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Abstract: Purpose: In this work, we propose an implementation of the Bienenstock–Cooper–Munro
(BCM) model, obtained by a combination of the classical framework and modern deep learning
methodologies. The BCM model remains one of the most promising approaches to modeling the
synaptic plasticity of neurons, but its application has remained mainly confined to neuroscience
simulations and few applications in data science. Methods: To improve the convergence efficiency
of the BCM model, we combine the original plasticity rule with the optimization tools of modern
deep learning. By numerical simulation on standard benchmark datasets, we prove the efficiency
of the BCM model in learning, memorization capacity, and feature extraction. Results: In all the
numerical simulations, the visualization of neuronal synaptic weights confirms the memorization
of human-interpretable subsets of patterns. We numerically prove that the selectivity obtained by
BCM neurons is indicative of an internal feature extraction procedure, useful for patterns clustering
and classification. The introduction of competitiveness between neurons in the same BCM network
allows the network to modulate the memorization capacity of the model and the consequent model
selectivity. Conclusions: The proposed improvements make the BCM model a suitable alternative to
standard machine learning techniques for both feature selection and classification tasks.

Keywords: machine learning; neural networks; optimization; entropy; learning algorithm

1. Introduction

There are increasing applications of neural network models in data science analysis,
due to their capability of easily establishing nonlinear correlations between data. The
emerging problem of models explainability is a direct consequence of the trend which leads
modern artificial intelligence research and of the demand for even more performing models,
neglecting a complete understanding of what happens inside them. This trend partially
contrasts the original idea behind neural network models, which aimed to mathematically
formalize the biology behind neuronal cells. Starting from 2020, the European Commission
(EC) published the Checklist for Trustworthy Artificial Intelligence [1], in which it estab-
lished as primary requirements for artificial intelligence applications in medical research
the traceability and explainability of the artificial intelligence models. Therefore, model
explainability is becoming even more important in research applications which require a
precise response to the decisions made by the model [2].

Back-propagation algorithm (BPa) is the standard method used to estimate the error-
driving updates of the model parameters. Due to its simplicity and computational efficiency,
BPa remains the standard method for the evaluation of neural network updates. BPa
can manage neural network models with arbitrary depth, encouraging machine learning
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developers to build even more complex architectures, until their required performances
are achieved.

In contrast with the large diffusion of models trained with BPa, there is a second
class of architectures which base their efficiency on the enrichment of the requirements
of the learning procedure, which goes further with respect to a simple optimization loss
function, but, instead, includes additional desired properties. We can roughly divide
these models into two subclasses: physically/mathematically and biologically inspired
models. Belonging to the first class, we have architectures such as Boltzmann machine [3]
and Belief Propagation models [4,5], which base their functionalities on properties related
to statistical distributions and physics behaviors (e.g., Ising model, magnetization, and
spin-glasses). The interpretability of the learning process of these architectures relies
on a strict mathematical formalism for the description of physical properties and on the
formalization of concepts such as memory and statistical equilibrium. In the second class,
we find the historical starting points of neural network applications, such as the Hodgkin–
Huxley model [6], Rosenblatt’s perceptron [7], until the modern neuroscience network
architectures [8–11]. The merit of all these models lies in their exceptional adherence to
the biology (electro-physiological and molecular) experiments on neuronal cells. Their
aim is, in fact, to mimic, as much as possible, the functionalities of neuronal cells and their
interaction with the human brain. The ability to work with biologically inspired models
allows a continuous integration between laboratory results and computational simulations
in discovering novel functionalities of the human brain.

Almost all biologically inspired models are based on the concept of synaptic plasticity,
i.e., the activity-based modification (potentiation/depression) of synaptic connections
between neurons. This mechanism represents one of the most important properties of
neuron cells since it is at the base of their learning and memorization capability [12].
Synaptic plasticity was theoretically conjectured and modeled by Hebb in 1949. The Hebb
model has found experimental agreement in several neuroscience experiments, successfully
reproducing the development of neuron selectivity. A remarkable contribution to this
topic was made by E. Bienenstock, L. Cooper, and P. Munro, who introduced a biologically
inspired neuron model, i.e., the BCM model, able to describe multiple synaptic features
of the cortical neurons. The BCM model formulation started from Hebb’s rule for the
description of memory formation and computational adaption of brain neurons, and it
describes the evolution of neurons states via a set of time-dependent evolution. The BCM
model remains one of the most promising approaches to modeling the synaptic plasticity
of neurons and, from its first formulation, several improvements have been proposed to
address computational and stability problems [13,14]. Each improvement of the model
has always been evaluated by balancing the model performances with a corresponding
biological interpretation of the neurons’ behavior, verifying the predictions by neuroscience
experiments [15].

The dynamic characteristics of the BCM model have been studied extensively by
several authors [16,17], aiming to understand and explain neuron functionalities and
improve the memorization capability. The analogy with the well-known dimensionality
reduction techniques was mathematically proved only for a small set of neurons and the
results confirmed by numerical simulations [18]. Despite its computational efficiency, the
application of the BCM model has been limited to theoretical neurobiological studies,
with few applications in data science. Starting from its formulation, the BCM model
found applications as a computational framework developed to prove ad hoc theories or
validate experiments. Its application to non-experimental data, i.e., deriving from different
applications or research fields, is still limited.

The work of Krotov et al. [19] was one of the first proposals of its application on real
data. Krotov et al. introduced a modified version of the BCM model, designed to improve
numerical performance, proving the efficiency of the synergy between biologically inspired
and standard BPa neural networks in classification tasks.
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Krotov et al. introduced a learning algorithm (KH in the following) that uses three
ideas: a BCM-like learning rule, competition between the hidden units, and a homeostatic
constraint on the synaptic weights. There is competition between the K hidden neurons to
choose which neuron to alter its synapses. At each new stimulus step, there is competition
between neurons to determine which will “win” and have its synapses changed. KH is
intrinsically a K-body problem, not a one-body problem like BCM. Unlike BCM, which
features competition between the input patterns, KH additionally involves competition
between the hidden neurons.

In this work, we propose an implementation of the BCM model, obtained by the
combination of the classical framework and deep learning features. Our aim is to provide
an integration of the results obtained by deep learning research into the BCM model.
We started from the original implementation of the BCM model, and we extended it,
studying its performance in relation to different activation functions, weights initialization,
and optimization algorithms [20]. The biological analogy with the neurons’ behavior is
preserved, keeping fixed the core functionalities of the model, but a better and faster
convergence is proved. The proposed improvements allow us to apply the BCM model to
real datasets, making it a suitable alternative to standard machine learning techniques.

2. Materials and Methods
2.1. Mathematical Framework

The BCM model describes the synaptic plasticity via a dynamic adaptation depending
on the post-synaptic activity. The behavior of cortical neurons is explained by a combination
of long-term potentiation and long-term depression given by a series of stimuli applied to
presynaptic neurons [21]. Starting from the Hebbian learning rule, which establishes that
repeated and persistent activities could determine a transmission of information between
neurons, the BCM model aims to overcome mathematical issues related to the stability and
applicability of neuron models.

In this work, we refer to the BCM implementation proposed by Law and Cooper in
1994 [14], which is described by the set of equations

z = σ

(
∑

i
wixi

)
θ = E[z2] (1)

dwi
dt

=
z(z− θ)xi

θ

where zi and σ are the postsynaptic activity of the i-th neuron and a nonlinear activation
function, respectively. The value of θ, commonly referred to as modification threshold,
represents a long-term average of the synaptic activation.

Shouval et al. [22] proved the high selectivity of artificial neurons trained by BCM
equations: synaptic connections tend to produce highly oriented receptive fields during
the training, making neurons responsive to only a subset of the provided patterns. Several
authors extended these results also to network architectures of BCM neurons [23,24],
highlighting the presence of receptive fields in neurons synapses.

Castellani et al. [16] studied the classical BCM model including lateral connections
and nonlinearity between neurons. Lateral connections would allow to inhibit/increment
the postsynaptic activities in relation to the state of neurons neighborhood, including
competition and cooperation between neurons. In other words, it involves the introduction
of an extra matrix term (L), which influences the postsynaptic vector as

z = σ
(
(1−L)−1WX

)
(2)

where W and X are the synaptic weights matrix and the input matrix, respectively. The term
L represents the cortico-cortical connectivity matrix in which lij are the interaction strength
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factors (±ξ) between each pair of neurons. Keeping fixed the interaction strength between
neurons, the L matrix is built setting all the elements equal to ξ and 0 on the diagonal
(avoiding self-interactions). Positive weights of the L matrix correspond to cooperation
between neurons, while negative weights indicate competition. The choice of setting all lat-
eral connections to the same value was made to allow for a more interpretable set of results
from this study. The exploration of some of the potentially infinite distribution of synaptic
weights was deemed to be outside the scope of this work. A schematic representation of a
simple 3-neuron BCM network is shown in Figure 1.

Figure 1. Schematic representation of a BCM network composed of 3 neurons. Cortico-cortical
connections are represented with gray lines between neurons, with±ξ strength. Presynaptic activities
(input) and postsynaptic activities (output) are represented by red and black arrows, respectively.
Postsynaptic activities are computed according to the BCM equations.

The introduction of lateral connections determines the level of competitiveness be-
tween BCM neurons. Inhibitory lateral connections would tend to discourage neurons from
memorizing the same patterns, while positive lateral connections increase the probability
of several neurons reaching the same stationary state. Therefore, the strength of lateral
interaction directly determines the learning capacity of the model.

2.1.1. Optimization Strategy

The BCM model does not fix any constraints on the optimization strategy to choose for
the synaptic convergence. In order to improve the convergence efficiency, we combine the
plasticity rule with the optimization tools of modern deep learning models. In particular,
we apply the Adam optimization algorithm [25], using random batch subdivisions of the
training patterns and performing the update of model parameters at every batch.

The mathematical framework of the BCM model establishes that postsynaptic activity
is given by a linear combination of synaptic weights and inputs, processed by an activation
function. No constraints on the form of the activation function are posed: to achieve
nontrivial results, the nonlinearity could be imposed, while for the biological interpretation,
the positivity is required. Historically, the classical formulation of the model uses a logistic
activation function, following the trend proposed by other neuroscience applications.
The effect of activation function on performances and learning of deep neural network
models has been discussed by several authors [26–28]. Different mathematical equations
have been proposed to address numerical and stability issues related to the training of
complex models [29–31]. Currently, the most promising results have been obtained by the
ReLU (Rectify Linear Unit) activation function [32]. Its usage is attributed to its numerical
efficiency and to the benefits it brings, in terms of information disentangling, information
representation, sparsity, and reduction of vanish gradient effect [33]. According to the
previous considerations, we activate BCM neurons using ReLU activation function.
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2.1.2. Modification Threshold

The modification threshold θ of neurons is one of the key aspects of the BCM algorithm.
The choice of how to compute it determines whether neurons converge to a nontrivial
stationary state and the properties of such states. In our implementation, we use a moving
average of previous batch-averaged quadratic postsynaptic activities, i.e.,

θt = γθt−1 + (1− γ)〈z2〉bt (3)

where γ is the decay-memory factor, and 〈·〉bt is the average over the batch of training
patterns considered at the time step t. The superlinearity with respect to z ensures the
convergence of the neuron [34]. The final selectivity reached by the neuron depends on the
choice of the memory factor value. In particular, values close to 1 enforce the neuron to
develop high selectivity, while smaller values lead to lower selectivity. The same behavior
is obtained by setting γ = 0 and varying the training batch size. This is due to the
equivalence between the average over a sufficiently large time window and the average
over a sufficiently large portion of the “environment” (training set).

The threshold as a function of time θt is used to monitor the convergence of each
neuron. The resulting trend could be very noisy according to the choice of the batch size
and the memory factor. To obtain smoother and easy-to-read curves, we look at the average
of θ over each epoch, i.e.,

〈θ〉 = 1
B

B

∑
t=1

θt (4)

where B is the number of steps in one epoch.

2.2. Network Properties

Given a set of N interconnected neurons, i.e., a BCM network, the learning power of
the architecture is determined by two fundamental properties: the neurons’ selectivity and
the neurons’ competitiveness.

2.2.1. Selectivity

We say that the ith neuron has selected the pattern x ∈ X if

zi(x)− E[zi(x)] > 0 (5)

where zi(x) is the postsynaptic activity of the ith neuron to the x pattern, and E[zi] is the
expectation value over X. We measure the neuron selectivity αi by counting the number of
training patterns “selected” by the neuron, hence

αi = |Ai|, Ai = {x ∈ X|zi(x)− E[zi(x)] > 0} (6)

The selectivity is a property of a single neuron, and neurons in the same BCM network
can develop different selectivity levels.

2.2.2. Competitiveness

We evaluate the level of competitiveness of a BCM network by measuring the overlap
among the set of patterns selected by the neurons. Let S be the total number of patterns
which have been selected by the BCM network, and ᾱ the average selectivity of the neurons
in the network. We define the overlapping index as

β =
S
ᾱ

(7)

where β ranges in [1, N]. The complete absence of overlap, which coincides with the
maximum level of competitiveness, is equal to the number of neurons considered.
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2.2.3. Memorization

For a fixed number of neurons and their selectivity αi, the maximum memorization
capacity of the model, i.e., the maximum number of patterns that can be selected, is given by

C =
N

∑
i=1

αi ≈ ᾱ× N (8)

The effective number of patterns that are selected, i.e., the effective memorization
capacity, is determined by the competitiveness β of the network, measured through the
overlapping index.

Considering a set of T different patterns, the following cases can occur:

• T << C. In this configuration, the model can reach a perfect memorization of all the
patterns, with redundancy. The influence of lateral connections could be negligible.

• T ≈ C. In this configuration, the model can reach a perfect memorization of all the
patterns, without redundancy. The importance of the lateral connections becomes
crucial for the memorization, since the probability of having multiple neurons at
the same stable point is not negligible and having them would imply the loss of
some patterns.

• T >> C. The model cannot reach a perfect memorization of the patterns since the prob-
lem is ill-posed, by definition. There is a probability of obtaining two (or more) neurons
at the same stable points proportional to the strength of lateral connections imposed.

3. Results

We apply the optimized version of the BCM model with 100 neurons on MNIST and
CIFAR-10 datasets. Both datasets are standard toy models for the benchmarking of machine
learning performances. Furthermore, the same datasets were also used by Krotov et al. [19]
for the validation of their modified version of the BCM algorithm.

We performed the simulations according to the optimization strategy proposed in
the above sections, evaluating the model convergence using Equation (4) and testing the
learning capacity of the model using Equation (8). Details on data preprocessing and model
hyperparameters used for the model training can be found in the Appendix A. All the
results are reproducible using the developed code, publicly available on Github [20], where
more detailed images and animations of the results can be seen.

3.1. MNIST Dataset

The dataset includes 50,000 grayscale images (28× 28) of handwritten digits. The
dataset contains 10 classes of images, according to the ten putative digits ∈ [0, 9]. For
each class, an equal number of samples is provided, ensuring a reasonably good balancing
between the classes.

3.1.1. Synaptic Weights

We show in Figure 2a the bitmaps of weights learned by 25 arbitrarily chosen BCM
neurons, at the end of 500 training epochs. We checked the convergence of BCM neurons
using Equation (4).
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Figure 2. (a) Weights learned by 25 arbitrarily chosen BCM neurons after convergence on the MNIST
dataset. (b) Number of training patterns selected according to the definition proposed in Equation (5),
as a function of training epochs, for an arbitrarily chosen BCM neuron. Top right: number of patterns
selected by the considered neuron, split according to the ten putative digits included in the MNIST
dataset. Top left: weights bitmap of the considered BCM neuron and corresponding to the most
selected digit. (c) Observed overlapping index (β, Equation (7)) as a function of lateral connections
strength. As expected, β score progressively grows with a monotonic trend as the inhibitory strength
of lateral connections is increased. β score rapidly reaches the maximum overlap value, equal to 1,
with just small values of excitatory lateral connections.

3.1.2. Selectivity

We evaluated the neurons’ selectivity considering a set of independent neurons, i.e.,
turning off the lateral connections. For each BCM neuron, we estimated the selectivity
level according to Equation (5). In Figure 2b, we show the number of selected patterns
as a function of the training epochs, for an arbitrarily chosen neuron. On the top right of
Figure 2b, we show the number of patterns selected by that neuron, split according to the
ten putative digits. The majority of selected patterns represents the same handwritten digit,
visible also in the corresponding weights bitmap (see top left of Figure 2b).

3.1.3. Competitiveness

In Figure 2c, we show the β score (Equation (7)) as a function of the lateral connection
strengths imposed between BCM neurons. As inhibitory lateral connections increase, the β
score progressively grows with a monotonic trend, leading to a reduction of the overlap.
When excitatory (positive) lateral connections are used, the β score rapidly converges to 1,
i.e., the maximum overlap.

3.2. CIFAR-10 Dataset

The dataset includes 70,000 general purpose RGB images (32 × 32). The dataset
contains 10 classes of images, including natural images. For each class, an equal number of
samples is provided, ensuring a reasonably good balancing between the classes.

3.2.1. Synaptic Weights

In Figure 3a, we show the synaptic weights learned by 25 BCM neurons, at the end of
5000 training epochs. We checked the convergence of BCM neurons using Equation (4). The
weights visualization was obtained by scaling the synaptic values into the range [0, 255].
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Figure 3. (a) Weights learned by 25 BCM neurons after convergence on CIFAR-10 dataset. (b) Number
of training patterns selected according to the definition proposed in Equation (5), as a function of
training epochs, for an arbitrarily chosen BCM neuron. Top right: number of patterns selected
by the considered neuron, split according to the ten putative classes included into the CIFAR-10
dataset. Top left: weights bitmap of the considered BCM neuron, and corresponding to the selected
class. (c) Observed overlapping index (β, Equation (7)), as a function of lateral connections strength.
As expected, β score progressively grows with a monotonic trend as inhibitory strength of lateral
connections are increased. β score rapidly reaches the maximum overlap value, equal to 1, with just
small values of excitatory lateral connections.

3.2.2. Selectivity

We evaluated the neurons’ selectivity considering a set of independent neurons, i.e.,
turning off the lateral connections. For each BCM neuron, we estimated the selectivity
level according to Equation (6). In Figure 3b, we show the number of selected patterns
as a function of the training epochs, for an arbitrarily chosen neuron. On the top right of
Figure 3b, we show the number of patterns selected by the neuron, split according to the
ten putative classes. The maximum responsive class corresponds to the one visible in the
weights bitmap (see top left of Figure 3b).

3.2.3. Competitiveness

In Figure 3c, we show the trend of β score (Equation (7)) in relation to the lateral
connection strengths imposed between BCM neurons. The β score monotonically grows
according to inhibitory lateral connections, following a trend equivalent to the one obtained
in the MNIST dataset.

4. Discussion and Conclusions

In this work, we proposed an optimized and reviewed version of the BCM model,
obtained by the integration of modern deep learning features into its classical framework.
Until now, the applications of the BCM model have mainly involved neuroscience simula-
tions as a benchmark of biological theories, with few applications to data science. Starting
from the work of Krotov et al. [19], the application of biologically inspired models as ma-
chine learning alternatives is acquiring increasing interest. The explainability requirement,
even more imposed in deep learning applications, is leading to a rediscovery of easy-to-
understand models in managing machine learning tasks. In this work, we numerically
proved that BCM neurons satisfy significant requirements on this topic.

The optimizations introduced in this work have improved the model training effi-
ciency. In our simulations (excluded from this work for sake of brevity), we tested several
kinds of activation functions (e.g., SeLU, Loggy, Tanh, etc.), but they were all outperformed
by the ReLU one. In detail, we observed a significant increment in neuron selectivity by
the introduction of ReLU activation function, allowing the network to achieve better stable
states than the classical logistic activation function. Furthermore, the use of Adam optimiza-
tion algorithm, for the update of synaptic weights, produces faster convergence compared
to the standard Stochastic Gradient Descent algorithm, without affecting neuron selectivity.
For both numerical simulations on MNIST and CIFAR-10 datasets, the visualization of
neuron synaptic weights has confirmed the memorization of a subset of patterns.
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We proved a high level of selectivity by BCM neurons, for both MNIST and CIFAR-10
datasets. The selectivity obtained by BCM neurons must not be associated to a simple mem-
orization of the patterns. Looking at the neurons’ synaptic weights, the stored patterns are
partially distorted, despite being clearly recognizable for human eyes. In our simulations
(excluded from this work for sake of brevity), we tested the perfect memorization of the
neurons, manually setting the synaptic weights equal to a subset of training patterns. The
evaluation of the introduced selectivity score in this extreme case was far lower than the
obtained-by-training one. This behavior confirms that BCM neurons do not simply “memo-
rize” the provided patterns, but they perform an internal feature extraction procedure for
pattern clustering.

The patterns encoded in the synaptic weights store features of input images shared by
a putative group of patterns. The level/order of features encoded is directly determined by
the level of selectivity obtained by the neuron at convergence. We remark that the level of
neuron selectivity is related to the complexity of the training set and the number of neurons
used. Neuron selectivity can be tuned according to the introduced memory factor: for the
sake of brevity, we did not show the results obtained on these trends, but they can be easily
reproduced using the developed code.

There is evidence that neurons exhibit different levels of selectivity [35] in biological
systems. We found an equivalent differentiation in the BCM framework considering the
neurons’ memory capacity. This behavior confirms the biological validity of the BCM
model, which is preserved by the introduction of the proposed improvements.

The results proposed in Figure 2b show the evidence of a pattern-like image stored
into synaptic weights of BCM neuron. We estimated 250 patterns at which the considered
neuron responds, of which 201 are labeled as digit-3. The remaining patterns are false
positive classifications in terms of digit recognition. However, looking at the bitmap of
neuron synaptic weights, we clearly see a uniformity in the digit shape, with high-intensity
areas (red spots) located in well determined positions. These areas represent the keypoints
learned by the neuron for the discrimination between the subset of selected patterns and
the remaining ones.

Analogous results have been found on the CIFAR-10 dataset (see Figure 3b). In this
case, neuron synaptic weights are less clear-cut, but still recognizable by humans. In
the same way, the number of patterns selected by the neuron is also smaller, confirming
the greater complexity of the CIFAR-10 dataset compared to the MNIST one. In our
simulations (excluded from this work for the sake of brevity), we could obtain a level
of neuron selectivity compatible with the MNIST dataset also for the CIFAR-10 case, but
with a significant loss in the human interpretability of the weights bitmap. The large
number of degrees of freedom and the variability of CIFAR-10 patterns impose a harder
feature extraction task, which is reflected in the not-perfect patterns memorized by neurons.
The CIFAR-10 dataset is commonly used for the training of object detection models, and
it represents an intermediate benchmark between the (simpler) MNIST dataset and real
data applications. The CIFAR-10 dataset involves more complex patterns and textures
than the MNIST ones, with an order of magnitude more data to process. The correlation
between the three image channels, due to pixel colors, implies long-range correlation
between the model weights, requiring a deeper learning capability by the model. The
use of benchmark datasets allows to show and understand exactly what BCM neurons
have learned during the training procedure. This behavior is characteristic of biologically
inspired models, while it is partially lost in modern deep learning applications [19]. A
human-interpretable visualization of synaptic weights improves the possible explanation
of the decisions made by automated systems and it provides an interface in developing
improvements for model training and efficiency. We remark that feature extraction is
performed by the BCM network in completely unsupervised training, leaving to the model
the possibility or ability of finding features related to groups of patterns belonging to the
same class.
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While the selectivity and the number of neurons completely determine the maxi-
mum memorization capacity of the model (Equation (8)), the effective capacity depends
on the level of competitiveness between neurons. The overlapping index reported in
Figures 2 and 3c shows that competitiveness can be implemented through lateral connec-
tions and it is proportional to their strength ξ. In particular, the memorization capacity
nearly double, growing from about 19% to over 35% of the patterns for MNIST, and from
12% to 26% for CIFAR-10. In our simulations, we have never achieved the maximum
memorization capacity of the model: increasing lateral connection strength, numerical
issues arise, compromising the convergence of the model. Further investigations are needed
to overcome these limitations.

In this work, we explored only a simple implementation of lateral connections, setting
an equal strength between each pair of neurons. Several implementations are possible,
providing different patterns of cortico-cortical connectivity matrix L, involving local or
global interactions between neurons. The analysis of more complex competitiveness models
will be investigated in future work.
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Appendix A

Both the MNIST and CIFAR-10 datasets were downloaded using the scikit-learn [36]
Python package. The images were scaled in the range [0, 1] to improve the learning
efficiency of the model. For both the datasets, we trained a BCM network with 100 neurons,
using ReLU activation function.

For the simulations on MNIST dataset, the network was trained for 500 epochs. Initial
weights were sampled from a Gaussian distribution with mean 0 and standard deviation
0.1. Adam optimization algorithm was used, with batch size equal to 1000 and a constant
learning rate of 0.04. The training was repeated for each lateral connections value in the set
{−0.5, −0.05, −0.01, −0.005, 0, +0.002, +0.005, +0.006, +0.0065, +0.0068, +0.007, +0.0075,
+0.01}.

For the simulations on the CIFAR dataset, the network was trained for 5000 epochs.
Initial weights were sampled from a Gaussian distribution with mean 0 and standard
deviation 0.02. Adam optimization algorithm was used, with batch size equal to 500 and
a constant learning rate of 0.001. The training was repeated for each lateral connections
value in the set {−0.5, −0.05, −0.01, −0.005, 0, +0.002, +0.005, +0.007, +0.01}.

The code developed for the reproducibility of the results is public available on
Github [20].
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