, P.; Kwapień, J.; Drożdż, S. Wavelet versus detrended fluctuation analysis of multifractal structures. Phys. Rev. E 2006, 74, 016103. [Google Scholar] [CrossRef] [Green Version]
- Figliola, A.; Serrano, E.; Rosso, O.A. Multifractal detrented fluctuation analysis of tonic-clonic epileptic seizures. Eur. Phys. J. Spec. Top. 2007, 143, 117–123. [Google Scholar] [CrossRef]
- Amor, T.A.; Reis, S.D.; Campos, D.; Herrmann, H.J.; Andrade, J.S., Jr. Persistence in eye movement during visual search. Sci. Rep. 2016, 6, 20815. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, Y.U.; Thurner, S.; Ehrenberger, K. Multifractal spectra as a measure of complexity in human posture. Fractals 2002, 10, 103–116. [Google Scholar] [CrossRef]
- Telesca, L.; Lovallo, M.; Mammadov, S.; Kadirov, F.; Babayev, G. Power spectrum analysis and multifractal detrended fluctuation analysis of Earth’s gravity time series. Phys. A Stat. Mech. Its Appl. 2015, 428, 426–434. [Google Scholar] [CrossRef]
- Telesca, L.; Lovallo, M.; Kanevski, M. Power spectrum and multifractal detrended fluctuation analysis of high-frequency wind measurements in mountainous regions. Appl. Energy 2016, 162, 1052–1061. [Google Scholar] [CrossRef]
- Stošić, D.; Stošić, D.; Stošić, T.; Stanley, H.E. Multifractal analysis of managed and independent float exchange rates. Phys. A Stat. Mech. Its Appl. 2015, 428, 13–18. [Google Scholar] [CrossRef]
- Jaffe, J.; Westerfield, R. The Week-End Effect in Common Stock Returns: The International Evidence. J. Financ. 1985, 40, 433–454. [Google Scholar] [CrossRef]
- Zhou, W.X. The components of empirical multifractality in financial returns. EPL Europhys. Lett. 2009, 88, 28004. [Google Scholar] [CrossRef] [Green Version]
- Drożdż, S.; Kwapień, J.; Oświecimka, P.; Rak, R. Quantitative features of multifractal subtleties in time series. EPL Europhys. Lett. 2010, 88, 60003. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.X. Finite-size effect and the components of multifractality in financial volatility. Chaos Solitons Fractals 2012, 45, 147–155. [Google Scholar] [CrossRef] [Green Version]
Market | Country | Index | Period |
---|---|---|---|
All Ordinares | Australia | AORD | 3 August 1984–26 December 2018 |
S&P500/ASX 200 | Australia | AXJO | 22 November 1992–26 December 2018 |
BEL 20 | Belgium | BFX | 9 April 1991–24 December 2018 |
IBOVESPA | Brazil | BVSP | 27 April 1993–21 December 2018 |
Dow30 | United States | DJI | 29 January 1985–26 December 2018 |
CAC 40 | France | FCHI | 1 March 1990–24 December 2018 |
DAX Performance | Germany | GDAXI | 30 December 1987–27 December 2018 |
S&P500 | United States | GSPC | 3 January 1950–24 December 2018 |
S&P/TSX Composite | Canada | GSPTSE | 29 June 1979–24 December 2018 |
Hang Seng Index | Hong Kong | HIS | 31 December 1986–27 December 2018 |
IPSA Santiago de Chile | Chile | IPSA | 2 January 2002–26 December 2018 |
Nasdaq | United States | IXIC | 5 February 1971–26 December 2018 |
Jakarta Composite | Indonesia | JKSE | 1 July 1997–27 December 2018 |
KOSPI Composite | South Korea | KS11 | 1 July 1997–26 December 2018 |
Merval | Argentina | MERV | 8 October 1996–26 December 2018 |
IPC Mexico | Mexico | MXX | 8 November 1991–26 December 2018 |
Nikkei 225 | Japan | N225 | 5 January 1965–27 December 2018 |
NYSE Composite | United States | NYA | 31 December 1965–26 December 2018 |
TSEC Weighted | Taiwan | TWII | 2 July 1997–27 December 2018 |
Market | Monday | Tuesday | Wednesday | Thursday | Friday | All | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AORD | 0.547 | 0.570 | 0.837 | 0.585 | 0.684 | 0.590 | 0.547 | 0.628 | 0.815 | 0.549 | 0.549 | 0.963 | 0.574 | 0.603 | 0.771 | 0.583 | 0.579 | 0.942 |
AXJO | 0.537 | 0.529 | 0.990 | 0.583 | 0.514 | 1.201 | 0.561 | 0.558 | 0.897 | 0.557 | 0.544 | 1.180 | 0.562 | 0.550 | 0.866 | 0.533 | 0.748 | 0.913 |
BFX | 0.619 | 0.633 | 0.730 | 0.561 | 0.662 | 1.383 | 0.571 | 0.541 | 0.754 | 0.574 | 0.553 | 0.940 | 0.553 | 0.556 | 0.715 | 0.534 | 0.676 | 1.188 |
BVSP | 0.616 | 0.581 | 1.562 | 0.601 | 0.472 | 0.932 | 0.587 | 0.455 | 1.492 | 0.615 | 0.465 | 0.939 | 0.592 | 0.666 | 0.943 | 0.550 | 0.643 | 0.917 |
DJI | 0.572 | 0.826 | 0.579 | 0.598 | 0.643 | 0.883 | 0.576 | 0.586 | 0.970 | 0.560 | 0.661 | 0.887 | 0.581 | 0.669 | 1.230 | 0.520 | 0.690 | 0.720 |
FCHI | 0.617 | 0.656 | 0.969 | 0.526 | 0.621 | 1.257 | 0.579 | 0.613 | 1.087 | 0.620 | 0.579 | 1.090 | 0.553 | 0.535 | 0.894 | 0.506 | 0.633 | 1.174 |
GDAXI | 0.606 | 0.612 | 0.682 | 0.556 | 0.619 | 0.886 | 0.574 | 0.530 | 0.986 | 0.616 | 0.538 | 1.034 | 0.555 | 0.485 | 1.397 | 0.534 | 0.648 | 1.176 |
GSPC | 0.590 | 0.787 | 0.709 | 0.565 | 0.539 | 0.856 | 0.557 | 0.635 | 0.760 | 0.528 | 0.573 | 0.718 | 0.551 | 0.627 | 1.416 | 0.528 | 0.605 | 0.782 |
GSPTSE | 0.611 | 0.632 | 0.683 | 0.587 | 0.647 | 0.841 | 0.581 | 0.618 | 0.956 | 0.587 | 0.552 | 0.733 | 0.554 | 0.681 | 0.775 | 0.585 | 0.613 | 0.928 |
HIS | 0.582 | 0.823 | 0.828 | 0.562 | 0.669 | 0.639 | 0.514 | 0.730 | 0.864 | 0.592 | 0.509 | 1.083 | 0.576 | 0.749 | 0.878 | 0.557 | 0.609 | 0.805 |
IPSA | 0.654 | 0.969 | 0.832 | 0.584 | 0.747 | 0.984 | 0.580 | 0.519 | 1.250 | 0.582 | 0.705 | 0.938 | 0.611 | 0.677 | 1.174 | 0.601 | 0.825 | 0.801 |
IXIC | 0.641 | 0.707 | 0.764 | 0.585 | 0.644 | 0.941 | 0.615 | 0.702 | 0.781 | 0.563 | 0.671 | 1.425 | 0.587 | 0.680 | 1.134 | 0.591 | 0.624 | 0.901 |
JKSE | 0.598 | 0.848 | 1.352 | 0.539 | 0.674 | 1.335 | 0.582 | 0.725 | 0.877 | 0.560 | 0.566 | 1.802 | 0.500 | 0.907 | 0.881 | 0.570 | 0.518 | 0.769 |
KS11 | 0.607 | 0.707 | 1.190 | 0.539 | 0.421 | 1.140 | 0.540 | 0.637 | 1.195 | 0.590 | 0.535 | 1.026 | 0.526 | 0.616 | 2.180 | 0.530 | 0.633 | 0.945 |
MERV | 0.651 | 0.520 | 0.927 | 0.537 | 0.625 | 1.265 | 0.537 | 0.681 | 1.163 | 0.611 | 0.647 | 0.652 | 0.540 | 0.602 | 1.135 | 0.574 | 0.534 | 0.985 |
MXX | 0.580 | 0.805 | 0.890 | 0.542 | 0.666 | 1.088 | 0.548 | 0.577 | 1.039 | 0.606 | 0.690 | 1.150 | 0.552 | 0.557 | 0.967 | 0.548 | 0.617 | 0.951 |
N225 | 0.584 | 0.472 | 1.041 | 0.573 | 0.745 | 0.714 | 0.550 | 0.639 | 0.901 | 0.614 | 0.505 | 0.732 | 0.553 | 0.530 | 0.804 | 0.539 | 0.406 | 0.559 |
NYA | 0.593 | 0.685 | 0.466 | 0.579 | 0.648 | 0.790 | 0.550 | 0.588 | 0.615 | 0.559 | 0.691 | 0.827 | 0.526 | 0.573 | 0.954 | 0.522 | 0.583 | 0.772 |
TWII | 0.659 | 0.474 | 1.661 | 0.594 | 0.564 | 1.453 | 0.519 | 0.453 | 1.069 | 0.540 | 0.494 | 1.584 | 0.503 | 0.764 | 1.303 | 0.539 | 0.491 | 1.053 |
Market | Monday | Tuesday | Wednesday | Thursday | Friday | |||||
---|---|---|---|---|---|---|---|---|---|---|
GSPC | 0.049 | 0.115 | 0.030 | 0.019 | 0.021 | 0.094 | 0.008 | 0.058 | 0.014 | 0.126 |
KS11 | 0.033 | 0.010 | 0.034 | 0.219 | 0.028 | 0.052 | 0.012 | 0.138 | 0.044 | 0.052 |
IPSA | 0.073 | 0.200 | 0.022 | 0.119 | 0.028 | 0.069 | 0.023 | 0.064 | 0.051 | 0.098 |
FCHI | 0.064 | 0.035 | 0.023 | 0.078 | 0.031 | 0.054 | 0.066 | 0.033 | 0.002 | 0.025 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stosic, D.; Stosic, D.; Vodenska, I.; Stanley, H.E.; Stosic, T. A New Look at Calendar Anomalies: Multifractality and Day-of-the-Week Effect. Entropy 2022, 24, 562. https://doi.org/10.3390/e24040562
Stosic D, Stosic D, Vodenska I, Stanley HE, Stosic T. A New Look at Calendar Anomalies: Multifractality and Day-of-the-Week Effect. Entropy. 2022; 24(4):562. https://doi.org/10.3390/e24040562
Chicago/Turabian StyleStosic, Darko, Dusan Stosic, Irena Vodenska, H. Eugene Stanley, and Tatijana Stosic. 2022. "A New Look at Calendar Anomalies: Multifractality and Day-of-the-Week Effect" Entropy 24, no. 4: 562. https://doi.org/10.3390/e24040562
APA StyleStosic, D., Stosic, D., Vodenska, I., Stanley, H. E., & Stosic, T. (2022). A New Look at Calendar Anomalies: Multifractality and Day-of-the-Week Effect. Entropy, 24(4), 562. https://doi.org/10.3390/e24040562