Quantum Estimates for Different Type Intequalities through Generalized Convexity
Abstract
:1. Introduction
2. Preliminaries
3. Mian Result
4. Special Cases
- i.
- Choosing with , we obtain Theorem 3.2 in [18].
- ii.
- Taking and , we get the q-midpoint-like integral inequality for -convexity
- iii.
- Setting , and , we have q-Simpson-like integral inequality
- iv.
- Choosing , and , we obtain the averaged midpoint-trapezoid-like integral inequality for -convexity
- v.
- Taking and , we get the q-trapezoid-like integral inequality via -convexity
- i.
- Choosing , we obtain q-midpoint-like integral inequality for -convexity.
- ii.
- Taking , we have q-Simpson-like integral inequality via -convexity.
- iii.
- Choosing , we have the averaged midpoint-trapezoid-like integral inequality via -convexity.
- iv.
- Taking , we get q-trapezoid-like integral inequality for -convexity.
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ernst, T. A Comprehensive Treatment of q-Calculus; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Kac, V.G.; Cheung, P. Quantum Calculus; Springer: Berlin, Germany, 2002; Volume 113. [Google Scholar]
- Hamza, A.E.; Sarhan, A.S.M.; Shehata, E.M.; Aldwoah, K.A. A general quantum difference calculus. Adv. Differ. Equ. 2015, 2015, 182. [Google Scholar] [CrossRef] [Green Version]
- Tariboon, J.; Ntouyas, S.K. Quantum calculus on finite intervals and applications to impulsive difference equations. Adv. Differ. Equ. 2013, 2013, 282. [Google Scholar] [CrossRef] [Green Version]
- Youm, D. q-Deformed conformal quantum mechanics. Phys. Rev. D 2000, 62, 095009. [Google Scholar] [CrossRef] [Green Version]
- Bin-Mohsin, B.; Awan, M.U.; Noor, M.A.; Riahi, L.; Noor, K.I.; Almutairi, B. New quantum Hermite-Hadamard inequalities utilizing harmonic convexity of the functions. IEEE Access 2019, 7, 20479–20483. [Google Scholar] [CrossRef]
- Budak, H.; Erden, S.; Ali, M.A. Simpson and Newton type inequalities for convex functions via newly defined quantum integrals. Math. Methods Appl. Sci. 2021, 44, 378–390. [Google Scholar] [CrossRef]
- Khan, M.A.; Mohammad, N.; Nwaeze, E.R.; Chu, Y.M. Quantum Hermite–Hadamard inequality by means of a Green function. Adv. Differ. Equ. 2020, 2020, 99. [Google Scholar] [CrossRef]
- Tunç, M.; Göv, E.; Balgeçti, S. Simpson type quantum integral inequalities for convex functions. Miskolc Math. Notes 2018, 19, 649–664. [Google Scholar] [CrossRef]
- Sial, I.B.; Mei, S.; Ali, M.A.; Nonlaopon, K. On Some Generalized Simpson’s and Newton’s Inequalities for (α, m)-Convex Functions in q-Calculus. Mathematics 2021, 9, 3266. [Google Scholar] [CrossRef]
- Bermudo, S.; Kórus, P.; Nápoles Valdés, J. On q-Hermite–Hadamard inequalities for general convex functions. Acta Math. Hung. 2020, 162, 364–374. [Google Scholar] [CrossRef]
- Kalsoom, H.; Rashid, S.; Idrees, M.; Chu, Y.M.; Baleanu, D. Two-variable quantum integral inequalities of Simpson-type based on higher-order generalized strongly preinvex and quasi-preinvex functions. Symmetry 2019, 12, 51. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.A.; Budak, H.; Akkurt, A.; Chu, Y.M. Quantum Ostrowski-type inequalities for twice quantum differentiable functions in quantum calculus. Open Math. 2021, 19, 440–449. [Google Scholar] [CrossRef]
- Prabseang, J.; Nonlaopon, K.; Tariboon, J. Quantum Hermite-Hadamard inequalities for double integral and q-differentiable convex functions. J. Math. Inequal 2019, 13, 675–686. [Google Scholar] [CrossRef]
- Zhao, D.; Ali, M.A.; Luangboon, W.; Budak, H.; Nonlaopon, K. Some Generalizations of Different Types of Quantum Integral Inequalities for Differentiable Convex Functions with Applications. Fractal Fract. 2022, 6, 129. [Google Scholar] [CrossRef]
- Li, Y.X.; Ali, M.A.; Budak, H.; Abbas, M.; Chu, Y.M. A new generalization of some quantum integral inequalities for quantum differentiable convex functions. Adv. Differ. Equ. 2021, 2021, 225. [Google Scholar] [CrossRef]
- Sudsutad, W.; Ntouyas, S.K.; Tariboon, J. Quantum integral inequalities for convex functions. J. Math. Inequal. 2015, 9, 781–793. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Du, T.S.; Wang, H.; Shen, Y.J. Different types of quantum integral inequalities via (α, m)-convexity. J. Inequal. Appl. 2018, 2018, 264. [Google Scholar] [CrossRef]
- Jackson, D.O.; Fukuda, T.; Dunn, O.; Majors, E. On q-definite integrals. Quart. J. Pure Appl. Math. Citeseer 1910, 193–203. [Google Scholar]
- Tariboon, J.; Ntouyas, S.K. Quantum integral inequalities on finite intervals. J. Inequal. Appl. 2014, 2014, 121. [Google Scholar] [CrossRef] [Green Version]
- Alp, N.; Sarıkaya, M.Z.; Kunt, M.; İşcan, İ. q-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions. J. King Saud Univ.-Sci. 2018, 30, 193–203. [Google Scholar] [CrossRef] [Green Version]
- Ozdemir, M.; Akdemir, A.O.; Set, E. On (h-m)-convexity and Hadamard-type inequalities. Transylv. J. Math. Mech. 2011, 5, 51–52. [Google Scholar]
- Alomari, M.; Darus, M.; Dragomir, S.S. New inequalities of Simpson’s type for s-convex functions with applications. Res. Rep. Collect. 2009, 12, 1–18. [Google Scholar]
- Xi, B.Y.; Qi, F. Some Hermite-Hadamard Type Inequalities for DifferentiableConvex Functions and Applications. Hacet. J. Math. Stat. 2013, 42, 243–257. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almutairi, O.B. Quantum Estimates for Different Type Intequalities through Generalized Convexity. Entropy 2022, 24, 728. https://doi.org/10.3390/e24050728
Almutairi OB. Quantum Estimates for Different Type Intequalities through Generalized Convexity. Entropy. 2022; 24(5):728. https://doi.org/10.3390/e24050728
Chicago/Turabian StyleAlmutairi, Ohud Bulayhan. 2022. "Quantum Estimates for Different Type Intequalities through Generalized Convexity" Entropy 24, no. 5: 728. https://doi.org/10.3390/e24050728
APA StyleAlmutairi, O. B. (2022). Quantum Estimates for Different Type Intequalities through Generalized Convexity. Entropy, 24(5), 728. https://doi.org/10.3390/e24050728