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Abstract: Several two-level iterative methods based on nonconforming finite element methods are
applied for solving numerically the 2D/3D stationary incompressible MHD equations under different
uniqueness conditions. These two-level algorithms are motivated by applying the m iterations on
a coarse grid and correction once on a fine grid. A one-level Oseen iterative method on a fine
mesh is further studied under a weak uniqueness condition. Moreover, the stability and error
estimate are rigorously carried out, which prove that the proposed methods are stable and effective.
Finally, some numerical examples corroborate the effectiveness of our theoretical analysis and the
proposed methods.

Keywords: incompressible MHD equations; nonconforming finite element; two-level method; stabil-
ity; error estimate

1. Introduction

Magnetohydrodynamics (MHD) describes the interaction of electrically conductive
fluids with electromagnetic fields. The governing equations describing the MHD system
is a strong coupling nonlinear system coupled with the Navier–Stokes equations and
Maxwell equations. Magnetohydrodynamics has become widespread in such areas of
astrophysics, controlled thermonuclear reactions and industry. For the study of the MHD
problem, a large amount of research and analysis have been carried out in recent decades.
The well-posedness of weak form solution of MHD equations can be guaranteed in [1,2].
With regard to theoretical analysis, the regularity, long-time behaviors of solution of MHD
problems and the error estimation of FEM are studied in [3,4]. We can refer to [5–9] and
their references for many Galerkin finite element methods (FEM) analysis and studied on
the MHD system. For the MHD problem, a series of one-level iteration methods and their
error estimation are studied in [10], and some coupled type iteration methods are designed
and discussed in [11] on a general Lipschitz domain.

The present paper mainly focuses on the study of nonconforming finite element.
Low-order nonconforming FEM has the advantages over the conforming FEM in terms
of simplicity and small support sets of basis functions. For the Stokes and Navier–Stokes
equation, the nonconforming FEM are studied in [12,13], in which the discretization of
velocity space uses the nonconforming element, and the discretization of pressure space
uses the piecewise constant element. In addition, a nonconforming FEM are also proposed
in [14–16], which differs from the discrete pressure space using a piecewise linear element.
Due to the limitation of inf-sup condition, it has the advantage of simple structure and has
been well applied in solving various problems. For instance, an Oseen iterative algorithm
for the conduction-convection equations with nonconforming FEM is carefully studied
in [17]. In addition, the low-order nonconforming FEM is used to solve 3D MHD system,
then they make deep and systematic analysis and research in [18,19].

In order to raise the efficiency of computation, much work has sought to answer
two-level methods for solving the nonlinear problems with conforming FEM. For the
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Navier–Stokes equations, some two-grid schemes and their error estimation are presented
in [20–24]. Regarding the two-level methods approach to discussing the MHD problems,
we can refer to the literature [25–27]. Furthermore, the MHD problem is studied well
enough by a two-level Newton method at a small magnetic Reynolds number and a two-
level method under the hypotheses of a small data in [28,29]. In addition, some two-level
iterative methods are used to solve the MHD problem, then rigorous systematic analysis
and numerical tests are carried out in [30].

In our previous work, three linearized and one level nonconforming discretization for
the 2D/3D MHD equations were proposed in [31]. In order to solve it more efficiently and
to make our work more completely, the algorithms we study are looking to link two-level
iterative methods with the nonconforming FEM to solve the MHD problem. The study is
based on approximating velocity space by the nonconforming element, and the conforming
linear elements are used in the discretization of magnetic field and pressure space. We
analyze the error estimates of three classical one-level iterative methods under different
uniqueness conditions. Then, more comprehensive and diverse two-level iterative methods
based on the iterative solution firstly calculated by Stokes, Newton and Oseen iterative
methods on a coarse grid and then the correction solution calculated by Stokes, Newton
and Oseen corrections on a fine grid are proposed. Moreover, we perform a systematic
and in-depth analysis of our proposed methods under the different strong uniqueness
conditions. Finally, several numerical texts are executed and the accuracy of the proposed
methods are proved.

The following describes the components of this article. The mathematical setting of the
MHD equations is introduced and the nonconforming FEM is proposed in Sections 2 and 3.
In Section 4, three classical one-level iterative methods and error analysis results are given.
In Section 5, we put forward some two-level algorithms and deduce more comprehensively
theoretical analysis. In Section 6, several numerical simulations are tested to verify the
accuracy of the previous results. In the last part, the summary and prospects of the paper
are given.

In this next paper, C represents a real constant, which represents different values in
different cases and is independent of the coefficients of the system equations, the grid sizes
h and H. Notations without special interpretation are used for their usual meaning.

2. Preliminaries

Let Ω be a bounded convex region in Rd(d = 2, 3) with boundary ∂Ω, to study the
2D/3D stationary incompressible MHD problem, which is modeled as listed below: find
the velocity u, magnetic field b and pressure p such that

−R−1
e ∆u + u · ∇u +∇p− Sc(∇× b)× b = f, in Ω,

R−1
m Sc∇× (∇× b)− Sc∇× (u× b) = g, in Ω,
∇ · u = 0, in Ω,
∇ · b = 0, in Ω,
u = 0, b · n = 0, (∇× b)× n = 0, on ∂Ω,

(1)

where f ∈ H−1(Ω)d, g ∈ L2(Ω)d denote prescribed body terms, and n represents outward
unit normal vector. The nonlinear system includes three different coefficients: hydro-
dynamic Reynolds number Re, magnetic Reynolds number Rm, and coupling coefficient
Sc. It should still be noted out that the actual physically meaningful induction equation
corresponds only to the special case g = 0.

For convenience, the function spaces are shown below:

L2
0(Ω) =

{
r ∈ L2(Ω) :

∫
Ω rdx = 0

}
,

H1
0(Ω) =

{
e ∈ H1(Ω)d : e|∂Ω = 0

}
,

H1
n(Ω) =

{
e ∈ H1(Ω)d : e · n|∂Ω = 0

}
.
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Combining the above spaces, the weak form of (1) is equivalent to finding (u, b) ∈ H1
0(Ω)×

H1
n(Ω), p ∈ L2

0(Ω) such that, for all (κ, D) ∈ H1
0(Ω)×H1

n(Ω), r ∈ L2
0(Ω),{

A0((u, b), (κ, D)) + A1((u, b), (u, b), (κ, D))− b((κ, D), p) =< F, (κ, D) >,
b((u, b), r) = 0,

(2)

with the bilinear and trilinear forms settings below

A0((e, E), (κ, D)) := a0(e, κ) + b0(E, D),
A1((u, b), (e, E), (κ, D)) := a1(u, e, κ)− c(E, b, κ) + c(D, b, e),
a0(e, κ) := R−1

e (∇e,∇κ), b0(E, D) := R−1
m Sc(∇× E,∇×D) + R−1

m Sc(∇ · E,∇ ·D),
a1(u, e, κ) := 1

2 (u · ∇e, κ)− 1
2 (u · ∇κ, e), c(E, b, κ) := Sc(∇× E× b, κ),

b((κ, D), r) := (∇ · κ, r), < F, (κ, D) >:=< f, κ > +(g, D).

Furthermore, the norms are written by

‖(κ, D)‖i :=
(
‖κ‖2

i + ‖D‖2
i

) 1
2 , ∀κ ∈ Hi(Ω) ∩H1

0(Ω), D ∈ Hi(Ω) ∩H1
n(Ω)(i = 0, 1, 2).

‖F‖−1 := sup
0 6=(κ,D)∈H1

0(Ω)×H1
n(Ω)

< F, (κ, D) >

‖(κ, D)‖1
, ‖F‖0 := (‖f‖0 + ‖g‖0)

1
2 .

Next, we introduce some Sobolev inequalities [10,26],

‖e‖L4 ≤ λ0‖e‖1, ∀e ∈ H1
0(Ω),

‖e‖L3 ≤ C‖e‖
1
2
0 ‖e‖

1
2
1 , ∀e ∈ H1

0(Ω),

‖e‖L∞ ≤ C‖e‖
1
2
1 ‖e‖

1
2
2 , ∀e ∈ H2(Ω) ∩H1

0(Ω).

According to the above inequality, we can obtain the properties from [10,11,18],

a1(u, e, κ) = −a1(u, κ, e), |a1(u, e, κ)| ≤ λ2
0‖u‖1‖e‖1‖κ‖1, ∀u, e, κ ∈ H1

0(Ω).

In addition, we have the following properties from [10,11,18]: for all u, κ, e ∈ H1
0(Ω),

and b, D, E ∈ H1
n(Ω),

A1((u, b), (κ, D), (κ, D)) = 0,
A0((u, b), (κ, D)) ≤ max

{
R−1

e , (2 + d)R−1
m Sc

}
‖(u, b)‖1‖(κ, D)‖1,

A0((κ, D), (κ, D)) ≥ min
{

R−1
e , λ1R−1

m Sc
}
‖(κ, D)‖2

1,
A1((u, b), (κ, D), (e, E)) ≤

√
2λ2

0 max
{

1,
√

2Sc

}
‖(u, b)‖1‖(κ, D)‖1‖(e, E)‖1,

where λ1 is the constant from

‖∇×D‖2
0 + ‖∇ ·D‖

2
0 ≥ λ1‖D‖2

1, ∀D ∈ H1
n(Ω).

Finally, to analyze the error estimates in the following sections, we can obtain the
important theorem as follows [2,11,18]:

Theorem 1. Suppose that
√

2λ2
0 max{1,

√
2Sc}‖F‖−1

(min{R−1
e ,λ1R−1

m Sc})2 < 1, (2) is well-posed and the unique solution

(u, b) satisfies:

‖(u, b)‖1 ≤
‖F‖−1

min
{

R−1
e , λ1R−1

m Sc

} . (3)

To obtain the H2 stability of the solution to (2), we give the following assumption
where the domain Ω satisfies regular properties as follows.
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Assumption 1. First, the steady Stokes problem is introduced as follows:

−∆κ +∇r = f , ∇ · κ = 0, in Ω, κ|∂Ω = 0,

and the unique solution (κ, r) satisfies

‖κ‖2 + ‖r‖1 ≤ C‖f‖0.

Then, we introduce Maxwell’s equations

∇× (∇×D) = g, ∇ ·D = 0 in Ω, ∇×D× n = 0, D · n = 0, on ∂Ω.

Similarly, the unique solution D satisfies

‖D‖2 ≤ C‖g‖0.

Remark 1. If Ω is a convex polygon or polyhedron, or if ∂Ω is of C2, the conclusion is that the
assumption is tenable [32,33].

Theorem 2. If f, g ∈ L2(Ω)d ,
√

2λ2
0 max{1,

√
2Sc}‖F‖−1

(min{R−1
e ,λ1R−1

m Sc})2 < 1 and Assumption 1 are true, the

solution ((u, b), p) satisfies

‖(u, b)‖2 + ‖p‖1 ≤ C‖F‖0. (4)

3. Nonconforming Discretization

Here, we consider the regular triangulation Tµ = {K} that partitions the domain
Ω into triangles or quadrangles. Here, we defined the positive parameter µ = max

K∈Tµ

{µK : µK = diam(K)}, the boundary edge Γj = ∂Kj ∩ ∂Ω and the interior boundary Γjk =
Γkj = ∂Kj ∩ ∂Kk. Denote the centers of Γj and Γjk by υj and υjk, respectively.

This is followed by the discrete spaces as shown below, in which the discretization
of velocity space is approximated by a nonconforming element, and the discretization of
pressure and magnetic field space is approximated by a conforming linear element.

X1µ =
{

eµ ∈ L2(Ω)d : eµ

∣∣
K ∈ P1(K)d, ∀K ∈ Tµ; eµ(υjk) = eµ(υkj), eµ(υj) = 0, ∀j, k

}
,

Mµ =
{

rµ ∈ H1(Ω) ∩ L2
0(Ω) : rµ

∣∣
K ∈ P1(K), ∀K ∈ Tµ

}
,

X2µ =
{

Dµ ∈ H1
n(Ω) : Dµ

∣∣
K ∈ P1(K)d, Dµ · n|∂Ω = 0, ∀K ∈ Tµ

}
,

where P1(K) stands for the continuous piecewise polynomial space. In fact, the finite
element pair(X1µ, Mµ) we studied in this paper satisfies the inf-sup condition, which has
been rigorously proven in [34].

The finite element spaces X1µ, X2µ and Mµ satisfy the interpolation theory: for any
((κ, D), r) ∈

(
H1

0(Ω) ∩H2(Ω)
)
×
(
H1

n(Ω) ∩H2(Ω)
)
×
(

L2
0(Ω) ∩ H1(Ω)

)
, there exist three

approximations ((κI , DI), rI) ∈ X1µ × X2µ ×Mµ such that [13,19],

‖(κ− κI , D−DI)‖1 + ‖(r− rI‖0 ≤ cµ(‖κ‖2 + ‖D‖2 + ‖r‖1). (5)

To give the discrete variational form of (2), we introduce the following compatibility
conditions [14,15]: ∫

Γjk

[eµ]ds = 0,
∫

Γj

eµds = 0,

where [eµ] = eµ|Γjk − eµ|Γkj , representing eµ through an interface Γjk.
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Combining the above spaces and compatibility conditions, the discrete variational
form of (2) is recast: find

(
uµ, bµ

)
∈ X1µ × X2µ, pµ ∈ Mµ such that, for all

(
κµ, Dµ

)
∈

X1µ × X2µ, rµ ∈ Mµ,
A0((uµ, bµ), (κµ, Dµ)) + A1((uµ, bµ), (uµ, bµ), (κµ, Dµ))− b((κµ, Dµ), pµ)

=< F, (κµ, Dµ) >,
b((uµ, bµ), rµ) = 0.

(6)

For all κµ ∈ X1µ, Dµ ∈ X2µ, we define

∥∥κµ

∥∥
0 :=

 ∑
K∈Tµ

∥∥κµ

∥∥2
0,K

1/2

,
∥∥κµ

∥∥
1µ

:=

 ∑
K∈Tµ

∣∣κµ

∣∣2
1,K

1/2

,

∥∥(κµ, Dµ

)∥∥
1 :=

(∥∥κµ

∥∥2
1µ

+
∥∥Dµ

∥∥2
1µ

)1/2
, ‖F‖∗ := sup

0 6=(κµ ,Dµ)∈X1µ×X2µ

< F,
(
κµ, Dµ

)
>∥∥(κµ, Dµ

)∥∥
1

.

Lemma 1. The bilinear and trilinear terms satisfy the following properties:∣∣a1
(
uµ, eµ, κµ

)∣∣ ≤ N1
∥∥uµ

∥∥
1µ

∥∥eµ

∥∥
1µ
‖κµ‖1µ,∣∣c(Eµ, bµ, κµ

)∣∣ ≤ N2
∥∥bµ

∥∥
1µ

∥∥κµ

∥∥
1µ
‖Eµ‖1µ,

A0((uµ, bµ), (κµ, Dµ)) ≤ max
{

R−1
e , (2 + d)R−1

m Sc
}
‖(uµ, bµ)‖1‖(κµ, Dµ)‖1,

A0((uµ, bµ), (uµ, bµ)) ≥ min
{

R−1
e , λ1R−1

m Sc
}
‖(uµ, bµ)‖2

1,
A1((uµ, bµ), (κµ, Dµ), (eµ, Eµ))

≤
√

2 max{N1, N2}‖(uµ, bµ)‖1‖(κµ, Dµ)‖1‖(eµ, Eµ)‖1,

(7)

where N1 = (γ2)
2, N2 =

√
2λ0γ2Sc. γ2 is the constant from the following discrete imbedding

inequality [35,36],

‖eµ‖L2m ≤ γm‖eµ‖1µ, ∀eµ ∈ X1µ, m = 1, 2, · · · . (8)

Lemma 2. Here are two important properties of the trilinear forms [27]:

A1((uµ, bµ), (κ, D), (eµ, Eµ)) ≤ C‖(uµ, bµ)‖0‖(κ, D)‖2‖(eµ, Eµ)‖1,
∀(uµ, bµ) ∈ L2(Ω)d × L2(Ω)d, (κ, D) ∈ H2(Ω)d × H2(Ω)d, (eµ, Eµ) ∈ X1µ × X2µ,
A1((u, b), (κµ, Dµ), (eµ, Eµ)) ≤ C‖(u, b)‖2‖(κµ, Dµ)‖0‖(eµ, Eµ)‖1,
∀(u, b) ∈ H2(Ω)d × H2(Ω)d, (κµ, Dµ) ∈ L2(Ω)d × L2(Ω)d, (eµ, Eµ) ∈ X1µ × X2µ.

(9)

The important lemma followed there, which has been proved in [11,14,37].

Lemma 3. There exists a constant β > 0 such that

sup
(κµ ,Dµ)∈Xh

b((κµ, Dµ), pµ)

‖(κµ, Dµ)‖1
≥ β‖pµ‖0, ∀pµ ∈ Mh. (10)

Combining with the above conclusions, we can obtain the existence and uniqueness
results of (6) from [18].

Theorem 3. Suppose that
√

2 max{N1,N2}‖F‖∗
(min{R−1

e ,λ1R−1
m Sc})2 < 1, (6) is well-posed and its unique solution

satisfies

‖(uµ, bµ)‖1 ≤
‖F‖∗

min
{

R−1
e , λ1R−1

m Sc

} . (11)
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For the convenience of the interval, it is expected to be easier to estimate the error of the
solutions

(
(uµ, bµ), pµ

)
∈ X1µ × X2µ ×Mµ. Then, the projection operators ((Sµ, Qµ), Pµ)

are given as follows: H1
0(Ω)×H1

n(Ω)× L2
0(Ω) −→ X1µ × X2µ ×Mµ through

A0((u− Sµ(u, p), b−Qµ(b)), (κµ, Dµ))− b((κµ, Dµ), p− Pµ(u, p))
+b((u− Sµ(u, p), b−Qµ(b)), rµ) = 0, ∀

(
(κµ, Dµ), rµ

)
∈ X1µ × X2µ ×Mµ.

(12)

As the finite element spaces X1µ, X2µ and Mµ satisfy property (5), the above projection
operators satisfy the following conclusion [16,17]:

Lemma 4. For all (κ, D) ∈
(
H1

0(Ω) ∩H2(Ω)
)
×
(
H1

n(Ω) ∩H2(Ω)
)
, r ∈

(
L2

0(Ω) ∩ H1(Ω)
)
,

the projection operators ((Sµ, Qµ), Pµ) satisfy

‖(κ− Sµ(κ, r), D−Qµ(D))‖1 + ‖(r− Pµ(κ, r)‖0 ≤ cµ(‖κ‖2 + ‖D‖2 + ‖r‖1). (13)

Next, we draw two important conclusions from this section. One is the error estimate
of H1-norm of finite element solution without proof, which has been given in [19]. Another
important result is the error estimate of L2-norm of finite element solution obtained by
duality theory [38], which has been proved and can be found in [19].

Theorem 4. Assume that
√

2 max{N1,N2}‖F‖∗
(min{R−1

e ,λ1R−1
m Sc})2 < 1. Let u ∈ (H1

0(Ω)∩H2(Ω)), b ∈ (H1
n(Ω)∩

H2(Ω)), p ∈ (L2
0(Ω) ∩ H1(Ω)) and

(
uµ, bµ

)
∈ X1µ × X2µ = Xµ, pµ ∈ Mµ be the solutions of

(2) and (6), respectively. Then,
(
u− uµ, b− bµ

)
and p− pµ satisfy the bound∥∥(u− uµ, b− bµ

)∥∥
1 +

∥∥p− pµ

∥∥
0 ≤ Cµ(‖u‖2 + ‖b‖2 + ‖p‖1),∥∥(u− uµ, b− bµ

)∥∥
0 ≤ Cµ2(‖u‖2 + ‖b‖2 + ‖p‖1).

4. Iterative Methods

Recently, for the MHD problem, three iteration methods under different uniqueness
conditions are presented in [10] and three iteration methods based on nonconforming
FEM are designed in [31] on a Lipschitz domain. Therefore, we further give the important
conclusion of this section, three iterative methods on convex region and their error estimates.
Three iterative methods appear as follows:

Given (un−1
µ , bn−1

µ ) ∈ X1µ × X2µ, solve (un
µ, bn

µ) ∈ X1µ × X2µ, pn
µ ∈ Mµ from

Method 1: the Stokes iteration method.

A0((un
µ, bn

µ), (κ, D)) + A1((un−1
µ , bn−1

µ ), (un−1
µ , bn−1

µ ), (κ, D))− b((κ, D), pn
µ)

+b((un
µ, bn

µ), r) =< F, (κ, D) > .
(14)

Method 2: the Newton iteration method.

A0((un
µ, bn

µ), (κ, D)) + A1((un−1
µ , bn−1

µ ), (un
µ, bn

µ), (κ, D))

+A1((un
µ, bn

µ), (u
n−1
µ , bn−1

µ ), (κ, D))− b((κ, D), pn
µ) + b((un

µ, bn
µ), r)

=A1((un−1
µ , bn−1

µ ), (un−1
µ , bn−1

µ ), (κ, D))+ < F, (κ, D) > .

(15)

Method 3: the Oseen iteration method.

A0((un
µ, bn

µ), (κ, D)) + A1((un−1
µ , bn−1

µ ), (un
µ, bn

µ), (κ, D))− b((κ, D), pn
µ)

+b((un
µ, bn

µ), r) =< F, (κ, D) > .
(16)

The initial value ((u0
µ, b0

µ), p0
µ) is obtained from

A0((u0
µ, b0

µ), (κ, D))− b((κ, D), p0
µ) + b((u0

µ, b0
µ), r) =< F, (κ, D) > . (17)
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for all
(
κµ, Dµ

)
∈ X1µ × X2µ, rµ ∈ Mµ.

Next, we further find the stability of these iterative methods, which can be proved by
using similar methods in [10,31].

Theorem 5. Suppose that 0 < σ :=
√

2 max{N1,N2}‖F‖∗
(min{R−1

e ,λ1R−1
m Sc})2 < 2

5 . Then, (un
µ, bn

µ) defined by

iterative method 1 satisfies∥∥∥(un
µ, bn

µ

)∥∥∥
1
≤ 6

5
‖F‖∗

min
{

R−1
e , λ1R−1

m Sc

} , (18)

and (uµ − un
µ, bµ − bn

µ) and pµ − pn
µ have the following bounds:∥∥∥(uµ − un

µ, bµ − bn
µ

)∥∥∥
h
≤
(

11
5 σ
)n 2

5
‖F‖∗

min{R−1
e ,λ1R−1

m Sc} , (19)∥∥∥pµ − pn
µ

∥∥∥
0
≤ C

(
11
5 σ
)n 2

5
‖F‖∗

min{R−1
e ,λ1R−1

m Sc} , (20)

for all n ≥ 0.

Theorem 6. Suppose that 0 < σ < 5
11 . Then, (un

µ, bn
µ) defined by iterative method 2 satisfies

∥∥∥(un
µ, bn

µ

)∥∥∥
1
≤ 4

3
‖F‖∗

min
{

R−1
e , λ1R−1

m Sc

} , (21)

and (uµ − un
µ, bµ − bn

µ) and pµ − pn
µ have the following bounds:

∥∥∥(uµ − un
µ, bµ − bn

µ

)∥∥∥
h
≤
(

15
13 σ
)2n−1 5

11
‖F‖∗

min{R−1
e ,λ1R−1

m Sc} , (22)∥∥∥pµ − pn
µ

∥∥∥
0
≤ C

(
15
13 σ
)2n−1 5

11
‖F‖∗

min{R−1
e ,λ1R−1

m Sc} , (23)

for all n ≥ 0.

Theorem 7. Suppose that 0 < σ < 1. Then, (un
µ, bn

µ) defined by the iterative method 3 satisfies

∥∥∥(un
µ, bn

µ

)∥∥∥
1
≤ ‖F‖∗

min
{

R−1
e , λ1R−1

m Sc

} , (24)

and (uµ − un
µ, bµ − bn

µ) and pµ − pn
µ have the following bounds:∥∥∥(uµ − un

µ, bµ − bn
µ

)∥∥∥
1
≤ σn ‖F‖∗

min{R−1
e ,λ1R−1

m Sc} , (25)∥∥∥pµ − pn
µ

∥∥∥
0
≤ Cσn ‖F‖∗

min{R−1
e ,λ1R−1

m Sc} , (26)

for all n ≥ 0.

According to Theorems 4–7, we draw the important conclusions of this section
as follows.
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Theorem 8. If 0 < σ :=
√

2 max{N1,N2}‖F‖∗
(min{R−1

e ,λ1R−1
m Sc})2 < 2

5 , (u− un
µ, b− bn

µ) and p− pn
µ satisfy

∥∥∥(u− un
µ, b− bn

µ

)∥∥∥
1
≤ Cµ(‖u‖2 + ‖b‖2 + ‖p‖1) +

(
11
5 σ
)n 2

5
‖F‖∗

min{R−1
e ,λ1R−1

m Sc} , (27)∥∥∥p− pn
µ

∥∥∥
0
≤ Cµ(‖u‖2 + ‖b‖2 + ‖p‖1) + C

(
11
5 σ
)n 2

5
‖F‖∗

min{R−1
e ,λ1R−1

m Sc} , (28)

for all n ≥ 0; If 0 < σ < 5
11 , (u− un

µ, b− bn
µ) and p− pn

µ satisfy

∥∥∥(u− un
µ, b− bn

µ

)∥∥∥
1
≤ Cµ(‖u‖2 + ‖b‖2 + ‖p‖1) +

(
15
13 σ
)2n−1 5

11
‖F‖∗

min{R−1
e ,λ1R−1

m Sc} , (29)∥∥∥p− pn
µ

∥∥∥
0
≤ Cµ(‖u‖2 + ‖b‖2 + ‖p‖1) + C

(
15
13 σ
)2n−1 5

11
‖F‖∗

min{R−1
e ,λ1R−1

m Sc} , (30)

for all n ≥ 0; If 0 < σ < 1, (u− un
µ, b− bn

µ) and p− pn
µ satisfy∥∥∥(u− un

µ, b− bn
µ

)∥∥∥
1
≤ Cµ(‖u‖2 + ‖b‖2 + ‖p‖1) + σn ‖F‖∗

min{R−1
e ,λ1R−1

m Sc} , (31)∥∥∥p− pn
µ

∥∥∥
0
≤ Cµ(‖u‖2 + ‖b‖2 + ‖p‖1) + Cσn ‖F‖∗

min{R−1
e ,λ1R−1

m Sc} , (32)

for all n ≥ 0.

For further clarification about all the methods, we describe them as follows.

Remark 2. From the above discussion, we can see clearly that method 1 is the simplest. In the
condition 0 < σ < 5

11 , method 2 is stable and has exponential convergence rate for n, which is faster
than methods 1 and 3. In addition, if 0 < σ < 1, method 3 is stable and convergent and has the
widest application scope.

5. Two-Level Iterative Methods

Some two-level methods for solving the MHD problem with different Reynolds num-
bers are proposed in [30]. In this section, based on nonconforming FEM, to further study
more effective two-level methods, several two-level methods are proposed in different
conditions as follows.

5.1. Two-Level Iterative Method with 0 < σ < 2
5

If 0 < σ < 2
5 , we know that three iterative methods are all stable and convergent. We

firstly propose nine two-level methods to derive the iterative solution ((um
H , bm

H), pm
H) using

methods 1–3 on coarse mesh TH , and then to solve the correction solution ((umh, bmh), pmh)
using corrections 1–3 on fine mesh Th. Here, H and h are set as positive numbers tending
to zero (0 < h ≤ H). All of the proposed methods can be shown below:

Step 1. Solve the MHD equations on the coarse grid, ((um
H , bm

H), pm
H) ∈ XH × MH

provided by methods 1–3, respectively.
Step 2. One step correction on the fine grid: find ((umh, bmh), pmh) ∈ Xh ×Mh satisfy:

Correction 1: Stokes correction.

A0((umh, bmh), (κ, D))− b((κ, D), pmh) + b((umh, bmh), r)

=− A1((um
H , bm

H), (u
m
H , bm

H), (κ, D))+ < F, (κ, D) > .
(33)

Correction 2: Newton correction.

A0((umh, bmh), (κ, D))− b((κ, D), pmh) + b((umh, bmh), r)

+A1((um
H , bm

H), (umh, bmh), (κ, D)) + A1((umh, bmh), (u
m
H , bm

H), (κ, D))

=− A1((um
H , bm

H), (u
m
H , bm

H), (κ, D))+ < F, (κ, D) > .

(34)
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Correction 3: Oseen correction.

A0((umh, bmh), (κ, D))− b((κ, D), pmh) + b((umh, bmh), r)

=− A1((um
H , bm

H), (umh, bmh), (κ, D))+ < F, (κ, D) > .
(35)

for all ((κ, D), r) ∈ Xh ×Mh.
In what follows, we set out to give the following results for the above two-level

iterative methods by introducing projection operators.

Theorem 9. Under the conditions of Theorem 4 and 0 < σ < 2
5 , ((um

H , bm
H), pm

H) ∈ XH ×MH
calculated by methods 1–3, ((umh, bmh), pmh) calculated by correction 1. Then, (u−umh, b−bmh)
and p− pmh satisfy:

‖(u− umh, b− bmh)‖1 ≤C(h + H2)(‖u‖2 + ‖p‖1 + ‖b‖2) + C‖(uH − um
H , bH − bm

H)‖1,

‖p− pmh‖0 ≤ C(h+H2)(‖u‖2 + ‖p‖1 + ‖b‖2) + C‖(uH − um
H , bH − bm

H)‖1,

for all m ≥ 0.

Proof. For (κ, D) ∈ Xh, r ∈ Mh, we have

A0((u, b), (κ, D)) + A1((u, b), (u, b), (κ, D))− b((κ, D), p) + b((u, b), r)

− < F, (κ, D) >= E((κ, D)),
(36)

where

E((κ, D)) = ∑
K∈Th

∫
∂K

[
R−1

e
∂u
∂n

κ− pκ · n− 1
2
(u · n)(u · κ)

]
ds.

Then, we can derive the error equation by subtract (33) from (36),

A0((u− umh, b− bmh), (κ, D)) + A1((u, b), (u− um
H , b− bm

H), (κ, D))

+A1((u− um
H , b− bm

H), (u, b), (κ, D))− b((v,Υ), p− pmh)

+b((u− umh, b− bmh), r)

=A1((u− um
H , b− bm

H), (u− um
H , b− bm

H), (κ, D)) + E((κ, D)).

(37)

Subtracting (37) from (12), we obtain

A0((Sh(u, p)− umh, Qh(b)− bmh), (κ, D)) + A1((u− uH , b− bH), (u, b), (κ, D))

+A1((uH − um
H , bH − bm

H), (u, b), (κ, D)) + A1((u, b), (u− uH , b− bH), (κ, D))

+A1((u, b), (uH − um
H , bH − bm

H), (κ, D))− b((κ, D), Ph(u, p)− pmh)

+b((Sh(u, p)− umh, Qh(b)− bmh), r)

=A1((u− um
H , b− bm

H), (u− um
H , b− bm

H), (κ, D)) + E((κ, D)).

(38)

Setting (κ, D) = (Sh(u, p)− umh, Qh(b)− bmh), r = Ph(u, p)− pmh in (38), and applying
the property (13), we deduce
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‖(Sh(u, p)− umh, Qh(b)− bmh)‖1

≤ 2C

min
{

R−1
e , λ1R−1

m Sc

}‖(u, b)‖2‖(u− uH , b− bH)‖0

+
2
√

2 max{N1, N2}
min

{
R−1

e , λ1R−1
m Sc

}‖(u, b)‖1‖(uH − um
H , bH − bm

H)‖1

+

√
2 max{N1, N2}

min
{

R−1
e , λ1R−1

m Sc

}‖(u− um
H , b− bm

H)‖2
1

+
ch

min
{

R−1
e , λ1R−1

m Sc

} (‖u‖2 + ‖p‖1).

(39)

Then, using (13), (39) and the triangle inequality, we can hit bottom

‖(u− umh, b− bmh‖1

≤‖(u− Sh(u, p), b−Qh(b))‖1 + ‖(Sh(u, p)− umh, Qh(b)− bmh)‖1

≤C(h + H2)(‖u‖2 + ‖p‖1 + ‖b‖2) + C‖(uH − um
H , bH − bm

H)‖1.

Next, using the property (7) and (9) in (38) yields

‖Ph(u, p)− pmh‖0 ≤
max{R−1

e , (2 + d)ScR−1
m }

β
‖(Sh(u, p)− umh, Qh(b)− bmh)‖1

+
2C
β
‖(u− um

H , b− bm
H)‖0‖(u, b)‖2 +

ch
β
(‖u‖2 + ‖p‖1)

+
2
√

2 max{N1, N2}
β

‖(u− um
H , b− bm

H)‖1‖(u, b)‖1

+

√
2 max{N1, N2}

β
‖(u− um

H , b− bm
H)‖

2
1.

(40)

Finally, we can obtain the conclusion by applying (13), (40) and the triangle inequality,

‖p− pmh‖0 ≤‖p− Ph(u, p)‖0 + ‖Ph(u, p)− pmh‖0

≤ C(h + H2)(‖u‖2 + ‖p‖1 + ‖b‖2) + C‖(uH − um
H , bH − bm

H)‖1.

Thus, the proof is done.

Theorem 10. Under the conditions of Theorem 4 and 0 < σ < 2
5 , ((um

H , bm
H), pm

H) ∈ XH ×MH
calculated by methods 1–3, and ((umh, bmh), pmh) was calculated by correction 2. Then, (u−
umh, b− bmh) and p− pmh satisfy:

‖(u− umh, b− bmh)‖1 ≤ C(h + H2)(‖u‖2 + ‖p‖1 + ‖b‖2) + C‖(uH − um
H , bH − bm

H)‖2
1,

‖p− pmh‖0 ≤ C(h + H2)(‖u‖2 + ‖p‖1 + ‖b‖2) + C‖(uH − um
H , bH − bm

H)‖2
1,

for all m ≥ 0.

Proof. Firstly, by subtracting (34) from (36), we can obtain
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A0((u− umh, b− bmh), (κ, D))− b((κ, D), p− pmh) + b((u− umh, b− bmh), r)

=A1((um
H , bm

H), (u− umh, b− bmh), (κ, D))

+A1((u− um
H , b− bm

H), (u− um
H , b− bm

H), (κ, D))

+A1((u− umh, b− bmh), (u
m
H , bm

H), (κ, D)) + E((κ, D)),

(41)

Subtracting (41) from (12), we derive

A0((Sh(u, p)− umh, Qh(b)− bmh), (κ, D))− b((κ, D), Ph(u, p)− pmh)

+b((Sh(u, p)− umh, Qh(b)− bmh), r)

=A1((um
H , bm

H), (u− Sh(u, p), b−Qh(b)), (κ, D))

+A1((um
H , bm

H), (Sh(u, p)− umh, Qh(b)− bmh), (κ, D))

+A1((u− Sh(u, p), b−Qh(b), (u
m
H , bm

H), (κ, D))

+A1((Sh(u, p)− umh, Qh(b− bmh), (u
m
H , bm

H), (κ, D))

+A1((u− um
H , b− bm

H), (u− um
H , b− bm

H), (κ, D)) + E((κ, D)).

(42)

Letting (κ, D) = (Sh(u, p)− umh, Qh(b)− bmh), r = Ph(u, p)− pmh in (42), and making the
use of (13), we obtain

[min
{

R−1
e , λ1R−1

m Sc

}
−
√

2 max{N1, N2}‖(um
H , bm

H)‖1]

×‖(Sh(u, p)− umh, Qh(b)− bmh)‖1

≤2
√

2 max{N1, N2}‖(um
H , bm

H)‖1‖(u− Sh(u, p), b−Qh(b))‖1

+
√

2 max{N1, N2}‖(u− um
H , b− bm

H)‖2
1 + ch(‖u‖2 + ‖p‖1).

(43)

Then, using (13), (43) and the triangle inequality, we can come to the conclusion that

‖(u− umh, b− bmh‖1

≤‖(u− Sh(u, p), b−Qh(b))‖1 + ‖(Sh(u, p)− umh, Qh(b)− bmh)‖1

≤C(h + H2)(‖u‖2 + ‖p‖1 + ‖b‖2) + C‖(uH − um
H , bH − bm

H)‖2
1.

Next, we can deduce the conclusion by using properties (7) and (9) in (42),

‖Ph(u, p)− pmh‖0

≤max{R−1
e , (2 + d)ScR−1

m }
β

‖(Sh(u, p)− umh, Qh(b)− bmh)‖1

+
2
√

2 max{N1, N2}
β

‖(um
H , bm

H)‖1‖(u− Sh(u, p), b−Qh(b))‖1

+
2
√

2 max{N1, N2}
β

‖(um
H , bm

H)‖1‖(Sh(u, p)− umh, Qh(b)− bmh))‖1

+

√
2 max{N1, N2}

β
‖(u− um

H , b− bm
H)‖

2
1 +

ch
β
(‖u‖2 + ‖p‖1).

(44)

Finally, we can obtain the conclusion by applying (13), (44) and the triangle inequality,

‖p− pmh‖0 ≤‖p− Ph(u, p)‖0 + ‖Ph(u, p)− pmh‖0

≤C(h + H2)(‖u‖2 + ‖p‖1 + ‖b‖2) + C‖(uH − um
H , bH − bm

H)‖2
1.

Thus, the proof is done.
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Theorem 11. Under the conditions of Theorem 4 and the condition 0 < σ < 2
5 , ((um

H , bm
H), pm

H) ∈
XH ×MH calculated by methods 1–3, ((umh, bmh), pmh) calculated by correction 3. Then, (u−
umh, b− bmh) and p− pmh satisfy:

‖(u− umh, b− bmh)‖1 ≤ C(h + H2)(‖u‖2 + ‖p‖1 + ‖b‖2) + C‖(uH − um
H , bH − bm

H)‖1,

‖p− pmh‖0 ≤ C(h + H2)(‖u‖2 + ‖p‖1 + ‖b‖2) + C‖(uH − um
H , bH − bm

H)‖1,

for all m ≥ 0.

Proof. Firstly, by subtracting (35) from (36), we can deduce that

A0((u− umh, b− bmh), (κ, D)) + A1((um
H , bm

H), (u− umh, b− bmh), (κ, D))

+A1((u− um
H , b− bm

H), (u, b), (κ, D))− b((κ, D), p− pmh) + b((u− umh, b− bmh), r)

=E((κ, D)),

(45)

Subtracting (45) from (12), we get

A0((Sh(u, p)− umh, Qh(b)− bmh), (κ, D))− b((κ, D), Ph(u, p)− pmh)

+b((Sh(u, p)− umh, Qh(b)− bmh), r)

+A1((um
H , bm

H), (u− Sh(u, p), b−Qh(b)), (κ, D))

+A1((u− uH , b− bH), (u, b), (κ, D))

+A1((um
H , bm

H), (Sh(u, p)− umh, Qh(b)− bmh), (κ, D))

+A1((uH − um
H , bH − bm

H), (u, b), (κ, D)) = E((κ, D)).

(46)

Letting (κ, D) = (Sh(u, p)− umh, Qh(b)− bmh), r = Ph(u, p)− pmh in (46), and making the
use of (13), we can derive

‖(Sh(u, p)− umh, Qh(b)− bmh)‖1

≤ C

min
{

R−1
e , λ1R−1

m Sc

}‖(u− uH , b− bH)‖0‖(u, b)‖2

+

√
2 max{N1, N2}

min
{

R−1
e , λ1R−1

m Sc

}‖(uH − um
H , bH − bm

H)‖1‖(u, b))‖1

+

√
2 max{N1, N2}

min
{

R−1
e , λ1R−1

m Sc

}‖(um
H , bm

H)‖1‖(u− Sh(u, p), b−Qh(b))‖1

+
ch

min
{

R−1
e , λ1R−1

m Sc

} (‖u‖2 + ‖p‖1).

(47)

Then, using (13), (47) and the triangle inequality, we can come to the conclusion that

‖(u− umh, b− bmh‖1

≤‖(u− Sh(u, p), b−Qh(b))‖1 + ‖(Sh(u, p)− umh, Qh(b)− bmh)‖1

≤C(h + H2)(‖u‖2 + ‖p‖1 + ‖b‖2) + C‖(uH − um
H , bH − bm

H)‖1.

Next, by using (7) and (9) in (46), we deduce that
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‖Ph(u, p)− pmh‖0

≤max{R−1
e , (2 + d)ScR−1

m }
β

‖(Sh(u, p)− umh, Qh(b)− bmh)‖1

+
C
β
‖(u− uH , b− bH)‖0‖(u, b)‖2

+

√
2 max{N1, N2}

β
‖(um

H , bm
H)‖1‖(u− Sh(u, p), b−Qh(b))‖1

+

√
2 max{N1, N2}

β
‖(uH − um

H , bH − bm
H)‖1‖(u, b)‖1 +

ch
β
(‖u‖2 + ‖p‖1)

+

√
2 max{N1, N2}

β
‖(um

H , bm
H)‖1‖(Sh(u, p)− umh, Qh(b)− bmh))‖1.

(48)

Finally, we can obtain the conclusion by applying (13), (48) and the triangle inequality,

‖p− pmh‖0 ≤‖p− Ph(u, p)‖0 + ‖Ph(u, p)− pmh‖0

≤C(h + H2)(‖u‖2 + ‖p‖1 + ‖b‖2) + C‖(uH − um
H , bH − bm

H)‖1.

Thus, the proof is done.

5.2. Two-Level Iterative Method with 2
5 < σ < 5

11

If 2
5 < σ < 5

11 , we know that iterative methods 2 and 3 are stable and convergent,
while method 1 is not convergent. We propose six two-level iterative methods to solve the
iterative solution ((um

H , bm
H), pm

H) using methods 2 and 3 on coarse mesh TH , and then to
solve the correction solution ((umh, bmh), pmh) using corrections 1–3 on fine mesh Th. All of
the two-level methods are shown below:

Step 1. Solve the MHD equations on the coarse grid, ((um
H , bm

H), pm
H) ∈ XH × MH

provided by methods 2 and 3, respectively.
Step 2. One step correction on the fine grid, ((umh, bmh), pmh) ∈ Xh ×Mh provided by

corrections 1–3, respectively.
Then, we further give the following important results about the estimation of the

above two-level methods.

Theorem 12. Under the conditions of Theorem 4 and the condition 2
5 < σ < 5

11 , ((um
H , bm

H), pm
H) ∈

XH × MH calculated by methods 2 and 3, ((umh, bmh), pmh) calculated by correction 1. Then,
(u− umh, b− bmh) and p− pmh satisfy:

‖(u− umh, b− bmh)‖1 ≤C(h + H2)(‖u‖2 + ‖p‖1 + ‖b‖2) + C‖(uH − um
H , bH − bm

H)‖1,

‖p− pmh‖0 ≤ C(h+H2)(‖u‖2 + ‖p‖1 + ‖b‖2) + C‖(uH − um
H , bH − bm

H)‖1,

and ((umh, bmh), pmh) calculated by correction 2, (u− umh, b− bmh) and p− pmh satisfy:

‖(u− umh, b− bmh)‖1 ≤ C(h + H2)(‖u‖2 + ‖p‖1 + ‖b‖2) + C‖(uH − um
H , bH − bm

H)‖2
1,

‖p− pmh‖0 ≤ C(h + H2)(‖u‖2 + ‖p‖1 + ‖b‖2) + C‖(uH − um
H , bH − bm

H)‖2
1,

and ((umh, bmh), pmh) calculated by correction 3, (u− umh, b− bmh) and p− pmh satisfy:

‖(u− umh, b− bmh)‖1 ≤ C(h + H2)(‖u‖2 + ‖p‖1 + ‖b‖2) + C‖(uH − um
H , bH − bm

H)‖1,

‖p− pmh‖0 ≤ C(h + H2)(‖u‖2 + ‖p‖1 + ‖b‖2) + C‖(uH − um
H , bH − bm

H)‖1,

for all m ≥ 0.
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5.3. Two-Level Iterative Method with 5
11 < σ < 1− ( ‖F‖∗‖F‖0

)
1
2

If 5
11 < σ < 1− ( ‖F‖∗‖F‖0

)
1
2 , we can see that method 3 is the only stable and convergent

method. We propose three two-level iterative methods to solve the iterative solution
((um

H , bm
H), pm

H) using method 3 on coarse mesh TH , and then to solve the correction solution
((umh, bmh), pmh) using corrections 1–3 on fine mesh Th. Three two-level methods are
shown below:

Step 1. Solve the MHD equations on the coarse grid, ((um
H , bm

H), pm
H) ∈ XH × MH

provided by method 3.
Step 2. One step correction on the fine grid, ((umh, bmh), pmh) ∈ Xh ×Mh provided by

corrections 1–3, respectively.
Then, we further obtain the following theoretical results about the estimation of the

above two-level methods.

Theorem 13. Under the conditions of Theorem 4 and the condition 5
11 < σ < 1 − ( ‖F‖∗‖F‖0

)
1
2 ,

((um
H , bm

H), pm
H) ∈ XH ×MH calculated by method 3, ((umh, bmh), pmh) calculated by correction

1. Then, (u− umh, b− bmh) and p− pmh satisfy:

‖(u− umh, b− bmh)‖1 ≤C(h + H2)(‖u‖2 + ‖p‖1 + ‖b‖2) + C‖(uH − um
H , bH − bm

H)‖1,

‖p− pmh‖0 ≤ C(h+H2)(‖u‖2 + ‖p‖1 + ‖b‖2) + C‖(uH − um
H , bH − bm

H)‖1,

and ((umh, bmh), pmh) calculated by correction 2, (u− umh, b− bmh) and p− pmh satisfy:

‖(u− umh, b− bmh)‖1 ≤ C(h + H2)(‖u‖2 + ‖p‖1 + ‖b‖2) + C‖(uH − um
H , bH − bm

H)‖2
1,

‖p− pmh‖0 ≤ C(h + H2)(‖u‖2 + ‖p‖1 + ‖b‖2) + C‖(uH − um
H , bH − bm

H)‖2
1,

and ((umh, bmh), pmh) calculated by correction 3, (u− umh, b− bmh) and p− pmh satisfy:

‖(u− umh, b− bmh)‖1 ≤ C(h + H2)(‖u‖2 + ‖p‖1 + ‖b‖2) + C‖(uH − um
H , bH − bm

H)‖1,

‖p− pmh‖0 ≤ C(h + H2)(‖u‖2 + ‖p‖1 + ‖b‖2) + C‖(uH − um
H , bH − bm

H)‖1,

for all m ≥ 0.

5.4. One-Level Oseen Iterative Method with 1− ( ‖F‖∗‖F‖0
)

1
2 < σ < 1

It can be analyzed from Theorem 8 that method 3 is the only stable and convergence
method with the weaker condition 1− ( ‖F‖∗‖F‖0

)
1
2 < σ < 1. We present a one-level method to

solve the iterative solution ((umh, bmh), pmh) on coarse mesh Th, as shown below.
Step 1. Solve the MHD equations on the fine grid, ((umh, bmh), pmh) ∈ Xh × Mh

obtained by method 3.
Through the theoretical analysis of Theorem 7 with 1− ( ‖F‖∗‖F‖0

)
1
2 < σ < 1, the following

error estimation results are obtained.

Theorem 14. Assume that 1− ( ‖F‖∗‖F‖0
)

1
2 < σ < 1. Then, (umh, bmh) defined by method 3 satisfies

‖(umh, bmh)‖1 ≤
‖F‖∗

min
{

R−1
e , λ1R−1

m Sc

} , (49)

and (uh − umh, bh − bmh) and ph − pmh satisfy:

‖(uh − umh, bh − bmh)‖1 ≤ σm ‖F‖∗
min{R−1

e ,λ1R−1
m Sc} , (50)

‖ph − pmh‖0 ≤ Cσm ‖F‖∗
min{R−1

e ,λ1R−1
m Sc} , (51)
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for all n ≥ 0.

Combining Theorems 4 and 14, we further derive the final conclusion of this section

Theorem 15. Assume that 1− ( ‖F‖∗‖F‖0
)

1
2 < σ < 1, (u− umh, b− bmh) and p− pmh satisfy

‖(u− umh, b− bmh)‖1 ≤ Ch(‖u‖2 + ‖b‖2 + ‖p‖1) + σm ‖F‖∗
min{R−1

e ,λ1R−1
m Sc} , (52)

‖p− pmh‖0 ≤ Ch(‖u‖2 + ‖b‖2 + ‖p‖1) + Cσm ‖F‖∗
min{R−1

e ,λ1R−1
m Sc} , (53)

for all n ≥ 0.

Remark 3. According to Theorems 9–15, we can find that two-level iterative methods that combine
method 1 with correction j (j = 1, 2, 3) have the strongest condition 0 < σ < 2

5 . In addition, if
0 < σ < 5

11 , two-level iterative methods that combine method 2 with correction j (j = 1, 2, 3) are
convergence. If 0 < σ < 1− ( ‖F‖∗‖F‖0

)
1
2 , two-level iterative methods that combine method 3 with

correction j (j = 1, 2, 3) are convergence. Under the weak condition 1− ( ‖F‖∗‖F‖0
)

1
2 < σ < 1, the

one-level Oseen method is a unique choice.

Remark 4. In terms of the convergence rate, we know that two-level iterative methods that combine
method i (i = 1, 2, 3) with correction j (j = 1, 3) are linear convergent. Moreover, two-level methods
that combine method i (i = 1, 2, 3) with correction 2 have an exponential convergence rate. Therefore,
a two-level method that combined method 2 with correction 2 has a faster convergence speed under
the unique condition 0 < σ < 5

11 . In case of 5
11 < σ < 1− ( ‖F‖∗‖F‖0

)
1
2 , a two-level iterative method

that combined method 3 with correction 2 converges the fastest.

6. Numerical Experiments

In this part, three numerical tests are rendered to substantiate the good performance
of our proposed methods for the MHD equations. Taking a fluid problem with smooth true
solution and Hartmann flow as examples, the optimal convergence rate and computational
cost of the proposed scheme are tested. The last one of the driven cavity flow shows good
simulated fluid motion results. Moreover, we use low order nonconforming finite element
pair P1nc-P1b-P1 for the velocity, magnetic field and pressure. Throughout this section, we
denote M1, M2, M3, C1, C2, and C3 as the abbreviations of methods 1–3 and corrections
1–3.

6.1. A Fluid Problem with Smooth True Solution

In this case, a fluid problem with a smooth true solution defined on the domain
Ω = [0, 1]2 will provide theoretical guidance for the studies and analysis of our proposed
methods. This is a very common problem in testing the effectiveness of the proposed
methods. The boundary conditions and source terms f, g are established by calculating the
analytic solutions, which are shown below:

u(x, y) = (απ(sin(πx))2 sin(πy) cos(πy),−απ sin(πx)(sin(πy))2 cos(πx)),
b(x, y) = (α sin(πx) cos(πy),−α cos(πx) sin(πy)),
p(x, y) = α cos(πx) cos(πy).

where α > 0 satisfies the uniqueness conditions of two-level methods.
Firstly, set Re = Rm = Sc = 1. The error values and order of convergence data

calculated by our presented two-level methods are shown in Table 1. The CPU times are
showed in Figure 1. From this table, we can see that the orders of ‖u− un

h‖1, ‖b− bn
h‖1 and

‖p− pn
h‖0 are almost all equal to one. It is clear that the two-level algorithms can guarantee

the stability of the stabilization method for fluid problems with smooth true solutions. We
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can see from Table 1 and Figure 1 that Mi + C2 (i = 1, 2, 3) has the best accuracy, while
Mi + C1 (i = 1, 2, 3) spends the least computational time with the smaller mesh division.
Since the trilinear terms of Mi + C1 (i = 1, 2, 3) are the easiest, the trilinear terms of Mi + C2
(i = 1, 2, 3) are most complicated in our presented two-level algorithms.

Table 1. Errors obtained from Mi + Cj (i, j = 1, 2, 3) by using P1nc for the velocity field.

Method H h ‖u− un
h‖1 Order ‖b− bn

h‖1 Order ‖p− pn
h‖0 Order

Mi + C1 1
2

1
4 5.11 × 10−1 \ 3.58 × 10−1 \ 2.84 × 100 \

Mi + C2 1
2

1
4 5.10 × 10−1 \ 3.57 × 10−1 \ 2.73 × 100 \

Mi + C3 1
2

1
4 5.12 × 10−1 \ 3.56 × 10−1 \ 2.81 × 100 \

Mi + C1 1
4

1
16 1.38 × 10−1 0.94 9.70 × 10−2 0.94 2.47 × 10−1 1.76

Mi + C2 1
4

1
16 1.38 × 10−1 0.94 9.29 × 10−2 0.97 1.83 × 10−1 1.95

Mi + C3 1
4

1
16 1.38 × 10−1 0.95 9.36 × 10−2 0.99 2.46 × 10−1 1.76

Mi + C1 1
8

1
64 3.47 × 10−2 1.00 2.52 × 10−2 0.97 5.30 × 10−2 1.11

Mi + C2 1
8

1
64 3.47 × 10−2 1.00 2.33 × 10−2 1.00 2.21 × 10−2 1.53

Mi + C3 1
8

1
64 3.47 × 10−2 1.00 2.35 × 10−2 1.00 5.96 × 10−2 1.02

Mi + C1 1
16

1
256 8.69 × 10−3 1.00 6.39 × 10−3 0.96 1.30 × 10−2 1.01

Mi + C2 1
16

1
256 8.68 × 10−3 1.00 5.82 × 10−3 1.00 2.75 × 10−3 1.50

Mi + C3 1
16

1
256 8.69 × 10−3 1.00 5.89 × 10−3 1.00 1.54 × 10−2 0.98
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(a) M1 + Cj(j = 1, 2, 3)
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Figure 1. The CPU time for Mi + Cj (i, j = 1, 2, 3) by using P1nc for the velocity field.

Then, numerical results for calculating velocity using the nonconforming element P1nc
are given in Table 1, and numerical results for calculating velocity using the piecewise linear
element P1 are shown in Table 2. By comparing and analyzing the data in Tables 1 and 2,
we can find that the errors calculated by our proposed two-level methods are smaller.

Table 2. Errors obtained from Mi + Cj (i, j = 1, 2, 3) by using P1b for the velocity field.

Method H h ‖u− un
h‖1 Order ‖b− bn

h‖1 Order ‖p− pn
h‖0 Order

Mi + C1 1
2

1
4 5.68 × 10−1 \ 3.56 × 10−1 \ 6.21 × 100 \

Mi + C2 1
2

1
4 5.68 × 10−1 \ 3.56 × 10−1 \ 6.21 × 100 \

Mi + C3 1
2

1
4 5.68 × 10−1 \ 3.56 × 10−1 \ 6.22 × 100 \

Mi + C1 1
4

1
16 1.52 × 10−1 0.95 9.34 × 10−2 0.97 7.66 × 10−1 1.51

Mi + C2 1
4

1
16 1.52 × 10−1 0.95 9.29 × 10−2 0.97 6.57 × 10−1 1.62

Mi + C3 1
4

1
16 1.52 × 10−1 0.95 9.36 × 10−2 0.96 9.18 × 10−1 1.38

Mi + C1 1
8

1
64 3.79 × 10−2 1.00 2.35 × 10−2 0.99 1.38 × 10−1 1.23

Mi + C2 1
8

1
64 3.78 × 10−2 1.00 2.33 × 10−2 1.00 7.41 × 10−2 1.57

Mi + C3 1
8

1
64 3.79 × 10−2 1.00 2.38 × 10−2 0.99 2.36 × 10−1 0.98

Mi + C1 1
16

1
256 9.46 × 10−3 1.00 5.88 × 10−3 1.00 3.12 × 10−2 1.07

Mi + C2 1
16

1
256 9.44 × 10−3 1.00 5.82 × 10−3 1.00 8.98 × 10−3 1.52

Mi + C3 1
16

1
256 9.47 × 10−3 1.00 5.97 × 10−3 1.00 6.12 × 10−2 0.98
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6.2. The Hartmann Flow

In this case, we will test a classical MHD problem, the 2D Hartmann flow. It is affected
by a steady unidirectional flow in the channel Ω = [0, 10]× [−1, 1]. Set Ha =

√
ReRmSc in

2D Hartmann flow. Meanwhile, the transverse magnetic field bD = (0, 1) is inflicted on the
boundaries of this system. The analytic solutions are given by:

u(x, y) = (u(y), 0),
b(x, y) = (B(y), 1),
p(x, y) = −Gx− ScB2(y)/2 + p0,

where

u(y) =
GRe

Ha · tanh(Ha)

(
1− cosh(yHa)

cosh(Ha)

)
, B(y) =

G
Sc

(
sinh(yHa)
sinh(Ha)

− y
)

.

Furthermore, the boundary conditions are given indicated below:
(pI− R−1

e ∇u)n = pdn, on x = 0 and x = 10,
u = 0, on y = ±1,
n× b = n× bD, on ∂Ω,

where pd(x, y) = p(x, y), p0 is zero, and I is the identity matrix.
Taking G = 0.1 and considering two different schemes: (1) Ha = 1 (Re = 1, Rm =

1, Sc = 1), (2) Ha = 10 (Re = 10, Rm = 1, Sc = 10). The first components of the analytic
solutions u(y), B(y) and the numerical ones u(yk), B(yk)(yk = −1 + 0.1k, k = 0, · · · , 20)
provided by Mi + Cj (i, j = 1, 2, 3) are showed in Figures 2–4. Since some two-level methods
do not converge at high Hartmann numbers, we present only convergent images.
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Figure 2. Analytical curves and numerical results obtained by M1 + Cj (j = 1, 2, 3) (x = 0.5,
−1 ≤ y ≤ 1).
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Figure 3. Analytical curves and numerical results obtained by M2 + Cj (j = 1, 2, 3) (x = 0.5,
−1 ≤ y ≤ 1).
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Figure 4. Analytical curves and numerical results obtained by M3 + Cj (j = 1, 2, 3) (x = 0.5,
−1 ≤ y ≤ 1).

Then, to better illustrate the precision of our proposed algorithms, the error values
and order of convergence data calculated by our presented two-level algorithms are shown
in Table 3 when scheme (1) is selected. Here, we only show the discretization errors of
velocity, magnetic field and pressure of one method, since the numerical results of other
methods are roughly the same in numerical values. We can seen from the table that the
convergence orders of velocity and magnetic field in H1-norm reach the first order, and
the pressure in L2-norm achieves a better approximate convergence rate higher than the
first order. The results show that the two-level algorithms can guarantee the accuracy of
numerical experiment for the Hartmann flow problem.

Table 3. Errors obtained from M2 + C2.

H h ‖u− un
h‖1 Order ‖b− bn

h‖1 Order ‖p− pn
h‖0 Order

1
4

1
16 6.38 × 10−2 \ 6.63 × 10−2 \ 2.38 × 10−4 \

1
5

1
25 4.09 × 10−2 1.00 4.24 × 10−2 1.00 1.22 × 10−4 1.49

1
6

1
36 2.84 × 10−2 1.00 2.95 × 10−2 1.00 7.09 × 10−5 1.49

1
7

1
49 2.09 × 10−2 1.00 2.16 × 10−2 1.00 4.47 × 10−5 1.50

Next, we test the convergence of Mi + Cj (i, j = 1, 2, 3). Setting G = 0.1 and choosing
three different schemes: (1) Ha = 1 (Re = 1, Rm = 1, Sc = 1), (2) Ha = 10 (Re = 10,
Rm = 1, Sc = 10), (3) Ha = 10

√
15 (Re = 150, Rm = 1, Sc = 10). All the nine proposed

methods are available for scheme (1) in Figure 5, which means that all the proposed
methods are convergent for 0 < σ < 2

5 . However, Figure 6 shows M1 + Cj (j = 1, 2, 3) are
not convergent for 2

5 < σ < 5
11 because the parameter selection is not in 2

5 < σ < 5
11 . Figure

7 shows If Ha = 10
√

15 (Re = 150, Rm = 1, Sc = 10), only M3 + Cj (j = 1, 2, 3) is convergent
while Mi + Cj (i = 2, 3, j = 1, 2, 3) is not convergent, since the uniqueness condition is
not met.

We can also see from those figures that M1 + Cj (j = 1, 2, 3) only applies to the case of a
small Hartmann number. In some cases with large Hartmann numbers, M3 + Cj (j = 1, 2, 3)
can be chosen. Figure 5 shows that M2 + Cj (j = 1, 2, 3) converges faster than Mi+Cj (i = 1, 2,
j = 1, 2, 3) since M2 has exponential convergence. All in all, these numerical experimental
results demonstrate the effectiveness of our theoretical analysis and the proposed methods.
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Figure 5. The iteration convergence errors of two-level methods with Re = 1, Rm = 1, Sc = 1.
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Figure 6. The iteration convergence errors of two-level methods with Re = 10, Rm = 1, Sc = 10.
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Figure 7. The iteration convergence errors of two-level methods with Re = 150, Rm = 1, Sc = 10.

6.3. Driven Cavity Flow

In the last case, the numerical simulation of a classical fluid problem with driven
cavity flow is showed. We consider the flow in the 2D domain Ω = [−1, 1]× [−1, 1] with
ΓD = ∂Ω, and there is no analytical solution. Let the external force terms f and g be zero;
then, their boundary conditions are defined as follows:

u(x, y) = 0, on x = ±1 and y = −1,
u(x, y) = (1, 0), on y = 1,
n× b = n× bD, on ∂Ω,

where bD = (1, 0).
From the above two examples and theoretical analysis, M3 + Cj (j = 1, 2, 3) has a wider

application. Therefore, we mainly simulate the effect of the driven cavity flow by M3 + C2
in this part. In Figure 8, the velocity streamline for three different parameters Re = 1, 100
and 1000 with Rm = 1, Sc = 1 are showed. As Re enhances, the number of vortices produced
by velocity streamlines increases to three. We use the same change pattern in Figure 9, and
the streamlines of velocity for Sc= 50, 500, 5000 with Re = 1, Rm = 1, from which we can
notice that the vortices produced by velocity streamlines also divide into three vortices and
move upward.
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Figure 8. Numerical streamlines of the velocity drawn using data obtained from M3 + C2, wherein
Re is set as 1, 100 and 1000 respectively.
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(c) Re = 1, Rm = 1, Sc = 5000

Figure 9. Numerical streamlines of the velocity drawn using data obtained from M3 + C2, wherein
Sc is set as 50, 500 and 5000 respectively.

Then, Figures 10–12 show the variation trend of numerical streamlines of the magnetic
by M3 + C2 as parameters change. We vary Re = 10, 100, 1000 with Rm = 5, Sc = 1 in
Figure 10. Analogously, we vary Sc from 1 in (a), to 100 in (b), then to 5000 in (c) with Re =
1, Rm = 10 in Figure 12, from which we can all observe that the streamlines have a tendency
to change straight.
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Figure 10. Numerical streamlines of the magnetic field drawn using data obtained from M3 + C2,
wherein Re is set as 10, 100 and 1000 respectively.
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Figure 11. Numerical streamlines of the magnetic field drawn using data obtained from M3 + C2,
wherein Rm is set as 1, 5 and 15 respectively.

Conclusively, Figure 11 shows the trends of magnetic field streamlines for Rm = 1, 5,
15 with Re = 10, Sc = 1. As Rm enhances, the shape of streamline changes from a straight
line to a curve. The above phenomenon indicates an increase in curvature.
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(b) Re = 1, Rm = 10, Sc = 100
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Figure 12. Numerical streamlines of the magnetic field drawn using data obtained from M3 + C2,
wherein Sc is set as 1, 100 and 5000 respectively.

7. Conclusions

Based on nonconforming FEM, several two-level methods for solving the stationary
incompressible MHD equations have been presented under different unique conditions
in this paper. Combining theoretical analysis with numerical experiments, the two-level
method that combined method 2 with correction 2 has faster convergence speed and
better calculation accuracy under the unique condition 0 < σ < 5

11 . In case of 5
11 < σ <

1− ( ‖F‖∗‖F‖0
)

1
2 , the two-level method that combined method 3 with correction 2 has a good

advantage. If 1− ( ‖F‖∗‖F‖0
)

1
2 < σ < 1, one-level Oseen iterative method is a unique scheme.
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