Adaptive Orbital Rendezvous Control of Multiple Satellites Based on Pulsar Positioning Strategy
Abstract
:1. Introduction
2. Preliminaries
2.1. Notations and Definitions
2.2. Pulsar-Based Positioning
2.3. Relative Satellite Dynamics in ECI Frame
2.4. Graph Theory
2.5. Problem Formulation
3. Control Design and Stability Analysis
3.1. Estimation Algorithm
3.2. Feedback Control
4. Numerical Simulation
4.1. Pulsar-Based Positioning and Simulation Setup
4.2. Estimate of and
4.3. Control Validation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Shirazi, A.; Ceberio, J.; Lozano, J.A. Spacecraft trajectory optimization: A review of models, objectives, approaches and solutions. Prog. Aerosp. Sci. 2018, 102, 76–98. [Google Scholar] [CrossRef] [Green Version]
- Woffinden, D.C.; Geller, D.K. Navigating the road to autonomous orbital rendezvous. J. Spacecr. Rocket. 2007, 44, 898–909. [Google Scholar] [CrossRef]
- Dal Moro, R. Satellite Localization for Gamma-Ray Pulsar Observations in Low Earth Orbit. Mater’s Thesis, University Degli, Udine, Italy, 2020. [Google Scholar]
- Shuai, P.; Chen, S.L.; Wu, Y.F.; Zhang, C.Q.; Li, M. Navigation principles using X-ray pulsars. J. Astronaut. 2007, 28, 1538–1543. [Google Scholar]
- Zheng, W.; Wang, Y. X-ray Pulsar-Based Navigation: Theory and Applications; Springer Nature: Berlin/Heidelberg, Germany, 2020; Volume 5. [Google Scholar]
- Buist, P.J.; Engelen, S.; Noroozi, A.; Sundaramoorthy, P.; Verhagen, S.; Verhoeven, C. Overview of pulsar navigation: Past, present and future trends. Navigation 2011, 58, 153–164. [Google Scholar] [CrossRef]
- Qiu, W.; Yin, H.; Zhang, L.; Luo, X.; Yao, W.; Zhu, L.; Liu, Y. Pulsar-calibrated Timing Source for Synchronized Sampling. IEEE Trans. Smart Grid 2021. early view. [Google Scholar] [CrossRef]
- Chen, P.T.; Speyer, J.L.; Bayard, D.S.; Majid, W.A. Autonomous navigation using x-ray pulsars and multirate processing. J. Guid. Control Dyn. 2017, 40, 2237–2249. [Google Scholar] [CrossRef]
- Hua, Z.; Rong, J.; Luping, X. Formation of a Satellite Navigation System Using X-Ray Pulsars. Publ. Astron. Soc. Pac. 2019, 131, 45002. [Google Scholar] [CrossRef]
- Fujimoto, K.; Kodama, T.; Maruta, I. On Rendezvous Trajectory Design of Earth Orbiting Satellites with Robust L1-Optimal Control for Parameter Variations. Trans. Jpn. Soc. Aeronaut. Space Sci. Aerosp. Technol. Jpn. 2020, 18, 250–257. [Google Scholar]
- Jia, Y. Alternative proofs for improved LMI representations for the analysis and the design of continuous-time systems with polytopic type uncertainty: A predictive approach. IEEE Trans. Autom. Control 2003, 8, 1413–1416. [Google Scholar]
- Walther, M.; Traub, C.; Herdrich, G.; Fasoulas, S. Improved success rates of rendezvous maneuvers using aerodynamic forces. CEAS Space J. 2020, 12, 463–480. [Google Scholar] [CrossRef]
- Brentari, M.; Urbina, S.; Arzelier, D.; Louembet, C.; Zaccarian, L. A hybrid control framework for impulsive control of satellite rendezvous. IEEE Trans. Control Syst. Technol. 2018, 27, 1537–1551. [Google Scholar] [CrossRef] [Green Version]
- Jia, Y. Robust control with decoupling performance for steering and traction of 4WS vehicles under velocity-varying motion. IEEE Trans. Control Syst. Technol. 2000, 8, 554–569. [Google Scholar]
- Jia, Y. General solution to diagonal model matching control of multiple-output-delay systems and its applications in adaptive scheme. Prog. Nat. Sci. 2009, 19, 79–90. [Google Scholar] [CrossRef]
- Kristiansen, R.; Nicklasson, P.J. Spacecraft formation flying: A review and new results on state feedback control. Acta Astronaut. 2009, 65, 1537–1552. [Google Scholar] [CrossRef]
- Kuiack, B.J. Spacecraft Formation Guidance and Control on J2-Perturbed Eccentric Orbits. Mater’s Thesis, Carleton University, Ottawa, ON, Canada, 2018. [Google Scholar]
- Jasiobedzki, P.; Se, S.; Pan, T.; Umasuthan, M.; Greenspan, M. Autonomous satellite rendezvous and docking using LIDAR and model based vision. Spaceborne Sens. II 2005, 5798, 54–65. [Google Scholar]
- Cookson, J.J. Experimental investigation of spacecraft rendezvous and docking by development of a 3 degree of freedom satellite simulator testbed. Master’s Thesis, York University, Toronto, ON, Canada, 2020. [Google Scholar]
- Horsley, M.; Nikolaev, S.; Pertica, A. Small satellite rendezvous using differential lift and drag. J. Guid. Control Dyn. Control 2013, 36, 445–453. [Google Scholar] [CrossRef]
- Sun, L.; He, W.; Sun, C. Adaptive fuzzy relative pose control of spacecraft during rendezvous and proximity maneuvers. IEEE Trans. Fuzzy Syst. 2018, 26, 3440–3451. [Google Scholar] [CrossRef]
- Wang, W.; Li, C.; Guo, Y. Relative position coordinated control for spacecraft formation flying with obstacle/collision avoidance. Nonlinear Dyn. 2021, 104, 1329–1342. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, S. Adaptive saturated control for spacecraft rendezvous and docking under motion constraints. Aerosp. Sci. Technol. 2021, 114, 106739. [Google Scholar] [CrossRef]
- Curtis, H. Orbital Mechanics for Engineering Students; Butterworth-Heinemann: Oxford, UK, 2013. [Google Scholar]
- Hartshorne, R. Algebraic Geometry; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Wei, R.; Beard, R.W.; Atkins, E.M. A survey of consensus problems in multi-agent coordination. In Proceedings of the 2005 American Control Conference, Portland, OR, USA, 8–10 June 2005; Volume 3, pp. 1859–1864. [Google Scholar]
- Khalil, H.K. Nonlinear Systems; Prentice Hall: Upper Saddle River, NJ, USA, 2002. [Google Scholar]
- Sundarapandian, V. Global asymptotic stability of nonlinear cascade systems. Appl. Math. Lett. 2002, 15, 275–277. [Google Scholar] [CrossRef] [Green Version]
- Park, M.G.; Jeon, J.H.; Lee, M.C. Obstacle avoidance for mobile robots using artificial potential field approach with simulated annealing. IEEE Int. Symp. Ind. Electron. Proc. 2001, 3, 1530–1535. [Google Scholar]
- Sheikh, S.I.; Pines, D.J.; Ray, P.S.; Wood, K.S.; Lovellette, M.N.; Wolff, M.T. Spacecraft navigation using X-ray pulsars. J. Guid. Control Dyn. 2006, 29, 49–63. [Google Scholar] [CrossRef] [Green Version]
j | Name | Longitude | Latitude |
---|---|---|---|
1 | PSR B0531+21 | 184.56 | −5.78 |
2 | PSR B1821−24 | 7.8 | −5.58 |
3 | PSR B1937+21 | 57.51 | −0.29 |
j | Name | Right Ascension | Declination |
---|---|---|---|
1 | PSR B0531+21 | 84.102438550 | −1.29446370 |
2 | PSR B1821−24 | 275.56845533 | −1.54719148 |
3 | PSR B1937+21 | 301.97479547 | 42.29726047 |
i | A | ECC | INCL | RAAN | AANP | APP |
---|---|---|---|---|---|---|
0 | 6792 km | 0.005426 | 51.6438 | 38.8886 | 23.0560 | 63 |
1 | 6881 km | 0.006340 | 50.3210 | 40.0100 | 20.2022 | 60 |
2 | 6922 km | 0.005924 | 60.5380 | 39.4500 | 25.1991 | 64 |
3 | 7238 km | 0.007020 | 52.6225 | 43.1526 | 28.5234 | 58 |
4 | 7055 km | 0.009070 | 40.4819 | 42.5128 | 23.4040 | 55 |
i | 1 | 2 | 3 | 4 |
---|---|---|---|---|
mean | 60.45 m | 59.65 m | 61.64 m | 62.03 m |
mean | 1.83 m/s | 1.84 m/s | 1.36 m/s | 1.01 m/s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Q.; Zhao, Y.; Yan, L. Adaptive Orbital Rendezvous Control of Multiple Satellites Based on Pulsar Positioning Strategy. Entropy 2022, 24, 575. https://doi.org/10.3390/e24050575
Chen Q, Zhao Y, Yan L. Adaptive Orbital Rendezvous Control of Multiple Satellites Based on Pulsar Positioning Strategy. Entropy. 2022; 24(5):575. https://doi.org/10.3390/e24050575
Chicago/Turabian StyleChen, Qiang, Yong Zhao, and Lixia Yan. 2022. "Adaptive Orbital Rendezvous Control of Multiple Satellites Based on Pulsar Positioning Strategy" Entropy 24, no. 5: 575. https://doi.org/10.3390/e24050575
APA StyleChen, Q., Zhao, Y., & Yan, L. (2022). Adaptive Orbital Rendezvous Control of Multiple Satellites Based on Pulsar Positioning Strategy. Entropy, 24(5), 575. https://doi.org/10.3390/e24050575