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Abstract: Recently, deep neural network-based image compressed sensing methods have achieved
impressive success in reconstruction quality. However, these methods (1) have limitations in sampling
pattern and (2) usually have the disadvantage of high computational complexity. To this end, a fast
multi-scale generative adversarial network (FMSGAN) is implemented in this paper. Specifically,
(1) an effective multi-scale sampling structure is proposed. It contains four different kernels with
varying sizes so that decompose, and sample images effectively, which is capable of capturing
different levels of spatial features at multiple scales. (2) An efficient lightweight multi-scale residual
structure for deep image reconstruction is proposed to balance receptive field size and computational
complexity. The key idea is to apply smaller convolution kernel sizes in the multi-scale residual
structure to reduce the number of operations while maintaining the receptive field. Meanwhile, the
channel attention structure is employed for enriching useful information. Moreover, perceptual loss
is combined with MSE loss and adversarial loss as the optimization function to recover a finer image.
Numerous experiments show that our FMSGAN achieves state-of-the-art image reconstruction
quality with low computational complexity.

Keywords: compressed sensing; generative adversarial network; lightweight multi-scale residual
block; multi-scale sampling

1. Introduction

Compressed sensing (CS) is an emerging information acquisition technique, which
overcomes the Nyquist–Shannon acquisition theorem’s limitations and implements signal
sampling and compressing simultaneously [1]. The theory implies that when a signal
x ∈ Rn is compressible or sparse in a certain domain Ψ, it can compressed and measured
by the measurement matrix Φ, and inferred accurately from y = Φx, where Φ ∈ Rm×n

with m � n. The m/n is defined as the sampling rate. Due to the captivating sampling
performance of CS, it is attractive for numerous applications, including video CS [2], single-
pixel camera [3], snapshot compressed imaging [4] and magnetic resonance imaging [5].

The study of CS mainly focuses on the sampling pattern and recovery approaches at
present. In terms of sampling, lots of approaches [6–9] have been developed and most of
them perform well. Measuring images in the multi-layer transform domain is dubbed multi-
scale sampling, whereas measuring images in the original domain is dubbed single-scale
sampling. With the intelligent utility of prior knowledge (structure, statistical dependencies,
etc.), multi-scale sampling achieves better reconstruction quality than single-scale sampling
but has received less attention [6,7]. Most scholars focus on single-scale sampling and have
designed various measurement matrices [8,9]. Usually the well-designed or learned single-
scale measurement matrix can acquire well-accepted reconstruction quality. However, these
methods [8,9] suffer from aliasing artifacts for more attention to low-frequency information.
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Additionally, measuring and reconstruction are usually implemented separately, thus their
performance is limited.

The recovery of CS is treated as an inverse problem. For this, some classical algo-
rithms have been proposed, including greedy algorithms [10,11], convex optimization
algorithms [12,13] and iterative thresholding algorithms [14]. Greedy algorithms are easily
affected by the local optimal solution, so recovery quality is limited. Convex algorithms
and iterative thresholding algorithms usually implement multiple iterations for better
recovery quality and are thus more time consuming. Therefore, while many works have
been devoted to designing a fast method, reconstruction quality is lost [15,16]. Recently,
deep neural networks have shown super performance in a variety of image processing
tasks [17–19]. Some representative network structures, including convolutional neural net-
works (CNN) and generative adversarial networks (GAN) are also employed to image CS
reconstruction. With the powerful learning ability of deep learning, these data-driven neural
network models for image CS (DICS) have impressive reconstruction quality by directly
learning the mapping from the compressed measurements to the raw image. We also notice
that due to the alternating training of generator and discriminator, the image reconstructed by
the method based on GAN is more authentic than that based on CNN [20]. DICS is obviously
superior to classical methods in image recovery quality and speed. However, similar to
the evolution of classical methods, recent DICS often exchange more time resources for less
improvement in image reconstruction quality, as shown in Figure 1. This is mainly because
DICS often stacks numerous of the same blocks to obtain high-resolution images and each
block cannot help recover images effectively. For example, in [21], the author proposes a
serial structure based on CNN. Because the structure is relatively simple, the quality of image
reconstruction can be further improved. In [20], the author develops a multi-scale residual
block. The block can capture multi-scale image features, but it needs more time to process
images and lacks the fusion of each channel feature. Therefore, there is an urgent need for
efficient DICS to promote the application of image CS in high real-time scenes.
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Figure 1. Running time and recovery quality comparison. The running time is the average time for
recovering an image in the Set5 dataset. The recovery quality is the average PSNR of the image in the
Set5 dataset under a sampling rate of 0.1.

To solve the above problems, a fast multi-scale generative adversarial network (FMS-
GAN) is proposed. Specifically, there are two improvements in the FMSGAN: (1) inspired
by [12], we propose a novel multi-scale sampling structure (MSS), which involves four
convolution layers with different kernel sizes and a concatenated layer. The former three
parallel convolution layers decompose images at each scale independently to obtain features
with multiple resolutions. The later convolution layer is applied for sampling concatenated
features. Our MSS can capture different levels of spatial features at multiple scales and
help improve reconstruction quality. (2) We propose a lightweight multi-scale residual
block (LMSRB), in which only the 3 × 3 convolution layer and the concatenated layer are
used. There are three bypasses in the LMSRB and the corresponding structures: one 3 × 3
convolution layer, two serial 3 × 3 convolution layers and three serial 3 × 3 convolu-
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tion layers, respectively. The serial convolution layers with a small kernel size have the
same receptive field as a convolution layer with a large kernel size. So images of features
at different scales can be learned by the LMSRB, thus enriching feature representation.
Furthermore, a channel attention structure is applied to give different weights for every
LMSRB output feature map to better enhance useful information. Because of the LMSRB
and the channel attention structure, the FMSGAN is capable of high-resolution images and
low computational complexity. Additionally, we introduce perceptual loss to refine the loss
function. To verify the performance of our FMSGAN, we perform extensive experiments
on three datasets, and the results show the merits of our model.

The contributions are summarized as follows:

(1) A fast multi-scale generative adversarial network is proposed for image CS. The
generator and discriminator are alternate training to ensure the reconstructed images
are more realistic.

(2) A multi-scale sampling structure is proposed, which improves image reconstruction
quality through joint training with the reconstruction network.

(3) A novel lightweight multi-scale residual block (LMSRB) is proposed, which is com-
bined with the channel attention structure to better tradeoff between reconstruction
performance and efficiency. Due to the high efficiency of the LMSRB, the image is
reconstructed at high speed.

(4) Our FMSGAN achieves state-of-the-art performance on three datasets.

2. Related Work

Recently, compressed sensing has became a fascinating research area. It has a wide
range of applications, especially in wireless sensor networks (WSN) and internet of things
(IoT). In [22], a compressed sensing-based scheduling scheme was developed to conserve
energy in WSN and IoT. The scheme firstly addresses the question of “how many sensor
nodes should be activated to sense and transmit”, then forces each sensor node to transmit
only m� n measurements to its next-hop node, for extraordinary performance in energy
conservation. In [23], a compressed sensing framework is proposed for WSN and IoT.
The authors demonstrate that the framework can be utilized to recover the compressible
information data into a variety of information systems and will contribute to saving energy
and communication resources. For reconstructing a diffusion field from spatiotemporal
measurements, Mohammad et al. [24] exploit the intrinsic property of diffusive fields as
side information and propose a diffusive compressed sensing method, which produces
estimates of higher accuracy than that of classic CS. In [25], the authors consider power-
hungry sensors, introduce compressed sensing and distributed compressed sensing to WSN
and provide great energy efficiency. Hoover et al. [26] merge the CS process with existing
methods of collecting spectral images and expand the stacked-color image sensor to use
more colors or a wider range of wavelengths, which obtain a higher spectral resolution.
There are more image CS works on the sampling pattern and recovery method. In the
sampling process, researchers find that multi-scale sampling can extract different levels
of image feature information [7,27]. By enriching the multi-level contents of the model,
multi-scale sampling can enhance both sampling quality and recovery quality. As a simple
implementation of multi-scale sampling, radial Fourier subsampling [28] is usually applied
in bioimaging for its conversion characteristics between spatial and frequency domains
but is not verified by more images. Flowers first decomposes images in the wavelet
domain, then implements adaptive sampling of each wavelet sub-band independently
and finally smooths the measurements to effectively obtain multi-scale information [6].
The W-DCS [27] applies wavelet transform for multi-scale compressed sensing. It is able
to extract the measurements in multiple decomposed scales. For Kronecker CS, a multi-
scale sampling method is developed, which achieves high reconstruction quality and high
computational complexity [7]. Despite these wavelet-based methods [6,7,27] improving
image reconstruction quality, they require that the input image size meet the integer
multiple of 2. More cases of multi-scale sampling are in [29–31]. In LAPRAN [29], a
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series of measurements at different resolutions are defined for a given sampling rate. Each
group of measurements is fed into the corresponding reconstruction stage, thus multi-scale
sampling is implemented. However, a heuristic measurement assignment is commanded
for each rate. As a scalable network, SCSNet [30] creates multiple levels of reconstruction
quality through a variety of stages of reconstruction. Its primary reconstruction module
supports more low-frequency contents. However, SCSNet prefers to solve the adaptation
sub-rate issue rather than devise a multi-scale sampling method. In MS-CSNet [31], a
series of measurements are defined. The authors train the network with the obtained
measurements corresponding to the smaller sub-rate and reuse them at the larger sub-rate,
in which the low-frequency information is shared in the high-level recovery stage. However,
MS-CSNet does not display the subjective reconstruction of images. Therefore, various
rigorous studies on multi-scale sampling are required.

In the recovery process, image CS infers the raw image from given measurements.
For this, conventional CS approaches [10,32–34] mainly depend on sparsity priors to
iteratively optimize the sparsity-regularized problem. Examples of such approaches include
orthogonal matching pursuit (OMP) [10], basis pursuit (BP) [32], the iterative shrinkage
thresholding algorithm (ISTA) [33] and the alternating direction method of multipliers
(ADMM) [34]. To further enhance recovery performance, researchers established more
detailed structures based on wavelet tree sparsity [35], non-local information [36], minimal
total variation [37] and simple representations in adaptive bases [38]. However, these
conventional CS approaches are usually afflicted with high computational complexity
caused by hundreds of iterations.

Deep unfolding approaches usually integrate the deep networks with the iterative
optimizers for image reconstruction. Metzler et al. [39] were the first to propose a learned
DIT (LDIT), which combines the iterative DIT algorithm with a denoising CNN. Zhang et al.
implement a set of deep unfolded versions of the ISTA algorithm, named ISTA-Net+ [9],
OPINE-Net [40] and ISTA-Net++ [41], respectively. The difference is that ISTA-Net applies
random measurement and recovery of the image block by block, the OPINE-Net designs a
learning matrix and trains it jointly with the whole network and the ISTA-Net++ achieves
multi-rate sampling and recovery in one model by a dynamic unfolding method. Moreover,
based on the AMP algorithm, Zhang et al. [42] propose the AMP-Net to recover images
with high quality and speed. The main limitation of such unfolding approaches is that they
usually have the disadvantage of poor image recovery quality under a low sampling rate
due to adopting a plain network structure.

Deep straightforward approaches can directly learn the mapping between measure-
ments and original images free from any constraints. Mousavi et al. [43] were the first
to adopt a stacked denoising autoencoder (SDA) for image reconstruction while the ap-
plied fully connected network (FCN) results in numerous parameters. ReconNet [44] is
the first approach to reconstructing the image from measurements via CNN, which has
better recovery quality and fewer parameters. Subsequently, several CNN-based recovery
approaches [21,45] are proposed. In MR-CSGAN [20], the authors adopt the generative
adversarial network to recover images, whose generator and discriminator were alternately
trained, so that the recovered image is more realistic. Recently, a novel block-based image
CS network (BCSnet) [46] was proposed. By exploiting image intercorrelation, BCSnet
achieves impressive performance. However, deep straightforward approaches often ac-
quire limited performance improvement with many computational resources and are thus
not suitable for high real-time applications.

3. Methods

In this part, we display the overall architecture of the FMSGAN, as shown in Figure 2. The
raw image is sampled by the multi-scale sampling structure, and recovered by the generator,
respectively. Both the raw image and the corresponding recovered image will be fed into the
discriminator, in which the recovered image is distinguished from the raw image.
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3.1. Multi-Scale Sampling Structure

In the multi-scale sampling structure, the raw image is divided into multiple non-
overlapping blocks of size l × B1 × B2, where l denotes the image channels. To obtain
measurements, a set of convolutions are utilized to realize the multi-scale decomposition
and sampling of the image block. The first-level decomposition can be formulated as:

x1
l1= W1

l1∗x
0 (1)

x1 =
[

x1
1, x1

2, . . . , x1
c1

]
(2)

where ∗ is the convolution operation, W1
l1

denotes different convolution kernels in the
first-level decomposition, l1 ∈ 1, 2, . . . , c1 is the identifier of convolution kernels, x0 denotes
the image block with a size of l × B1 × B2 and x1 denotes the output of the first-level
decomposition. If the image is decomposed n times, the measurements are expressed as:

xn= Wn
ln∗x

n−1= Wn
ln∗W

n−1
ln−1
∗ · · ·∗(W 1

l1∗x
0) (3)

where xn ∈ Rln×m×b1×b2 , ln is the number of convolution kernels at nth-level decomposition,
m is the number of output channels of every convolution and b1×b2 denotes the size of output
features. For a given sampling rate r, there is ln × m × b1 × b2= r × l × B1 × B2. The
multi-scale sampling structure is shown in Figure 3. Firstly, three parallel convolutions—1 × 1,
3 × 3 and 5 × 5—are employed to decomposition image and output features. Convo-
lution kernels with different sizes have different receptive fields, so different levels of
feature information can be obtained. Then, the features are synthesized by the concatenated
layer. Finally, a convolution layer with kernel size 32 × 32 and step size 32 × 32 is
applied to output the measurements. Specially, all convolutions are no bias and activa-
tion. In experiment, n is set to 2 for fast sampling. Both B1 and B1 are set to 64 in the
training phase. The test image is not forced to be segmented, as long as the size N1 × N2
meets N1 × N2= 32k1 × 32k2, where k1 and k2 are positive integers. Otherwise, image
overlapping segmentation or image filling will be applied.
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3.2. Generator Structure

The generator can transform the measurements into a high-resolution image, which
involves two processes: initial recovery and deep recovery. The architecture of the generator
is shown in Figure 4. The initial recovery uses a deconvolution layer with kernel size
32 × 32 to recover images from the corresponding measurements. In the deep recovery
process, we firstly apply a convolution with 64 channels to increase the number of feature
maps. Then, nine LMSRBs combined with channel attention modules are adopted to
deep recovered images in a single connection. The structure of the LMSRB is shown in
the scribed part in Figure 4. The input features are processed by the LMSRB, in which
multiple information at different bypasses is shared to capture image features at multiple
scales. There are two of the same pyramid-like convolution structures in the LMSRB and
each structure contains three parallel convolution groups, corresponding to one 3 × 3
convolution, two serial 3 × 3 convolutions and three serial 3 × 3 convolutions, respectively.
The pyramid-like convolution can provide multi-scale feature representation and the serial
3 × 3 convolutions are able to decrease the number of operations while maintaining the
receptive field. At the same time, the channel attention model is employed to acquire
the contribution of each LMSRB output channel through learning and assigning different
weight coefficients to each channel, so as to strengthen the important features. Moreover,
the residual connection is used for the stability of network training. Subsequently, a
concatenated layer connected to every channel attention model is adopted to enrich feature
representation. A convolution layer with 3 × 3 is employed to decrease the number of
feature maps and output the deep recovered images. Finally, the initial recovered image
and the deep recovered image are added to acquire the reconstructed image.
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3.3. Discriminator Structure

The design of the discriminator refers to [20], which contains convolution layers, batch
normalization layers, Leaky Relu functions and sigmoid function, as shown in Figure 5. In
particular, the convolution layer is added behind each batch normalization layer to enhance
the discrimination ability of the discriminator by increasing the weight parameters. Note
that there are some similar operations in the identification process. For simplicity, the single
operation of dimension decrease and channel increase for the feature map is named DDCI.
The recovered image and the corresponding original image generated by the generator is
fed into the discriminator and then the probability of sample classification is obtained.
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3.4. Cost Function

Inspired by [47], the MSE loss, perceptual loss, and adversarial loss are combined as
the cost function of our FMSGAN. The MSE loss often converges quickly but it is hard
to reconstruct some lost uncertain high-frequency details, leading to poor visual quality.
Recently, perceptual loss has outperformed MES loss in some computer vision tasks. It
is capable of preserving structure and details, so was introduced into our model. The
pixel-level MSE loss is formulated as:

lMSE =
1

HV

H

∑
i=1

V

∑
j=1

(G(I) i,j−Ii,j

)2
(4)

where G(·) represents the generator, G(I)i,j denotes the image created by the generator,
Ii,j is the input image, and H and V represent the number of pixels in the horizontal and
vertical directions of the input image, respectively. The VGG19 loss is implemented for
obtaining high-level perceptual information, which is expressed as:

lVGG19 =
1

Hx,yVx,y

Hx,y

∑
i=1

Vx,y

∑
j=1

(
φx,y(G(I))x,y−Ix,y

)2
(5)

where φx,y(·) represents the feature map captured by the jth convolution layer before the
ith max-pooling layer in the VGG19 network. Hx,y and Vx,y denote the size of the respective
feature maps in the VGG19 network. Here, the φx=5, y=4 of the VGG19 network is chosen as
the final output layer for the feature map. Through minimizing adversarial loss to optimize
the parameters, more indistinguishable images created by the generator are applied to
trick the discriminator, which also promotes the performance of the discriminator. The
adversarial loss is as follows:

lAdv =
M

∑
m=1

1− D(G(I)) (6)

where D(·) represents the discriminator, D(G(I)) denotes the probability that the recovered
image G(I) is real and M represents the batch size during each training iteration. The final
cost function is defined as:

ltotal = q∗lMSE + k ∗ lVGG19+v ∗ lAdv (7)
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4. Experiments

In this section, we first conduct a comparison with some state-of-the-art approaches
to verify the performance of the proposed model. Then, the effectiveness of the MSS and
the LMSRB are verified by ablation experiments. The discussion and interpretation of the
experimental results are also provided.

4.1. Datasets

All experiments are adopted on five datasets: DIV2K [20], Set5 [45], Set11 [42], Set14
and BSDS100 [21]. DIV2K is a high-resolution dataset, which contains 800 color images and
is our training dataset. Random clipping, translation and rotation are utilized to expand the
training data. In particular, all images in DIV2K are cropped into sub-images with a size of
64 × 64. Set11 is employed to validate. Additionally, we use Set5, Set14 and BSDS100 as
the test datasets.

4.2. Implementation Details

All experiments are performed using PyTorch 1.6 platform with 1 GeForce RTX1080Ti
GPU. The Adam is used as the generator’s optimizer and the initial learning rate is set to
0.0004. After every 180 iterations, the learning rate will be divided by 2. The SGD is used as the
discriminator’s optimizer and the learning rate is set to 0.0004. Assigning different optimizer
and learning rates, updating strategies for the generator and discriminator, is beneficial for
the stable training of the model. We use four sampling rates to sample images—1%, 4%,
10% and 25%—and choose 10, 41, 102 and 256 as the numbers of corresponding measure
convolution output channels. We choose the structural similarity index (SSIM) and peak
signal-to-noise ratio (PSNR) as the evaluation index for recovery quality.

4.3. Results
4.3.1. Comparison to Other State-of-the-Art Methods

We compare our FMSGAN with some state-of-the-art methods, i.e., ReconNet [44],
ISTA-Net+ [9], SCSNet [30], CSNet* [21], OPINE-Net [40], ISTA-Net++ [41], AMP-Net [42]
and MR-CSGAN [20], on three datasets, namely Set5, Set14 and BSDS100, to verify its
recovery quality and running speed. The recovery quality comparisons are shown in
Tables 1–3 and running time comparisons are shown in Table 4. In particular, we introduce
the mean and standard deviation (SD) to compare reconstruction times in a statistical
manner. PSNR and SSIM results show that our FMSGAN performs better. On the Set5
dataset, the FMSGAN almost achieves the highest PSNR and SSIM results. Specifically,
at the four sampling rates, i.e., 1%, 4%, 10% and 25%, the proposed model achieves 0.15,
0.46, 0.85 and 0.36 dB and 0.0245, 0.0229, 0.0147 and 0.0029 gains in PSNR and SSIM
compared with MR-CSGAN. The improvement in reconstruction quality is mainly due to
prior knowledge captured by the multi-scale sampling structure. On the Set14 dataset, the
proposed model achieves average 6.72, 3.96, 0.59, 0.76, 1.03, 2.11, 0.31 and 0.16 dB and 0.2290,
0.1202, 0.0227, 0.0305, 0.0172, 0.0557, 0.0144 and 0.0190 gains in PSNR and SSIM compared
with the other eight methods, as shown in Table 2. Compared with ReconNet, our model
achieves 5.10, 6.10, 7.08 and 8.60 dB and 0.1882, 0.2550, 0.2551 and 0.2175 gains in PSNR
and SSIM at the four sampling rates. On the BSDS100 dataset, the proposed model achieves
average 5.78, 3.81, 0.38, 0.27, 1.56, 2.33 and 0.20 dB and 0.1990, 0.1246, 0.0134, 0.0227, 0.0312,
0.0625 and 0.0009 gains in PSNR and SSIM compared with the other seven methods, as
shown in Table 3. Compared with OPINE-Net, our model achieves 2.06, 1.52, 1.37, and
1.28 dB and 0.0527, 0.0337, 0.0242 and 0.0143 gains in PSNR and SSIM at four sampling
rates. We find that the AMP-Net has a higher PSNR in image recovery at a sampling rate of
25%, which indicates that the performance of the FMSGAN needs to be further improved.
We also notice that our FMSGAN and the suboptimal method MR-CSGAN demonstrate
similar reconstruction quality on the BSDS100 dataset. This is because BSDS100 is a high-
resolution dataset, which needs a more complex affinity for image CS recovery. Due to
the application of 3 × 3 convolution, our FMSGAN requires less computation; therefore,
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its learning ability decreased slightly. We assumed that the effect of recovery quality
decreasing slightly is negligible compared to the decrease processing time. Later, we will
analyze the computational complexity of the eight methods. For further comparison, we
calculate the standard deviation (SD) of PSNR and SSIM of each model at four sampling
rates on three datasets, as shown in Tables 1–3. Compared with deep straightforward
approaches, deep unfolding approaches, i.e., ISTA-Net+, ISTA-Net++, OPINE-Net and
AMP-Net, achieve higher values in both PSNR SD and SSIM SD. With high SD, one model
can have a rich ability to deal with the measurements corresponding to different sampling
rates. Benefiting from iterative thresholding algorithms, deep unfolding approaches usually
have outstanding performance. PSNR SD and SSIM SD of our model on three datasetsare
4.9791, 3.9615, 3.1427 and 0.1144, 0.1313, 0.1340, respectively and are among the highest in
deep straightforward approaches. This means that our model can maintain better recovery
performance at a low sampling rate while achieving high SD, which remedies the deficiency
of deep straightforward approaches. Subjective reconstruction comparisons are shown
in Figures 6–9, from which can find that, compared with other methods, the FMSGAN is
better able to retain more details and sharper edges.

Table 1. PSNR and SSIM comparisons for various approaches on the Set5 dataset at different sampling rates.

Approaches Year
Rate = 1% Rate = 4% Rate = 10% Rate = 25% Avg. SD

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

ReconNet 2016 18.09 0.4136 21.65 0.5455 24.68 0.6770 27.42 0.7812 22.95 0.6043 3.4743 0.1382
ISTA-Net+ 2018 18.51 0.4427 23.51 0.6692 28.87 0.8437 34.69 0.9391 26.40 0.7237 6.0297 0.1889

SCSNet 2019 24.25 0.6469 28.98 0.8471 32.75 0.9081 36.77 0.9622 30.69 0.8411 4.6262 0.1193
CSNet* 2020 24.03 0.6380 28.78 0.8215 32.33 0.9016 36.55 0.9614 30.42 0.8306 4.6029 0.1218

OPINE-Net 2020 21.86 0.6010 28.06 0.8364 32.88 0.9263 37.47 0.9617 30.07 0.8314 5.7901 0.1406
ISTA-Net++ 2021 20.90 0.5310 26.52 0.7909 31.30 0.8999 36.09 0.9554 28.70 0.7943 5.6339 0.1631
MR_CSGAN 2021 24.42 0.6451 28.86 0.8310 32.85 0.9157 37.59 0.9629 30.93 0.8387 4.8659 0.1213

AMP-Net 2021 23.11 0.6490 28.83 0.8376 33.40 0.9161 38.01 0.9585 30.84 0.8403 5.5171 0.1187
Ours 24.57 0.6696 29.32 0.8539 33.70 0.9304 37.95 0.9658 31.38 0.8549 4.9791 0.1144

The optimal and suboptimal results are emphasized in bold and underlined, respectively.

Table 2. PSNR and SSIM comparisons for various approaches on the Set14 dataset at different
sampling rates.

Approaches Year
Rate = 1% Rate = 4% Rate = 10% Rate = 25% Avg. SD

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

ReconNet 2016 18.10 0.3911 20.72 0.4890 22.89 0.5971 25.35 0.7117 21.77 0.5472 2.6759 0.1197
ISTA-Net+ 2018 18.31 0.4140 22.29 0.5851 26.36 0.7439 31.15 0.8807 24.53 0.6560 4.7665 0.1745

SCSNet 2019 22.84 0.5630 26.31 0.7226 29.25 0.8180 33.21 0.9105 27.90 0.7535 3.8128 0.1285
CSNet* 2020 22.71 0.5561 26.15 0.7138 28.94 0.8121 33.11 0.9009 27.73 0.7457 3.8113 0.1279

OPINE-Net 2020 21.47 0.5421 25.77 0.7276 29.18 0.8409 33.43 0.9251 27.46 0.7590 4.3970 0.1435
ISTA-Net++ 2021 20.43 0.4736 24.62 0.6863 28.11 0.8131 32.37 0.9090 26.38 0.7205 4.3981 0.1630
MR_CSGAN 2021 23.07 0.5623 26.54 0.7243 29.40 0.8345 33.72 0.9261 28.18 0.7618 3.9045 0.1355

AMP-Net 2021 22.57 0.5733 26.61 0.7217 29.88 0.8129 34.27 0.9210 28.33 0.7572 4.2960 0.1275
Ours 23.20 0.5793 26.82 0.7440 29.97 0.8522 33.95 0.9292 28.49 0.7762 3.9615 0.1313

The optimal and suboptimal results are emphasized in bold and underlined, respectively.
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Table 3. PSNR and SSIM comparisons for various approaches on the BSDS100 dataset at different
sampling rates.

Approaches Year
Rate = 1% Rate = 4% Rate = 10% Rate = 25% Avg. SD

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIN

ReconNet 2016 19.18 0.4026 21.25 0.4905 23.11 0.5885 25.22 0.7031 22.19 0.5462 2.2344 0.1119
ISTA-Net+ 2018 19.20 0.4054 22.22 0.5421 25.21 0.6899 30.01 0.8451 24.16 0.6206 3.9903 0.1641

SCSNet 2019 23.77 0.5481 26.49 0.6935 28.61 0.7841 31.94 0.9015 27.70 0.7318 2.9881 0.1292
CSNet* 2020 23.71 0.5431 26.11 0.6789 28.45 0.7779 31.69 0.8901 27.49 0.7225 2.9476 0.1277

OPINE-Net 2020 21.89 0.5000 25.00 0.6673 27.55 0.7903 31.20 0.8982 26.41 0.7140 3.4155 0.1481
ISTA-Net++ 2021 21.08 0.4511 24.21 0.6340 26.85 0.7644 30.40 0.8813 25.64 0.6827 3.4264 0.1598
MR-CSGAN 2021 23.85 0.5443 26.35 0.6886 28.59 0.8018 32.28 0.9101 27.77 0.7362 3.0982 0.1357

Ours 23.95 0.5527 26.52 0.7010 28.92 0.8145 32.48 0.9125 27.97 0.7452 3.1427 0.1340

The optimal and suboptimal results are emphasized in bold and underlined, respectively.

Table 4. GPU running times of different methods for recovering a 256 × 256 image.

Methods Avg. SD Platform

ReconNet 0.0195 s - Intel Xeon E5-1650 CPU + NVIDIA GTX980 GPU

CSNet 0.0751 s -
AMD Core 3700X CPU + NVIDIA RTX3090 GPUSCSNet 0.0927 s -

ISTA-Net+ 0.0174 s 0.0091 s

Intel Xeon E5-2620 CPU + GeForce RTX1080Ti GPU
OPINE-Net 0.0350 s 0.0072 s
ISTA-Net++ 0.0410 s 0.0103 s
MR-CSGAN 0.1210 s 0.0143 s

Ours 0.0406 s 0.0095 s
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Table 4 is the reconstruction time comparisons between different CS approaches for
recovering a 256 × 256 image in the Set11 dataset at a sampling rate of 10%. We test ISTA-
Net+, OPINE-Net, ISTA-Net++ and MR-CSGAN on our platform (1 GeForce RTX1080Ti
GPU) with their original codes and the results of SCSNet, ReconNet, and CSNet are
supported by [20]. In Table 4, we can see that the time to reconstruct a 256 × 256 image by
our FMSGAN is only 0.0406 s, less than that of SCSNet, ISTA-Net++ and MR-CSGAN and
nearly 1/3 of that of the MR-CSGAN. The comparison results display that our FMSGAN is
capable of fast image CS reconstruction.

4.3.2. Ablation Study

1. The MSS

In this section, we evaluate the performance of the MSS. For a fair comparison, only
the last convolution layer in the MSS is kept. Table 5 shows the PSNR comparison between
w/MSS and w/o MSS tested on the Set14 dataset at four different sampling rates. It is easy
to see that the MSS structure greatly facilitates recovery performance across all sampling
rates, with the most obvious improvement up to 0.37 dB, which convincingly demonstrates
the effectiveness of the MSS.

Table 5. PSNR comparisons of two structures on the Set14 dataset.

Methods
PSNR

Rate = 1% Rate = 4% Rate = 10% Rate = 25%

w/o MSS 23.02 26.61 29.60 33.77
w/MSS 23.20 26.82 29.97 33.95

2. The LMSRB vs. the MSRB

To verify the effectiveness of the LMSRB, we replace it with the MSRB [20] in the
FMSGAN and carry out experiments. Reconstruction quality comparisons and running
speed comparisons are shown in Figure 10 and Table 6, respectively. Figure 10 shows the
PSNR of two models tested on the Set5, Set14 and BSDS100 datasets at different sampling
rates. We observe that our LMSRB acquires a higher PSNR at sampling rates of 1%, 4%,
10% and 50%, the model with a MSRB has a higher PSNR at a sampling rate of 25% and
there is a slight difference between the two models in image recovery quality. Table 6
shows the running time of two models tested on Set11. We find that the time to recover a
256 × 256 image by the FMSGAN is always evidently less than that of the model with a
MSRB; this is because the number of feature maps in the LMSRB is the same as that of the
MSRB, whereas the number of operations in the LMSRB is significantly less than that of the
MSRB. The comparison results show the better performance of the LMSRB.
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Table 6. GPU running times of two methods for recovering a 256 × 256 image.

Methods
Rate = 1% Rate = 4% Rate = 10% Rate = 25%

Avg. SD Avg. SD Avg. SD Avg. SD

LMSRB Based 0.0390 s 0.0094 s 0.0398 s 0.0095 s 0.0406 s 0.0095 s 0.0410 s 0.0097 s
MSRB Based 0.1189 s 0.0143 s 0.1200 s 0.0142 s 0.1210 s 0.0144 s 0.1219 s 0.0154 s

3. Effect of cost function

For further analysis of the proposed model, various settings of the cost function are
concerned and the corresponding recovery performance is shown in Table 7. In particular,
we maintain pixel loss as the main part of the cost function. From Table 7, one can clearly
observe that setting (d) achieves the best reconstruction performance. Comparing setting
(a) and setting (c), we notice that perceptual loss could promote the final recovery results. It
seems that adversarial loss has little contribution to recovery performance if only concerning
PSNR. Therefore, we display the image subjective reconstruction result in Figure 11. One
can see that adversarial loss is capable of supporting better visual results and helps keep
context details.

Table 7. Ablation study of different settings for the cost function. The experiments are conducted on
the Set5 and Set14 datasets at a sampling rate of 10%.

Setting Pixel Loss Adv Loss Perceptual Loss
PSNR

Set5 Set14

(a) X 8 8 33.47 29.80
(b) X X 8 33.48 29.83
(c) X 8 X 33.65 29.96
(d) X X X 33.70 29.97
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Furthermore, we also explore the impact of different coefficient combinations of cost
function on reconstruction performance, as shown in Table 8. It can be seen that the
coefficient of perceptual loss has an obvious influence on the final reconstruction. Whether
k is greater or less than 0.006, the reconstruction performance will be worse. This means that
perceptual loss should be well coordinated with the whole cost function. For adversarial
loss, we tend to verify its performance through visual results provided in Figure 12. From
Figure 12, we find that the influence of v on the final reconstruction is nearly negligible.

Table 8. Ablation study of different coefficient settings for the cost function. The experiments are
conducted on the Set5 and Set14 datasets at a sampling rate of 10%.

Setting q K V
PSNR

Set5 Set14

(e) 1 0.006 0.01 33.61 29.98
(f) 1 0.006 0.0001 33.67 29.95
(g) 1 0.06 0.001 32.64 29.39
(h) 1 0.0006 0.001 33.60 29.81
(i) 1 0.006 0.001 33.70 29.97

Entropy 2022, 24, x FOR PEER REVIEW 13 of 16 
 

 

coefficient of perceptual loss has an obvious influence on the final reconstruction. Whether 
k is greater or less than 0.006, the reconstruction performance will be worse. This means 
that perceptual loss should be well coordinated with the whole cost function. For adver-
sarial loss, we tend to verify its performance through visual results provided in Figure 12. 
From Figure 12, we find that the influence of v on the final reconstruction is nearly negli-
gible. 

Table 8. Ablation study of different coefficient settings for the cost function. The experiments are 
conducted on the Set5 and Set14 datasets at a sampling rate of 10%. 

Setting q K V 
PSNR 

Set5 Set14 
(e) 1 0.006 0.01 33.61 29.98 
(f) 1 0.006 0.0001 33.67 29.95 
(g) 1 0.06 0.001 32.64 29.39 
(h) 1 0.0006 0.001 33.60 29.81 
(i) 1 0.006 0.001 33.70 29.97 

Setting (e) Setting (f)  
Figure 12. Comparison of visual recovery on baby from Set5 at a sampling rate of 10%. 

4.4. Discussion 
As far as we know, a lot of DICS methods have been proposed. Most of them are 

committed to improving reconstruction quality instead of reducing the running time of 
image reconstruction. We believe that reducing the time complexity of reconstruction is 
also of great significance, especially in some real-time scenarios, such as automatic driv-
ing. 

We introduce GAN to implement image CS. From Tables 1–3, we can see that the 
proposed FMSGAN almost achieves the highest PSNR and SSIM values on the three da-
tasets, an exceptional reconstruction effect. This is due to the advantage of multi-scale 
information. In the FMSGAN, two main structures, a MSS and a LMSRB, are proposed. In 
the sampling stage, the MSS extracts multi-scale information through convolution kernels 
of different sizes. Convolution with different kernel sizes has different receptive fields, 
which can capture more correlation information between pixels. In the recovery stage, the 
LMSRB extracts and synthesizes multi-scale information through convolution kernels of 
multiple branches and different depths. After the LMSRB, the image has rich feature rep-
resentations, but some of them are redundant Therefore, we introduce the channel atten-
tion module to filter invalid features and enhance useful features, so as to improve recon-
struction quality. We also notice that our FMSGAN achieves a lower PSNR and a higher 
SSIM compared with AMP-Net at a sampling rate of 25%, which is mainly because the 
AMP-Net employs the added deblocking model. In the meantime, there is only the mean 
square error loss that is applied in AMP-Net’s loss function and the mean square error 
loss tends to optimize pixel-level errors, so the AMP-Net acquires a higher PSNR instead 
of a balance between PSNR and SSIM. The reconstruction performance of various meth-
ods for different datasets is different and most of them achieve the worst reconstruction 
effect on the BSDS100 dataset. This may be because the BSDS100 dataset is the largest of 

Figure 12. Comparison of visual recovery on baby from Set5 at a sampling rate of 10%.

4.4. Discussion

As far as we know, a lot of DICS methods have been proposed. Most of them are
committed to improving reconstruction quality instead of reducing the running time of
image reconstruction. We believe that reducing the time complexity of reconstruction is
also of great significance, especially in some real-time scenarios, such as automatic driving.

We introduce GAN to implement image CS. From Tables 1–3, we can see that the
proposed FMSGAN almost achieves the highest PSNR and SSIM values on the three
datasets, an exceptional reconstruction effect. This is due to the advantage of multi-scale
information. In the FMSGAN, two main structures, a MSS and a LMSRB, are proposed. In
the sampling stage, the MSS extracts multi-scale information through convolution kernels
of different sizes. Convolution with different kernel sizes has different receptive fields,
which can capture more correlation information between pixels. In the recovery stage,
the LMSRB extracts and synthesizes multi-scale information through convolution kernels
of multiple branches and different depths. After the LMSRB, the image has rich feature
representations, but some of them are redundant Therefore, we introduce the channel
attention module to filter invalid features and enhance useful features, so as to improve
reconstruction quality. We also notice that our FMSGAN achieves a lower PSNR and a
higher SSIM compared with AMP-Net at a sampling rate of 25%, which is mainly because
the AMP-Net employs the added deblocking model. In the meantime, there is only the
mean square error loss that is applied in AMP-Net’s loss function and the mean square error
loss tends to optimize pixel-level errors, so the AMP-Net acquires a higher PSNR instead
of a balance between PSNR and SSIM. The reconstruction performance of various methods
for different datasets is different and most of them achieve the worst reconstruction effect
on the BSDS100 dataset. This may be because the BSDS100 dataset is the largest of the
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three test sets. It contains a wide variety of high-resolution images, which require more
complicated mapping during reconstruction. In Table 4, we find that the time to reconstruct
a 256 × 256 image by the FMSGAN is only 0.0406 s, less than that by SCSNet, ISTA-Net++
and MR-CSGAN, and is nearly a 1/3 of that by MR-CSGAN. This is mainly because we
apply concatenated 3 × 3 convolution instead of large-scale convolution in the LMSRB,
which obviously reduces the number of operations. In SCSNet, the author achieves better
reconstruction quality through a multi-stage reconstruction strategy, but needs high time
complexity. It is necessary to design a more efficient network structure.

GAN itself is prone to the problems of non-convergence and model collapse. In the
design of the model, we try to keep the parameters of the discriminator and the generator
in the same order of magnitude, and ensure that the parameters of the generator are slightly
more than those of the discriminator, which can give full application to the discriminator’s
ability without affecting the reconstruction ability of the generator. In our experiment, the
number of parameters of the generator are no more than twice that of the discriminator.
Further, we assign different optimizers and learning rate update strategies to the generator
and discriminator, respectively, so that our model can avoid falling into the problem of
mode collapse. For model convergence, we design the cost function based on pixel loss,
adversarial loss and perceptual loss. Pixel loss helps the model converge quickly, so we
give it a large weight. Adversarial loss and perceptual loss are treated as the auxiliary parts
of the cost function, which are assigned small weights. Taking advantage of the design of
the function, the model can be trained stably.

In the future, scholars can pay more attention to video compressed sensing. As an
ordered image group, video has more redundant information available in the temporal
domain and the spatial domain. Making full use of this redundant information will achieve
higher-quality data compression, which is of significance.

5. Conclusions

In this paper, we present a generative adversarial network-based image compressive
model. Specifically, a multi-scale structure is applied for capturing multi-level information
to improve reconstruction. An LMSRB structure is applied for deep reconstruction. With
the application of multiple 3 × 3 convolutions, multi-scale information of features is
better acquired and the number of operations is evidently decreased, which is helpful
for capturing detail and recovering images quickly. At the same time, perceptual loss is
introduced to enhance the visual quality of the recovered image. Experimental results show
that our FMSGAN achieves better reconstruction quality and fast recovery speed against
some state-of-the-art methods on three datasets.

Despite the superiority of the FMSGAN, further improvement can still be achieved in
the reconstruction of DICS. With further in-depth research on deep learning, some novel
networks with brilliant performance can be derived, which are capable of powerful infor-
mation capture and feature extraction. Applying these structures, DICS will demonstrate
more exceptional performance.
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