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Abstract: In theoretical biology, robustness refers to the ability of a biological system to function prop-
erly even under perturbation of basic parameters (e.g., temperature or pH), which in mathematical
models is reflected in not needing to fine-tune basic parameter constants; flexibility refers to the ability
of a system to switch functions or behaviors easily and effortlessly. While there are extensive explo-
rations of the concept of robustness and what it requires mathematically, understanding flexibility has
proven more elusive, as well as also elucidating the apparent opposition between what is required
mathematically for models to implement either. In this paper we address a number of arguments
in theoretical neuroscience showing that both robustness and flexibility can be attained by systems
that poise themselves at the onset of a large number of dynamical bifurcations, or dynamical criticality,
and how such poising can have a profound influence on integration of information processing and
function. Finally, we examine critical map lattices, which are coupled map lattices where the coupling
is dynamically critical in the sense of having purely imaginary eigenvalues. We show that these map
lattices provide an explicit connection between dynamical criticality in the sense we have used and
“edge of chaos” criticality.

Keywords: dynamical criticality; flexibility; dynamic change in function

1. Introduction

Long-term survival requires—by definition—surviving many short terms. This creates
a well-studied catch-22 in evolutionary biology: becoming too good at short-term survival,
for instance by overspecialization, is detrimental to long-term survival, for which generalist
abilities are required in a changing evolutionary landscape. Thus species need to do “well
enough” in the short term, but not at the expense of their ability to change strategies
when the niche shifts. In physiology, these two conflicting temporal demands are loosely
identified with “robustness”, the ability of a physiological system to perform the exact same
task correctly under varying and uncontrolled conditions, and “flexibility”, the ability to
change the task as conditions change. A well-established example is the heartbeat, which
needs to be robust in the scale of minutes (identical and well-spaced heartbeats no matter
what the heart rate) but remain flexible in the scale of a day (rapidly and sensitively adapt
heart rate to physiological demand).

While a number of studies have explored the theoretical concept of robustness as
it pertains to various areas of biology, most prominently in molecular cell biology [1,2],
the theoretical underpinnings of biological flexibility are still obscure [3]. It is known
how to show that a mathematical model of a biological system is robust, as there are
well-defined prescriptions to show the solutions to be insensitive to small perturbations in
the defining dynamics. However, it is not so clear at present what mathematical procedure
we should follow to determine if a model is flexible or not, a difficulty due in no small part
to the apparent loggerheads between these two notions. Here, we suggest that a family of
strategies (“dynamical criticality”) provides a foundation for general recipes for flexible yet
robust functions.
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One of the most striking forms of flexibility in neural function is integration. This
phenomenon occurs at various scales, from the input-dependent changes in the range of
intracortical functional connectivity, all the way up to entire brain areas working together
as needed, forming transient associations. Modeling these dynamical changes in the size
and range of interactions is a key part of this area of research.

In this Introduction, we first survey the historical development of these ideas within
the neuroscience community, briefly describe some nuances between the different senses in
which criticality is used in various contexts, define carefully the notions of robustness and
flexibility, and review the mathematical notion of “general position” on which structural
stability theory of dynamical systems is predicated.

Historical development
One can always find in the classics prefigurations of things to come, because scientists

vaguely intuit ideas well before the technical developments exist to discuss them rigorously.
The year 1948 was rife with prefigurations of the ideas that eventually would be dynamical
criticality, such as Ashby’s construction of the Homeostat [4], built on the ideas of Principles
of the Self-Organizing Dynamical System [5], and Hopf’s treatment of the Landau–Hopf
theory of turbulence [6]; but the most explicit one is Thomas Gold’s absolutely prescient
1948 paper The physical basis of the action of the cochlea [7] where he notes that the degree of
mechanical resonance that can be measured in the cochlea is incompatible with the heavy
viscous damping expected of a fluid system with narrow passageways, reacting purely
passively to mechanical forcing. He posited the existence of an active mechanism which
would provide enough “negative viscosity” to overcome the physical viscosity of the fluid
mechanics. He further predicted that if the active mechanism overcompensated, it could
result in a spontaneous feedback oscillation and emission of sound from the cochlea.

However, his theory rested on a single experimental result: his own. He and Pumphrey
had measured the degree of resonance in question, through extremely ingenious yet entirely
indirect means, in the article immediately preceding reference [7] in that issue of the
journal [8]. Actual mechanical measurements in physiologically intact cochleae would not
be technically feasible for many decades. Thus, his predictions were not taken seriously,
especially those about sound coming out of the cochlea, and all attention in the cochlear
dynamics field went to von Békésy’s measurements of traveling waves in the cochleae
of cadavers, which, by virtue of being dead, cannot show an active process powered by
metabolic energy; thus, none of von Békésy’s work could therefore prove or disprove
Gold’s conjecture. It was not until the late 1970s that Kemp discovered the cochlear active
process [9]—briefly thereafter, spontaneous otoacoustic emissions—the nearly-universal
phenomenon where, in a very quiet environment, sound can be measured coming out of
most healthy cochleae. Even then, However, Gold’s ideas remained at the level of purely
qualitative discussions.

A total of 50 years after Gold, in 1998, while constructing a biophysically plausible
model of the dynamics of hair cells (the sensorimotor cells in the cochlea responsible for the
active process) we noted [10] that choosing physiologically plausible parameters seemed to
poise our model close to a Hopf bifurcation. Not only that, but upon changing the length
and number of stereocilia in the model, in accord with extant electron-microscope mea-
surements, the frequency of the Hopf bifurcation in our model tracked the physiologically
measured frequency of cells of those characteristics. We further noted that if the model
was tuned exactly to the Hopf bifurcation, then when subject to small forcings (i.e., faint
sounds), the model’s response was narrowly tuned in frequency and showed a large gain,
both of which characteristics vanished for larger forcings, which were previously known
yet unlinked experimentally observed features of the hearing system.

In modern language we now recognize that what Gold had been describing was a
Hopf bifurcation, together with a hypothetical mechanism that would tune the parameters
of the system to be close to such a bifurcation. Up to our work, the active process’ action was
only described in qualitative terms, “injecting energy into the system”. By following Gold’s
conjecture literally rather than figuratively, poising the system exactly at the bifurcation,
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precise theoretical predictions could be made. Briefly after our work, Camalet et al. [11]
conjectured mechanisms to tune a system to being close to a Hopf bifurcation, which they
termed “self-tuned criticality” to distinguish it from the different notion of “self-organized
criticality” from sandpile models. Later we showed [12] that a reduction to a normal form
for the forced Hopf bifurcation displayed four characteristics that vanish away from the
critical point: high amplification, high spectral tuning, a compressive nonlinearity of the
response following a 1/3 power law, and, if mistuned, the ability to go into a limit cycle
and generate oscillations. The theoretical advance here is that the Hopf bifurcation scenario
links all four of these independently known characteristics as part of one single scenario.
Moreover, following Gold, we need to posit the existence of a feedback loop to keep the
system tuned to the bifurcation [13,14].

To this day, the Hopf bifurcation scenario remains the best extant theoretical descrip-
tion of the sensitivity and acuity of our hearing [15]. No experimental manipulation of the
organ of Corti has been able to ablate one of the four characteristics without ablating all
four. The 1/3 power law has been experimentally measured in a number of systems such
as sacculus cells [16]. The specific nonlinearities giving rise to the 1/3 law have also been
shown to account for the special scaling of (2 f2 − f1) combination tones [12,17], two-tone
interference [17,18], and various other phenomena which, in other models, require separate
scenarios to explain.

Meanwhile, on the (then) other side of neuroscience, motor control, David Tank’s group
had been making a number of measurements in the oculomotor reflex of the goldfish
that appeared to defy any classical theoretical explanation. Sebastian Seung posited a
remarkable model [19]: a neural system that could poise itself so that its attracting set,
rather than being a fixed point, was a line. Such line attractors, by virtue of having
one direction (along the line) in which their stability is indifferent, are able to perform
exact integration of inputs when mapped as forces along the line. Line attractors can
be generated when one of the eigendirections around a stable fixed point loses stability
and becomes marginal, its eigenvalue becomes zero, and its associated stable manifold
becomes a center manifold. Evidently, to achieve a neutral direction a parameter must
be tuned and therefore a feedback control mechanism must exist. In a striking series of
experimental demonstrations, Tank’s group showed that pharmacological manipulations
of the goldfish circuit interfered with this poising and rendered the central rest position of
the goldfish’s eyeball (the fixed point) either stable or unstable [20–23], so that in order to
foveate an off-center target the system had to repeatedly perform saccades returning to the
target position.

Roughly in the same timeframe, Elie Bienenstock was proposing the notion of “regu-
lated criticality” [24], in which he used a form of Hebbian covariance plasticity for the feed-
back equations keeping the system close to a critical point. He analyzed a low-dimensional
E-I system whose synaptic parameters were then “regulated” through Hebbian covariance.

A model of motor “gestures” [25] analyzes vocal apparatus of songbirds, pointing out
that when the vocal system is poised close to a dynamical bifurcation (in that case a Hopf
transition), very simple parameter trajectories in parameter space (“gestures”) can generate
extremely complex output waveforms. See Figure 1. This line of research anticipates the
“rotational dynamics” found in, for example, motor reach actions [26] and song premotor
cortical neurons in songbirds [27].

Our historical tour ends with a model poised closed to a critical transition so that
cyclical motion in parameter space enables it to reconfigure its dynamics to perform distinct
tasks [28]. The model is based on an experiment on sensory discrimination in which a
primate carries out a task in which it has to discriminate between two different categories of
stimuli, but instead of immediately conveying its judgement, it has to remember this choice
for a period of time during which the sensory stimulus is removed, then press a button to
convey its answer, and finally forget this past choice in order to start anew another trial.
In the model, nearly parallel nullclines are used so that the system can, with small shift
of parameters, move from a potential with a nearly-flat bottom (integration, as in a line
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attractor), bifurcate to a double-well potential (threshold the previous state and then keep
the memory of it), and then bifurcate again to a single-well potential (resetting the state of
the system to a neutral memory before a new task). See Figure 1. The similarities to the
cyclical measurements in Szilard’s famous heat engine, the classical model that established
the kT ln2 thermal equivalence for resetting a bit information, are striking [29,30].
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Figure 1. After [3]. Motion through a parameter space, when poised close to a bifurcation, allows
rapid reconfiguration of the underlying dynamics. (a), a set of transitions from monostable through
flat bottom through double-well potential, as in [28]. (b), motion near a Hopf bifurcation allows for
starting and stopping complex waveforms, as in [25,27].

In all these models, we observe a common feature: something very concrete is gained
by the neural system by living right at a dynamical bifurcation. It can be sensitivity and
selectivity (auditory), the ability to integrate over timescales far longer than the biophysical
constants of the system (line attractors), the ability to generate and coordinate complex
outputs from simpler control “gestures”, or the ability to cycle a system through an integra-
tion/decision/memory cycle.

Another feature is that they are all low-dimensional systems. However, the original
system under consideration, the brain, is expected to be host to many such critical systems
at the same time. For example, in the cochlear case, every single frequency band is expected
to self-tune to a Hopf bifurcation, so we would have a system with many marginal modes
at the same time. In this paper we will refer to “dynamical criticality” as a system in
which this is possible, one in the number of critical modes (the dimensionality of the center
manifolds) is large and increases with system size. It is not a priori evident that this is
possible because high-dimensional center manifolds are fragile [31].

Relationship to other forms of criticality
There are a large number of interconnected notions of “criticality” that have been used

to describe neural systems as well as biological systems in general. Here, we briefly review
these other ideas.

Dynamical criticality in the sense of “edge of chaos” was a notion advanced by
Packard [32] partly inspired by models of Kauffman [33,34], and then further developed by
Langton [35,36], Kauffman [37], Mitchell and Crutchfield [38], and others. Other articles
in this Special Issue elaborate on the rich evolution of this concept in depth. The concept
relates to a system that has an order–disorder transition or order–chaos transition, and the
related findings that many systems at this transition are capable of information-processing
tasks not available away from this boundary, specifically in the sense of Turing universal
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cellular automata such as Rule110. The central differences with the concept as used in the
current paper are two: first, many of our systems do not have a transition to disorder but a
bifurcation to a different dynamical state, and second, we want to consider systems having
a large dimensionality of the transition space. In this paper we will show one explicit
connection between models in either class, by exploring critically-coupled map lattices.

Self-organized criticality refers to a state in which the system spontaneously, and
without external tuning of parameters, behaves similar to a statistical mechanics system
at a second order phase transition such as the ferromagnetic critical point. Its most clas-
sical embodiment is the Bak–Tang–Wiesenfeld sandpile [39]. Several researchers have
advanced the notion that the brain is a self-organized critical system in this sense [40]
and experimental evidence for “neuronal avalanches” has been found in many systems
(see [41] for a review). It has been pointed out that existence of a power-law of avalanches
does not imply necessarily that the system is critical [42] but further tests on the intercon-
nectedness of various power-laws do lead to methods to measure proximity to criticality
in this sense [43,44] Furthermore, experimental evidence for the return of a system after
criticality has been perturbed [45–48] demonstrate the existence of underlying homeostatic
mechanisms involved in the maintenance of criticality.

While there are a number of underlying theoretical connections between SOC and
dynamical criticality, as shown explicitly in [49], there are also a number of differences. A
consequence of SOC is divergent spatial scales, such as an infinitely-long ranged suscep-
tibility. The concept discussed in this paper of self-tuned dynamical criticality refers to a
system spontaneously poising itself close to multidimensional bifurcation points. Some
systems, such as certain shell models of turbulence, appear to display both kinds of critical-
ity, perhaps for the same underlying reason. However, in the viewpoint we articulate, the
nonstationarity of the system is essential; the idea is not to be exactly at a bifurcation point,
but to be close enough to one to be able to rapidly change behavior just by moving across
the critical value.

Poising at Statistical Criticality: Subtly different from the above case, it was observed
that, while fitting maximal-entropy models [50] to binned multidimensional spike trains, the
fitted Hamiltonians were usually far closer to a statistical critical point than when disturbed
or surrogate data was used for the fit. This led to a number of investigations [51–53].
Theoretically, proximity to a phase transition allows for increased information transmission
capability [50,52–55].

Rotational dynamics: Work on motor reach gestures [26] showed that neural activity
during an arm-reaching task collapsed on a low-dimensional manifold within which the
activity left a quiescent point, rotated around it 180 degrees and re-entered in the opposite
side. Different reaches led to different hyperplanes on which this happened, but it was
always a rotational motion. Another relevant work is [27], in which these motions are more
complex than just half-circles but are nonetheless rotational. Obviously, such rotational
dynamics would appear as purely imaginary eigenvalues to an autoregressive analysis.
This is one of many cases where we observe the effective dimensionality of brain activity
dynamics as being relatively low for any single individual act or task, but with a large
variety of different low-dimensional manifolds available.

Balanced networks: A different take on excitation–inhibition homeostasis has been
taken in a series of studies of “balanced networks”, in which the observation is that, persis-
tently, the total amount of excitatory input and the total amount inhibitory input are largely
balanced together [56,57]. This is a very different criteria to the purely dynamical “imagi-
nary eigenvalue” of the Hessian matrix, as the “total input” can only relate networkwise as
products of synaptic strengths times presynaptic activity levels. Balanced networks have
been the subject of pretty intense theoretical analysis [58] for their efficiency.

Robustness versus flexibility
Consider the heartbeat, once thought the paradigm of regularity. Today the heartbeat

is one of the best-documented cases of 1/f fluctuations in biology, a paradigm of wide
variability [59–61]. The heartbeat needs to be stable and robust, every day of our lives—the
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heartbeat cannot depend sensitively on fragile combinations of parameters, for we need a
heartbeat always, regardless of variability in our environment and internal medium. Thirsty,
feverish, cool, running, resting, drunk, sleeping, swimming, rushing: we always need a
heartbeat, so it needs to be robust for us to live moment to moment. Robustness, in this
sense, has been the subject of extensive discussions in the biological literature.

However, if our heart were to beat at the same frequency in any of the above conditions,
we would soon be dead. In fact, the heart’s ability to rapidly and sensitively adapt the
interbeat interval to behavioral variation in demand for blood supply is a leading indicator
of cardiac health. There are a lot of things that happen in one lifetime, so to last through a
lifetime of events, we need a flexible hearbeat.

Flexibility and robustness are thus apparently at odds. Consider building a theoretical
model of a flock of birds or a school of fish. Making the model “robust” means the agents
will stably be attracted to others and easily flock together, but this means that the flock
will be governed by majority rules. Making the model flexible means making a flock that
is easily steerable by any of its members, a flock that can sensitively change directions
when only a handful of individuals may be alarmed by seeing a predator. The solution
is that flocks may be both robust as well as flexible when they are, paradoxically, on the
borderline of dissolution. Recent work analyzing high-throughput data from the flight of
sterling flocks shows that indeed flocks self-poise at critical points as a means to achieve
both robustness as well as flexibility [62,63].

It has long been implicitly assumed that the biological notion of “robustness” corre-
sponds to the mathematical notion of structural stability; a dynamical system is said to
be structurally stable if and only if the qualitative nature of the solutions is unaffected
by small perturbations to the defining law (typically the C1 topology). The quintessential
example of a structurally stable system is the stable fixed point, but the very features that
make it robust also make it not be flexible. For example, stable fixed points are excellent for
remembering things, so they are used in models of memory such as Hopfield networks.
However, because they are robust they are hard to change, so it takes many exemplars to
train a Hopfield net.

Many demonstrations of structural stability depend upon the dynamical object be-
ing described as the intersection between various surfaces, for example, the intersection
between nullclines. The system is then structurally stable if this intersection is “generic”.
Genericity in topology is one of many mathematical concepts falling under the general
umbrella of “general position”.

General position, structural stability, and robustness.
Many concepts in mathematics are predicated upon the study of objects in what

mathematicians call “general position”, meaning the typical situation that would arise if
the objects were randomly chosen or randomly jittered. For instance, three points on a plane
typically do not lie on the same line, so for them “general position” means “not collinear”.
From this point of view, the probability of finding such a “non-generic” configuration,
if the three points are randomly and independently drawn, is zero. Many of the most
powerful theorems in differential topology only work for transversal intersections, namely
surfaces that cross each other at a non-zero angle. Two 2D spherical surfaces in 3D typically
intersect either on a circle, or not at all; when they intersect on a circle each of the spheres
is transverse to the other at the intersection, and a small enough motion of the spheres
cannot destroy the circle. If they do not intersect at all, a small enough motion cannot
create an intersection. It is only when they barely touch in a point, that the system is
critically sensitive to small motions. Transversal intersections all look the same, while
the nongeneric, tangential intersections, can end up being rather baroque. Because general
position leads to powerful tools, and nongeneric systems can become very complex, it
is natural to want to assume general position as much more powerful theorems can be
proved. So, much of dynamical systems theory assumes it is unlikely to find, in natural
settings, dynamical systems which are not in “general position”—for instance, one that has
tangential nullclines.
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However, in a different setting this may not be at all the case, as illustrated in Figure 2.
If three points move randomly around on the plane, one of them shall, eventually, cross
the line spanned by the other two. If this is the setting we are in, at some rare moments
in time, it is a certainty that general position will be violated. We transferred the rarity
of collinearity to a small collection of moments when it happens, but the improbability
became a certainty that it will eventually happen. A classical example is a dripping faucet:
the body of water changes topology from a single bulge connected to the faucet to two
disconnected pieces, the bulge and a falling drop, and this change is exceedingly brief,
but it still happens regularly. At the very instant of the disconnection, the surface of the
faucet-attached bulge and the surface of the drop intersect, but this intersection cannot be
transverse. In some cases an infinite cascade of complexity ensues [64,65], whereby the
drop is separated from the bulge by a neck of fluid, and the neck itself generates a thinner
neck and another thinner neck.
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Figure 2. (Left): three points on a plane are not typically collinear, so we say collinear configurations
have zero probability. However, if the configuration is evolving, eventually one point will cross the
line defined by the other two; so, it is certain that at some rare moments in time the configuration
will be collinear. In the case of intersections, this will happen in any situation in which the topology
changes. For example, at the instant a falling drop detaches the intersection cannot be transverse.
(Right): there is a situation far more prevalent in biology, in which there is an active tampering with
the configuration: a feedback loop stabilizing the system in the unlikely case. For example, consider
a kid playing hide-and-seek; if another kid hides behind a tree, they tries to keep themselves, the
seeker and the tree collinear. An archer aiming at a target tries to line up 4 points in 3D: their pupil,
the mark, the front of the aim, and the back of the aim (codimension 4). This mechanism can stabilize
rare configurations of arbitrarily high codimension. However, the flip side is that the system will not
be exactly at the unlikely configuration but forever hovering close to it.

To make matters more interesting beyond brief moments, living beings regale us with
situations in which a feedback loop stabilizes the system at such a non-generic configuration.
To belabor the three-point analogy, consider two kids playing hide and seek, and one
hides behind a tree; in order to remain hidden the child hiding tries to keep the seeker, the
tree, and themselves collinear, with the tree in the middle; this is an active feedback loop
stabilizing an otherwise nongeneric configuration. The codimension of the configuration
is the number of parameters that need be tampered with by feedback to achieve it (in the
sense of the law of requisite variety). This number could become large even for simple cases:
a shooter taking aim at a target seeks to make collinear in 3D space (a) their pupil, (b) the
target, (c) the front, and (d) the back of the aim’s marks; this system has a codimension of
four. When such an active feedback loop is active, lack of general position is no longer a
rare event happening at isolated moments in time, but may become the persistent norm;
the flip side being that now a feedback loop keeps the system close to the nongeneric
configuration but not exactly at it, and may hover around. I already showed in the Historical
Development section a parade of examples of non-generic behavior in the nervous system;
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the evident conclusion is that somehow, nongenericity is useful for living beings. However,
this is, mathematically speaking, a wild and lawless territory where few theorems assist us,
particularly as the codimension of the system becomes large.

In the last few years, a number of theoretical models and experimental observations,
by our group as well as others, have started to paint a coherent picture in which systems
whose dynamics is poised on the edge of a sudden change (a “bifurcation”, in jargon) are
implicated in the ability of our brains to perform certain tasks.

2. Materials and Methods

In this section I will first poise the question of what methodology needs to be used
in proving whether a system is “dynamically critical”. Then I describe methodology to
extract dynamical eigenvalues from time series. Finally, I examine mathematical models of
self-poising leading to dynamical criticality as they are the basis of subsequent studies, and
models of cortical integration of information mediated by critical systems.

Is it a tautological notion?
There have been recent discussions (mostly in social media) as to whether the notion

of being tuned at a critical point is tautological, based on its presence being detected
exclusively through model fitting of data. The critics have pointed out that, if the model
being fitted to the data has “boring” regimes that are structurally incapable of fitting the
data, then if a regression produces parameters that lie at the boundary between these
regimes, it is not a proof the “system lives at the boundary”; it has only proved that the
only place this particular model can account for the data is at the boundary, but this is a
limitation of the model not the original system. In other cases, the observation has been
that simple data pre-processing steps such as filtering may further facilitate this process,
particularly when looking at the data in a “dimensional reduction” framework.

To be specific, consider trying to fit a generative model to data. In a generative model
one does not model the outcomes, but instead models the dynamics or process that gives
rise to the outcomes [66]. For instance, given a set of sequences, one can use a spin Hamilto-
nian as a model, and then the probabilities of sequences are generated by the Boltzmann
distribution; the data can be fit through maximum likelihood. Alternatively, one may have
a continuous time-series and fit locally a linear dynamical law as an AR(1) process [67–69].
In the case the model is a spin interaction Hamiltonian, then any amount of nontrivial
structure in the sequences will preclude the fit from using model parameters in a high
temperature “gas” phase where correlations fall exponentially; nor in the ferromagnetic
phase where sequences have little variability. If the Hamiltonian has a phase transition, that
is where freedom to fit the observations will live. Or in the case of fitting linear dynamics to
a time-series, linear dynamics can decay, grow, or oscillate. If the window of the fit is long
and the time series is approximately stationary, then the fit will not produce exponentially
decaying or growing functions, since these are nonzero only at the beginning or the end
of the time series; therefore, the only available freedom is to fit oscillations. Monsieur
Fourier assured us a long time ago we can always do so, and so coming up with a bunch of
oscillatory modes would not be a surprise but an almost certainty.

This does not mean that it is impossible a priori to prove that a system is near criticality. This
simply means that one has to be careful methodologically. Elsayed and Cunningham give
a beautiful treatment of this topic in [70] from the viewpoint of statistical analysis, and
argue for a number of tests to be done a priori to be certain the interesting “population
structure” being observed is not artifactual. Obtaining the model parameters from the
fit is only one part: examining the residuals, fitting gently reshuffled surrogate data,
should all be part of the standard methodology. In addition, experimental design, and in
particular perturbation experiments, should be a part of this methodology from the start,
as critical systems respond to perturbations in characteristic fashions; for example, Tank
and collaborators observed directly a switch to either exponential growth or exponential
decay when performing pharmacological manipulations. In [67,71,72], the point is not that
the eigenvalues of a fitted dynamics live close to the critical line in conscious patients, but
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that induction of anesthesia drives these eigenvalues to a more stable regime: it is therefore
directly probatory of the idea that nearness to the critical line is not entirely an artifact of
the fit. Similarly, in [73], proximity to the critical line is only observed in healthy patients
while pathologies show stabilization of cortical dynamics.

Turning the tables around, one may argue there is no such thing as a model that gives
interesting dynamics for all parameters, therefore the criticism is itself a bit of a tautology.

Self-poising in anti-Hebbian networks:
In our first paper on dynamical criticality in neural networks [49], we outlined a model

that serves more as an “existence proof” than as an actual proposal: a set of neurons whose
dynamics is simply linear in the activities, but whose synaptic matrix evolves through
“anti-Hebbian” interactions [74–81]:

.
x = Mx

.
M = α

(
I− xxT) (1)

The evolution of this system is surprisingly complex. As shown in the Figure 3, the
real part of the eigenvalues of M relaxes towards 0, so that all eigenvalues gravitate towards
the instability boundary (the imaginary axis) and forever thereafter flutter around it.

This model showed that dynamics that stabilize the system around many simultaneous
Hopf bifurcations can indeed exist, pushing the cloud of eigenvalues and then flattening it
against the imaginary axis.
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Figure 3. Anti-Hebbian evolution and poising near criticality (following [49]). The temporal evolution
of the real (black) and imaginary (red) parts of the eigenvalues of Equation (1). Please note the
logarithmic time scale permitting the visualization of distinct epochs. During an epoch of order 1, all
unstable eigenvalues (i.e., those with a positive real part) relax to become stable (negative real part).
During an epoch of time 1/α , all stable eigenvalues approach zero. Forever thereafter all eigenvalues
fluctuate around the critical line, perpetually flirting with instability. Of key importance to our tenets,
the timescale in which these eigenvalues fluctuate is neither 1 nor 1/α, but rather their geometric
mean 1/

√
α.

Integration:
A characteristic of Hopf bifurcations that we first derived in [12] in the context of

hearing and modeling of hair cells, is that a system poised at the Hopf bifurcation can
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amplify very faint signals yet attenuate loud signals, a feature called compressive nonlinearity.
This is achieved by displaying a timescale of integration that is dependent on the input:
the system integrates over many cycles if the input is small, so as to amplify, yet relaxes
to its final state rather rapidly if the input is large. In [82], a study of signal propagation
in primary visual cortex determined that signals propagate outwards from an epicenter
and attenuate very slowly if the stimulus has low contrast, while stimuli of high contrast
led to rapid exponential decay of signals, showing that the functional connectivity of V1 is
directly modulated by signal strength. We created a model, poised at the critical point, and
demonstrated that it possesses precisely these features [83].

Critical Mode Analysis: Inspired by the model above, we undertook to see whether
adopting this model as a point of view from which to analyze data would be fruitful.
We proposed in [68] to analyze electrocorticography (ECoG) data in human subjects by
proposing to reconstruct the underlying law of motion of the activity to the lowest possible
order, namely linear. Thus, if the ECoG data is represented as x(t) where x is a vector
containing the voltages observed in the array, and t is time, we would want to posit that

.
x(t) = Mx(t) + η(t)

and we would try to regress the matrix M by minimizing the residuals η(t) in some norm
over a snippet of time brief enough to have good resolution but long enough to reliably
populate the statistics. Finally, the eigenvalues of M are observed in the complex plane;
their imaginary part is an oscillation frequency, while their real part is an exponential
attenuation (negative real part) or an exponential growth factor (positive real part). To our
surprise, the eigenvalues came remarkably close to the instability line, and every form of
surrogation we tried, from strong to subtle, disrupted this closeness.

Technically, our analysis is naturally carried out in discrete time, as the time series is
sampled by the ADC at some regular sampling rate, and so what we fit is called in statistics
an AR(1) process; the main difference between our use and the classical one being we
resolve it in time by fitting in small windowed snippets. A study of brain activity during a
finger-tapping task first presented this method in [68].

Critically coupled map lattices. Consider the following equation

.
xi = f (xi, yi) + ∑

j
Mijxj

.
y = g(xi, yi)

where M is a coupling (“synaptic”) matrix poised at criticality. Such equations were
shown [84] to be able to display extremely complex spatiotemporal behavior reminiscent
of complex cellular automata, and explicitly realize a connection between the notion of crit-
icality we have hitherto put forward and the “edge of chaos” criticality [35,37,38,85]. Such
equations have also been recently studied from the point of view of recurrent neural net-
work theory [86], since the purely imaginary eigenvalues solve the issue of backpropagation
gradients blowing up in training of the recurrent neural network.

In order to simplify the analysis and the computational cost of simulations, it was
proposed in [84] to construct coupled-map lattices by using the following conceit. Imagine
that the intra-unit dynamics are allowed to operate without coupling for a period, and
then the coupling is allowed to operate, without internal dynamics, for a period. The
operation of the dynamics in parallel in each unit can be described by a stroboscopic map
to intermediate variables

ξt+1
i = f

(
xt

i
)

and then the operation of the coupling without internal dynamics will show up as a
convolution with a matrix G

xt+1
i = ∑

j
Gijξ

t+1
j
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where G is the matrix exponential of the coupling matrix M times the integration period τ:

G = eτM

from where we can explicitly now see that if M has purely imaginary spectrum, and in
particular, if M is antisymmetric, then G is unitary and preserves phase space volume. The
rich computational properties of this family of dynamics are then in no small part a result
of the couplings not contracting or dilating phase space volume: all phase space loss is in
the hands of the dynamics of individual units. Furthermore, if the original couplings M are
local, then the range of G grows with τ but the values asymptote to zero at long distances.
If M has a convolutional structure, then G is also a convolution.

It is instructive to look at the actual couplings to have a clear idea. For example, if one
considers a 1D lattice in which nearest-neighbor coupling follows a “checkerboard” rule of
the form Mi,i±1 = (−1)i, the exponential of the matrix is shown in Figure 4:
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Figure 4. The exponential of the coupling matrix has interesting internal structure. It has both a
symmetric and antisymmetric component (as a matrix), corresponding to the hyperbolic cosines and
sines; both are spatially symmetric, and each one couples to the odd or the even sublattice. Here is a
single row of the matrix exponential of M with τ = 4. As τ increases the couplings become broader
and broader, like in diffusion; however these coupling are such that the determinant of the matrix,
instead of asymptoting to zero, stays precisely 1, i.e., conserves phase space volume.

The behavior of a critically coupled map lattice in 1D with map f (x) = αxe−x2/2 and
Mi,i±1 = (−1)i was described in [84]. Here we describe further work on 2D lattices.

There are obviously many ways to create antisymmetric couplings, even translationally
invariant ones. An obvious one is to use the checkerboard coupling, where every odd site
is excitatory and every even site inhibitory and all couplings have the same magnitude
and opposing signs. This coupling results in a strongly anisotropic dynamics with gliders
moving along diagonal directions; see SM1. Ways to create a less anisotropic lattice would
clearly be desirable.

An elegant way is to use a bipartite graph; the desired lattice is made in two copies,
and the top (excitatory) lattice only couples to the bottom (inhibitory) lattice and vice-versa.
We will present below results pertaining to circularly symmetric Gaussian couplings with

kernel e−
∆x2+∆y2

2 .

3. Results

Anesthesia: The only commonality to anesthetic drugs is that they produce a re-
versible coma. Anesthetics have no common molecular structure, binding targets or brain
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structures; nor do they produce similar effects on neural population activity on EEG or LFP.
It is not a priori evident that once the brain is perturbed to an unnatural state it should ever
return on its own to a normal state, and in fact many comas are not reversible for no appar-
ent reason. However, patients routinely recover from extremely deep anesthesia. Recovery
from the anesthetized state is not a purely pharmacokinetics phenomenon: it displays steep
hysteresis and history-dependence, so it is impossible at intermediate concentrations to
predict whether a subject is awake or anesthetized from drug concentrations alone. We
used the above described critical mode analysis to carry out studies in humans [72] and
monkeys [67,71] which have demonstrated that across anesthetic agents and across species
and subjects, a constant in loss of consciousness is the stabilization of cortical dynamics. See
Figure 5.
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Figure 5. From [67]. Loss of consciousness is associated with stabilization of cortical dynamics. A
mechanistic connection between ongoing neural activity and brain function is revealed by dynamic
mode analysis of ongoing activity during anesthetic induction. Induction of anesthesia (propofol) in
monkeys (see [72] for similar studies in humans) was studied by critical mode analysis [68] of the
ECoG recordings of their brain activity, at distinct phases in the induction process. The eigenvalues
of the autoregressive process are complex; the real part (horizontal axis) is the growth rate of the
mode (negative means stable) while the imaginary part (vertical axis) is the frequency of oscillation
associated to the mode. Three two-dimensional histograms of such eigenvalues are colored according
to the stage of anesthetic induction: green indicates eigenvalues from a fully conscious subject before
induction, red from the fully unconscious subject, and blue the eigenvalues for the conscious subject
post-recovery. The rightmost panel shows a merge of these three histograms respecting their colors,
where a cyan plume can be seen demonstrating that the activity pre- and post- induction is similar,
while the red component shows a motion of the real part of the eigenvalues towards the left (higher
stability, thus less responsivity). High-frequency modes in ECoG have been implicated in integrative,
cognitive functions [8].

These studies, amongst others, suggests recovery from deep anesthetic coma may be
intrinsically activity-dependent. Data suggesting the rate-limiting steps in recovery are not
pharmacokinetic but related to transitions in ongoing brain activity was shown in [87].

Critically Coupled Map Lattices
The dynamics of a critically coupled map lattice is given in two steps: in step 1,

variables x at every site i are transformed into intermediate variables x by application of a
1D map f (x), “in parallel”. In the second step, the variables x are coupled together using a
matrix U to generate the original variables x at the next timestep:

xt
i = f

(
xt

i
)
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xt+1
i = ∑

j
Uij xt

j = ∑
j

Uij f
(

xt
i
)

where
U = eλM

As stated above, the behavior of a critically coupled map lattice in 1D with map
f (x) = cxe−x2/2 and Mi,i±1 = (−1)i was described in [84]. In this work it was shown
the use of dynamically critical couplings (i.e., a dense number of modes set precisely to
be at the onset of a Hopf bifurcation), when used stroboscopically in conjunction with
a simple map capable of classic transitions to chaos by period doubling, give rise to
a coupled map lattice showing enormous variety of complex behaviors, some of them
strongly reminiscent of the universal cellular automata at the forefront of “edge of chaos”
arguments. See Figure 6. The important difference with cellular automata is that these are
in fact continuous dynamical systems having parameters that can be continuously varied
in order to generate a huge variety of behaviors. Analysis of the set of parameter values
displaying complex spatiotemporal behaviors (neither orderly nor chaotic, but having
complex long time and long-distance dynamics) is a solid region in parameter space; i.e.,
parameters need not be tuned to a rather specific combination in order for these complex
dynamics to be robustly displayed, explicitly making the connection between robustness
and flexibility, the central themes of this article.

To analyze this complexity one way is to gather spatiotemporal spectra of the model’s
behavior—Fourier transforming in both space and time and averaging over many spectra.
Taking such power spectra as probability distributions, their entropy characterizes the
complexity of the responses. Synchronized chaotic behavior has white spectra along time
but no frequency components in space; frozen disorder has spectra along space but not
time. Behavior that has complex long-range and long-time structure has a large fraction of
the power at low, but non-zero, spatiotemporal frequencies.
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Figure 6. (Left), some representative dynamics from this 1D CCML showing in panels (a–f) a number
of different dynamical structures for different parameters values of the model; in each panel time is
horizontal and lattice position is vertical. (Right), the entropy of spatiotemporal power spectra of

the map. The parameter c is the multiplicative parameter in the map f (x) = cxe−
x2
2 controlling the

transition from order to chaos, while the parameter λ is the “time” during which the spatial coupling
M is allowed to act to generate U. In SM1, you will find a slice of this phase diagram for λ = 0.675 (a
horizontal line near the top of the diagram); each frame in the movie is a simulation for a parameter
value of c.

As described in M&M, the simplest way to generalize the 1D model by using a 2D
checkerboard lattice generates a system with strong anisotropy along the diagonals and a
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complex set of gliders, as displayed in SM2. We then moved to a bipartite lattice system
using a circularly symmetric Gaussian coupling between sites. One recurring asymptotic
behavior in this model consists of a background of frozen dislocated checkerboards as seen
in Figure 7 (left). In a portion of the phase space the dynamics halts at these frustrated
ground states, suggesting the model has a large number of different stable fixed points; but
close to this region small vortical structures (showing up as darker shades in the figure)
move around similar to gliders in cellular automata; they re-write the ground state in the
wake of their passage. (See Supplementary Movie SM3). An overall phase diagram is
shown in Figure 8.
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Figure 7. Bipartite 2D model, Gaussian coupling. One asymptotic behavior recurring in this model
is shown in the left panel (λ = 0.5, c = −1.2): a background of frozen disorder (bright red/cyan
squares) sees a number of “gliders” (darker areas) move around and re-write the background. Notice
that unlike models such as Conway’s Game of Life, the “background” on which these gliders move is
information-rich. Please see SM3 for the time-evolution of this CCML. On the right, in a different
region of parameter space (λ = 0.53, c = −2.3), several distinct background states cyclically lose
stability to each other. Please see Supplementary Movie SM4 for the time evolution.
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avoid entering either uncontrolled oscillations or, alternatively, total loss of activity. This is
one of potentially many homeostatic regulations the nervous system operates under. As we
have described, recently, a more specific idea has taken shape: data from sensory and motor
cortices as well as theoretical models have suggested that mechanisms poise neuronal
activity at the verge of dynamical instabilities, and are involved in organizing the chatter
of individual neurons into coherent large-scale assemblies. This is a more specific form of
excitatory/inhibitory balance, where not only the totals are balanced at the global level,
but they are balanced in detail in individual patches. Such mechanisms create, virtually by
definition, a state of ongoing activity just to be able to regulate the system at its target point.

Our overarching hypothesis again is that poising the dynamics of neuronal ensembles
at such dynamically critical states endows the system with two essential properties: the
ability to flexibly deploy and retract different modes of behavior and change function
or connectivity, as well as integrating neural ensembles and even entire brain regions
into coherent wholes in input-dependent or context-dependent manner. We specifically
hypothesize that a large fraction of what is known as “ongoing brain activity” or “default
mode network activity” [88] may be the byproduct of such critical poising; thus sponta-
neous activity is a delicate and highly improbable dynamical state that has to be actively
maintained and protected as it is directly responsible for endowing the system with its
flexibility and integrative properties. From this hypothesis, theoretical predictions can be
made about how, mechanistically, perturbations to the ongoing activity state would affect
integrative brain function.

5. Conclusions

A large number of biological systems show dynamics that has been linked to, more or
less directly, the system spontaneously poising itself at the boundary of a large number of
dynamical transitions. We have reviewed the evolution of these ideas and their firm rootings
in experimental evidence. We have derived from this a family of models, the critically
coupled map lattices. We have here shown the direct similarity and many connections to
a related notion of criticality, that of “edge of chaos” dynamics, connected at its root to
cellular automaton Turing universality.

Supplementary Materials: The following supporting information can be downloaded at: https:
//zenodo.org/record/6496269#.Ymixj9NByUl. Supplemental Movies SM1–SM5: SM1: Slice through
the parameter space of the 1D model described in Figure 6. Each frame in the movie is a different
value of c, the map parameter, at a fixed value of λ = 0.675. The right panel shows the spatio–
temporal power spectrum. SM2: gliders in the checkerboard antisymmetric lattice. SM3: the bipartite
system (two parallel lattices antisymmetrically coupled) displays a phase in which the background
“slows down” into a glassy phase (brightly colored red/cyan) with a set of “gliders” (darker shades)
moving around and rewriting the background. SM4: same system also has a phase in which multiple
states lose stability to one another cyclically. SM5: a slice through the parameter space of this 2D
model shows that complex behavior is the norm. Here the slice is along the c parameter (the map
parameter controlling the transition to chaos) while the λ parameter (lattice coupling parameter) is
kept constant.
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