Future Perspectives of Finite-Time Thermodynamics
Author Contributions
Funding
Conflicts of Interest
References and Note
- Berry, R.S.; Salamon, P.; Andresen, B. How It All Began. Entropy 2020, 22, 908. [Google Scholar] [CrossRef] [PubMed]
- Abiuso, P.; Miller, H.J.D.; Perarnau-Llobet, M.; Scandi, M. Geometric Optimisation of Quantum Thermodynamic Processes. Entropy 2020, 22, 1076. [Google Scholar] [CrossRef] [PubMed]
- Andresen, B.; Essex, C. Thermodynamics at Very Long Time and Space Scales. Entropy 2020, 22, 1090. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Ma, K.; Ge, Y.; Feng, H. Re-Optimization of Expansion Work of a Heated Working Fluid with Generalized Radiative Heat Transfer Law. Entropy 2020, 22, 720. [Google Scholar] [CrossRef]
- Dann, R.; Kosloff, R.; Salamon, P. Quantum Finite-Time Thermodynamics: Insight from a Single Qubit Engine. Entropy 2020, 22, 1255. [Google Scholar] [CrossRef]
- De Vos, A. Endoreversible Models for the Thermodynamics of Computing. Entropy 2020, 22, 660. [Google Scholar] [CrossRef]
- Essex, C.; Das, I. Radiative Transfer and Generalized Wind. Entropy 2020, 22, 1153. [Google Scholar] [CrossRef]
- Gonzalez-Ayala, J.; Mateos Roco, J.M.; Medina, A.; Calvo Hernández, A. Optimization, Stability, and Entropy in Endoreversible Heat Engines. Entropy 2020, 22, 1323. [Google Scholar] [CrossRef]
- Insinga, A.R. The Quantum Friction and Optimal Finite-Time Performance of the Quantum Otto Cycle. Entropy 2020, 22, 1060. [Google Scholar] [CrossRef]
- Masser, R.; Khodja, A.; Scheunert, M.; Schwalbe, K.; Fischer, A.; Paul, R.; Hoffmann, K.H. Optimized Piston Motion for an Alpha-Type Stirling Engine. Entropy 2020, 22, 700. [Google Scholar] [CrossRef]
- Muschik, W.; Hoffmann, K.H. Modeling, Simulation, and Reconstruction of 2-Reservoir Heat-to-Power Processes in Finite-Time Thermodynamics. Entropy 2020, 22, 997. [Google Scholar] [CrossRef] [PubMed]
- Roach, T.N.F. Use and Abuse of Entropy in Biology: A Case for Caliber. Entropy 2020, 22, 1335. [Google Scholar] [CrossRef] [PubMed]
- Rogolino, P.; Cimmelli, V.A. Thermoelectric Efficiency of Silicon-Germanium Alloys in Finite-Time Thermodynamics. Entropy 2020, 22, 1116. [Google Scholar] [CrossRef] [PubMed]
- Ruppeiner, G.; Seftas, A. Thermodynamic Curvature of the Binary van der Waals Fluid. Entropy 2020, 22, 1208. [Google Scholar] [CrossRef]
- Schön, J.C. Optimal Control of Hydrogen Atom-Like Systems as Thermodynamic Engines in Finite Time. Entropy 2020, 22, 1066. [Google Scholar] [CrossRef]
- Sun, M.; Xia, S.; Chen, L.; Wang, C.; Tang, C. Minimum Entropy Generation Rate and Maximum Yield Optimization of Sulfuric Acid Decomposition Process Using NSGA-II. Entropy 2020, 22, 1065. [Google Scholar] [CrossRef]
- Tsirlin, A.; Gagarina, L. Finite-Time Thermodynamics in Economics. Entropy 2020, 22, 891. [Google Scholar] [CrossRef]
- Tsirlin, A.; Sukin, I. Averaged Optimization and Finite-Time Thermodynamics. Entropy 2020, 22, 912. [Google Scholar] [CrossRef]
- Xi, Y.; Liu, X.; Constales, D.; Yablonsky, G.S. Perturbed and Unperturbed: Analyzing the Conservatively Perturbed Equilibrium (Linear Case). Entropy 2020, 22, 1160. [Google Scholar] [CrossRef]
- Zhang, Y.; Kowalski, G.J. Calorimetric Measurements of Biological Interactions and Their Relationships to Finite Time Thermodynamics Parameters. Entropy 2022, 24, 561. [Google Scholar] [CrossRef]
- Allahverdyan, A.E.; Nieuwenhuizen, T.M. Extraction of work from a single thermal bath in the quantum regime. Phys. Rev. Lett. 2000, 85, 1799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guéry-Odelin, D.; Ruschhaupt, A.; Kiely, A.; Torrontegui, E.; Martínez-Garaot, S.; Muga, J.G. Shortcuts to adiabaticity: Concepts, methods, and applications. Rev. Mod. Phys. 2019, 91, 045001. [Google Scholar] [CrossRef]
- Breuer, H.-P.; Petruccione, F. The Theory of Open Quantum Systems; Oxford University Press on Demand: Oxford, UK, 2002. [Google Scholar]
- Dann, R.; Kosloff, R. Quantum thermo-dynamical construction for driven open quantum systems. Quantum 2021, 5, 590. [Google Scholar] [CrossRef]
- Essex, C.; Andresen, B. The Ideal Gas in Slow Time. J. Non-Equilib. Thermodyn. 2021, 46, 35–43. [Google Scholar] [CrossRef]
- Special Issues of Entropy, Geometry in Thermodynamics (https://www.mdpi.com/journal/entropy/special_issues/geometry_in_thermodynamics, accessed on 30 June 2015) and Geometry in Thermodynamics II (https://www.mdpi.com/journal/entropy/special_issues/geometry_in_thermodynamics_II, (accessed on 28 February 2018).
- Georgescu-Roegen, N. The entropy law and the economic process. In The Entropy Law and the Economic Process; Harvard University Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Salamon, P.; Sibani, P.; Frost, R. Facts, Conjectures, and Improvements for Simulated Annealing; SIAM: Philadelphia, PA, USA, 2002. [Google Scholar]
- Deffner, S.; Jarzynski, C. Information Processing and the Second Law of Thermodynamics: An Inclusive, Hamiltonian Approach. Phys. Rev. X 2013, 3, 041003. [Google Scholar] [CrossRef] [Green Version]
- Vinge, V. The coming technological singularity. Whole Earth Rev. 1993, 81, 88–95. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andresen, B.; Salamon, P. Future Perspectives of Finite-Time Thermodynamics. Entropy 2022, 24, 690. https://doi.org/10.3390/e24050690
Andresen B, Salamon P. Future Perspectives of Finite-Time Thermodynamics. Entropy. 2022; 24(5):690. https://doi.org/10.3390/e24050690
Chicago/Turabian StyleAndresen, Bjarne, and Peter Salamon. 2022. "Future Perspectives of Finite-Time Thermodynamics" Entropy 24, no. 5: 690. https://doi.org/10.3390/e24050690
APA StyleAndresen, B., & Salamon, P. (2022). Future Perspectives of Finite-Time Thermodynamics. Entropy, 24(5), 690. https://doi.org/10.3390/e24050690