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Abstract: The spectral slope of magnetohydrodynamic (MHD) turbulence varies depending on the
spectral theory considered; —3/2 is the spectral slope in Kraichnan-Iroshnikov—Dobrowolny (KID)
theory, —5/3 in Marsch-Matthaeus—Zhou and Goldreich-Sridhar theories, also called Kolmogorov-
like (K-41-like) MHD theory, the combination of the —5/3 and —3/2 scales in Biskamp, and so on. A
rigorous mathematical proof to any of these spectral theories is of great scientific interest. Motivated
by the 2012 work of A. Biryuk and W. Craig (Physica D 241(2012) 426-438), we establish inertial range
bounds for K-41-like phenomenon in MHD turbulent flow through a mathematical rigor; a range of
wave numbers in which the spectral slope of MHD turbulence is proportional to —5/3 is established
and the upper and lower bounds of this range are explicitly formulated. We also have shown that the
Leray weak solution of the standard MHD model is bonded in the Fourier space, the spectral energy
of the system is bounded and its average over time decreases in time.

Keywords: magnetohydrodynamics turbulence; harmonic analysis; Kolmogorov theory; inertial
range bound; —5/3 law
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1. Introduction

At a high Reynolds number fluid and plasma flows exhibit a complex random behav-
ior called turbulence. Turbulence is observed in a great majority of fluids both in nature
such as the atmosphere, river currents, oceans, solar wind, and interstitial bodies and in
technical devices, such as laboratory installations, nuclear power plants, etc. Its importance
in industry and physical sciences, such as making predictions about heat transfer in nuclear
power plants, drag in oil pipelines, and the weather is tremendous. Besides these real-life
relevant issues, the study of turbulence can assist mathematical researchers in understand-
ing some aspects, such as the regularity of Euler’s equation, the Navier-Stokes equation,
magnetohydrodynamics equations, and so on, see for instance [1].

The literature shows that the phenomenon of turbulence has captured the attention of
humankind for centuries, see for instance [2]. The discovery of the Euler equations in the
mid-18th century and Navier-Stokes equations in the first half of the 19th century are the
major scientific and mathematical breakthroughs. Towards the end of 19th century Osborne
Reynolds laid a foundation for the theory of turbulence, see [3,4], ([5], p. 488) and [6].
Reynolds number, a widely used criteria to classify whether a given flow is turbulent or not,
and Reynolds averaged Navier-Stokes equations (RANS) are due to O. Reynolds. RANS is
formulated by decomposing the velocity field u(x, t) in to average velocity #(x, t) over a
time interval and fluctuation velocity u'(x, t) = u(x, t) — ii(x,t), and finally rewriting the
Navier-Stokes equations in terms of the average velocity . In fact, RANS is still one of the
most widely used models to study turbulence in fluids, see [7,8] and the references there.
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The 1941 phenomenological theory of turbulence by A.N. Kolmogorov, published in
a series works [9-12] postulated that the spectral energy of a fully developed turbulence
decays according to the rule

C0€2/3k_5/3, (1)

over a range of wavenumbers, k € [ky,k;], also called the inertial range; where € is the
energy dissipation rate and C is a universal constant called Kolmogorov constant. The
exponents in (1) are determined by dimensional analysis. The theory is often referred to as
K-41 theory or Kolmogorov’s —5/3 law. The state-of-the-art exposition of Kolmogorov’s
school of turbulence can be found in the seminal monographs of Monin and Yaglom [13,14].

By the middle of the 20th century works particularly focus on MHD spectral theory
started to emerge. From the earliest of such works Kraichnan [15,16] and Iroshnikov [17]
can be mentioned. Unlike Kolmogorov, where the spectral energy decays proportional to
k=3/3, Kraichnan and Iroshnikov concluded that the spectral energy of a fully developed
MHD turbulent flow decays proportional to k~3/2, which later on was supported by M.
Dobrowolny, A. Mangeney, and P. Veltri in [18]. Mahendra K. Verma in his review [19] said
these works are the first to establish phenomenological theory on MHD turbulence, where
he referred it as the Kraichnan-Iroshnikov—Dobrowolny (KID) phenomenon.

It is important to note that MHD turbulence, unlike hydrodynamic turbulence, is
controlled by a combined effect of the magnetic field and the fluid velocity, see for in-
stance [20]. Despite the difference in the formation of hydrodynamic and MHD turbulence,
several authors have argued that under certain conditions the spectral energy of MHD
turbulence also decays proportional to k~5/3, which is widely accepted as a spectral slope
for hydrodynamic turbulence. For instance, Marsch and Tu in [21] and Marsch in [22]
suggested that the decay rate of an isotropic turbulence in sthe olar wind is very likely to
be —5/3 than —3/2. Matthaeus and Zhou in [23] proposed that the larger wavenumbers
(relative to the mean magnetic field) would follow the —3/2 law whereas the smaller
wavenumbers would follow the —5/3 law. Biskamp in [24] proposed three different rates;
—5/3 for the general MHD turbulence when Alfvén effect is neglected, —5/4 when Alfvén
effects are included and the mean magnetic field is constant, and —3/2 when Alfvén effects
are considered and the mean magnetic field is fluctuating. Boldyrev in [25] also concluded
that MHD turbulence is not completely described by either the —3/2 or —5/3 scales; the
scales depend on the strength of the external magnetic field: —3/2 scale applies when the
mean magnetic field is strong while —5/3 scale applies when the external magnetic field
is weak. We refer to the review by Verma [19] for the several phenomenological theories
on MHD turbulence, the book by Davidson et al. [2] for the biographies and works of
some of the prominent contributors to the area, and [26-29] and the references in there for
interesting applications and recent developments.

The purpose of this paper is to establish a spectral range for K-41-like MHD phe-
nomenon through mathematical rigor. The work was motivated by the 2012 paper of
Andrei Biryuk and Walter Craig [30] where they established an estimate for the Leray

weak solution of Navier—Stokes equations in the norm ||8x/u(7) || L= which lead to proving
the solution’s ability to satisfy Kolmogorov’s spectral law (1). J. Leray formulated weak
solutions in the first half of the 1930s and considered them as turbulent solutions, see [31,32].
Following Leray’s work several authors treated weak solutions for fluid dynamic models
as turbulent solution, see for instance [33-36]. Therefore, it is not surprising to see the
Leray weak solution of Navier-Stokes equations obeying K-41. In a similar passion, we
consider the weak solution for a system of MHD equations as a turbulent solution and
attempt to show that it obeys the —5/3 spectral law over a range of wave numbers when
certain conditions are met.

The dynamics of MHD flows in general is described by a system of partial differential
equations given by
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o+ (u-Vu+Vr—(b-V)b—vAu=f, (0,00)xD,

ob+ (u-V)b—(b-V)u—nAb= fp, (0,00) x D, o)
divu = divb =0, D,

ult=o = uo, bli=o = bo, D,

where u = u(x,t) is the flow velocity, b = b(x,t) is the magnetic field, 7 = P + 1|b|?
is the total pressure on the system with P representing the pressure function from the
equation of motion, v > 0 is the kinetic viscosity of the fluid, # > 0 is the resistivity of
the fluid, and the spatial domain D is the Euclidean space R3. The non-homogeneous
external forces fi = fi(x,t), fo = fa(x,t) are assumed to be divergence-free and satisfy
fi, fa € L} C([ 00); H"}(D) N L2(D)), where L is the space of locally bounded functions,
H~! and L? are the usual Sobolev and Lebesgue spaces, respectively. The derivation of
Equation (2) is done by combining the Navier-Stokes equations and the Maxwell equations
in some way, see [37-39].

We now introduce the spectral energy function, denoted by E(k, t); the spectral energy
of the MHD flow model (2) is given by the surface integral

E(k t) := /‘%‘:k(lﬁ(é‘f B +[6(c,1)[*)dS(§), k€ [0,00), {|g] =k} C D, ®)

where i7and b represent the Fourier transforms of u and b, respectively.

Of great scientific interest is the question of rigorous mathematical proof of the spectral
theory, K-41 or otherwise, under physically admissible conditions. Therefore, our main goal
will be to set the conditions on the data and to show that the spectral energy (3) satisfies
—5/3 law when such conditions are met.

Before we give a formal definition to the weak solution of (2), we introduce some
function spaces and their notations as they appear in [40]. We denote by Cg’; the set of all
divergence-free smooth functions with compact support in D. L} is the closure of Cor with
respect to the L? norm in the usual sense. For 1 < p < oo the space L? stands for the usual
(vector-valued) Lebesgue space over R3. For s € R, we denote by HS the closure of Cor
with respect to the H® norm.

Definition 1. Let (ug,bg) € L2(D). A vector (u,b) is said to be a weak solution to (2) on
D x [0, o) if it satisfies the following conditions:
1. forany T > 0O the vector function (u,b) lies in the following function space,

u, b e L*([0,T); LA(D)) N L*([0, T); HL(D)).
2. the pair (u,b) is a distributional solution of (2); i.e., for every (®,¥) in
H'((0,T); Hy N L?),

with ®(T) = ¥(T) = 0,
T
/ {—(1t,:®) +v(Vu, VO®) + (11 Vi, ®) — (b Vb, ®)}dt
0

T
_(u()/q)<0)) + {(flr®)dt
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and

T
/ {—(b,0%) + 7(Vb, V¥) + (- Vb, ¥) — (b- Vi, ¥)
0

(b0, ¥()) + [ (fo, ¥

0
Furthermore im u(-,t) = ug(-) and lim b(-,t) = bo(-) exist in the strong L* sense.
t—=0+ t—=0+
3. the following energy inequality is satisfied,
. ot
% / lu(x, 1) 2 + |b(x, £)2dx + min(v, 5) / / (Vu(x,s) 2 + |Vb(x,s)[2dxds
D 0 Jp
t
7/ /D u(x,s) - fi(x,s) + b(x,s) - f2(x,s)dxds
0
1
<5 [ o) P+ [bo(x) v @
forall 0 <t < co.
The rest of the paper is divided into three main sections; Sections 2—4. In Section 2
we briefly discuss Fourier transform and its properties, rewrite Equation (2) in Fourier
variables, and derive prior estimates. In Section 3 we present and prove our main results

whereby we drive the bounds of the spectral energy function (3) and spectral energy
bounds. Finally, Section 4 is conclusion.

2. Estimates for the Solution Field (u,b) in a Fourier Space
2.1. The Fourier Transform

The Fourier transform of an integrable function u, denoted by i, is defined by

i(¢) :/De*ié'xu(x)dx.

The Fourier transform has several interesting properties, among them the following
three are of great importance to this work;

HuH%Z(D) = HQH%Z(D)/ 5)
ofu(x) = (i¢)"0zu(5) and x*u(x) = (—i)*9zu(¢), (6)

and
W =1*0 and u*0=10. (7)

In (6), oy and d7 indicate the ' order derivative with respect to space variables in the
Euclidean and Fourier spaces respectively, * in (7) is the convolution operator and Equa-
tion (5) is the Parseval-Plancherel identity. For the detail of these and other properties of
the Fourier transform we refer to [41-43].

In fact, (5) implies that the energy of the system (2) in Fourier space is equal to the
energy of the system in Cartesian space. To take advantage of (5) we give an equivalent
formulation for (2) in Fourier space. This is done in two steps; first we eliminate the
pressure term by applying the Leray projector given by (8).

Pi=1d— VA div-. (8)
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The application of P together with the fact that the fields u and v and the non-homogeneous
terms f; and f; are divergence free reduces the system (2) to

3 — b = P((b- V)u) = P((u-V)b) + o, ©)

ult=0 = o bli=0 = bo.

Next, we take the Fourier transform of (9) to get

bt+77|k|2b—£ ((b- Y) u) — (7’((“~V)b))+fz, (10)
o = g, Bli—o = bo.

Thus (10) is an equivalent formulation of (2) in Fourier space.

2.2. A Prior Estimates

This section is devoted to finding estimates in Fourier space for solutions of (2). For
ease of calculations, we define an operator

H@@%CéW’%@:z(z@éy (11)

where C3 the usual three dimensional complex space and
Cé::{ze(@:g'z:O}.
Observe that for ¢ € C® and u divergence free, we have
ﬂg(ﬁ) = 1

P«wvﬁ)::ﬂ%(éﬁ@—CMHO%>=ﬂk<A§ﬂ§—OHO%).(H)

Now plugging (12) in (10) we get,

i(g)dg) + fi,

iy = —v|g i+ il ([, §b(E — £)b(0)dg) — Tl i f
(¢)d0) b(Od) +f,  (13)

i i (o Ca(E~0)
b = —1|€[% + i1 (f, CB(E — 0)A(E)dL) — i ([ CA(E — )

ﬁ|t:o - 1//[0/ b|t:o - bO‘

Remark 1. Let Bg(0) a ball in L?(D) of radius R. Let (1o, by) € Br(0) and f1, f» € L ([0, 00);
H~Y(D)NL?(D)). Ifan appropriate frame is chosen and the total pressure I1is suitably normalized
so that

[ uGet) - file ) + b 1) - fax, Dl (14)

is bounded, then for any T > O there is a non negative function R(T) such that
T
(-, T)IIZ2 + N6 (, )Hiz+min(v,f7)/0 (IVu(, )72 + Vb 5)[[F2)ds < R¥(T).  (15)

Furthermore, when f; = f, = 0, the bound R(T) = R is a constant fully determined by the initial
data (ug,by). In this case one could actually take R to be the right hand side (RHS) of (4) and
Br(0), a ball of radius R and center 0, becomes an invariant (set A is said to be an invariant (future
invariant) set with respect to a function ¢ or family of functions {@(t) : t € [0,00)}, if

p(0) e A = ¢(t)e A, Vt>0.
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) set for the weak solution.

Assuming that the non-homogeneous terms f; and f, are appropriately chosen so that
(15) holds. With no lose of generality, one may assume from (5) that

12(, 172 + 15, )72 < R3(8). (16)

However, the problem is, since u, b are only distributional (weak) solutions, their Fourier
transforms are not well defined at particular points, say (¢, t), in Fourier space-time. We
address the problem by taking a smooth cutoff of u and b over a cube of finite length and
making use of the Paley-Wiener theorem ([42], p. 193).

Letk(#0) €R3,0< 5 < % Define xx () to be a smooth cutoff function of a cube
Qy about k of side length 24 such that

Xe(€) =1,

on a cube of the same center with side ¢ and

suppx = {{ € R’ :

N[ =

<121 < Sk}

Consider the following three smooth cutoff functions defined to suit our purpose;

RUDWH = FHROAEN) = (s ) ), )
ikt = () T nP + BB nPac) as)
(k1) = oi‘iit</o [I)?k(@)fl(éf)|”+I)?k(é)ﬁ(ét)l”]/§|”dé‘>p- (19)

Remark 2. Since the Fourier transform of xy is compactly supported, by Paley—Wiener theorem,
([42], Theorem 7.3.1) we have x; € H™ for all m. Thus xj can be considered as a test function.

We now have enough preparation to start working on estimating our solution in
Fourier space. To establish necessary estimates, we first need to establish estimates on ¢,
for p = 2 followed by estimate for ey (k, t) forall 2 < p < co.

Lemma 1. Suppose that (15) holds and there exists a non-decreasing function Rq(t) such that

min(v, 17)

(26)3/27/2R?(t) + 2hy (k, t) < Ry (t), (20)

forall t € [0,00) and § < % Ifes(k,0) < Rll,ff), then for any t € (0, 00) we have
ek ) < R|1k<t) 1)
Proof of Lemma 1. By definition
(k) = [ %@ HRERE D + Bu(&)B(E DD, Dz, @)

Differentiating (22) with respect to time and using Equation (13), we get



Entropy 2022, 24, 833 7 of 28

! )

20 5 (0@ D) Z@D(E 1) + R(DB(E DT >jt(3<¢,t>)}d¢

= [R5 00 1) GlTE D) + (R0, 1)

o~

- [xk@)( viePa+itte( [ ¢b(e ~ 0B
([ zn(e - oyae)ar +f1>(??k(é)ﬁ(§,t)>

ity gi(e - 0i(@)ae) + fy
2@ (—alePh iy 7B - Da)d)
it G0(¢ - DBEE) + o) RlEBE D)

+RB(E OT(@) — 112D+ e ( [ 2B(E - DE)AL)ae.
it (e - 0B + |

Applying elementary properties of complex numbers, it follows that

= v / SPIR @ DPE 1 | 1ePIR(@)D(E, ) Pd
J R (i ( [ 7@ -0 ta@ac ) w@aE ﬁ@t)d@
( g(/lﬁé 0)- G040 REDE D ) o 23)
(/DE dg)x Vi )dg
)

—/D%‘c(i (/Dﬁ@ 0)-h(¢ dé)xk
8 [ Z@ACHREIE N + R [ 7@ REHRENE D
= h+Db+L+L+I5+1g+ I+ 5.

dg

For ease of calculations, we now deal with the terms on RHS of (23) separately.

htlh =—v[pEPIRe(Q(E PAE — 1 [, 5 PIRk(£)D(E, 1)7dG
< — min(v, ) fD(m &)ii(E, 2 + [(@)b(E, D7) de. 24)

In (24) we used the fact & € suppjy; that is @ < (2] < 3[k|.
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=3 [ (e e~ 0)- ca0)a ) H@aEn ),

which implies

|13

: (Hg(/D (¢ —17) .gﬁ(g)dg);m)dg‘
IRt Ol 5ette (2 ) (6 - Da0dc ) @)

IRz Co ) 2 1€k 2 Nl 1) 17

IN

IA

The estimate in (25) is due to the fact that uand b are divergence free and elementary
properties of complex numbers. Hélder’s and Young’s inequalities are also used.
We know from construction of x; and Holder’s inequality that

16Xkl < 1181 zellxel s

- (/ |§4d€>i</ |xk|4dc)l (26)

Qk
< |k| (26)3(20)F = %|k\(25)%.
Thus, combining (25) and (26) we get,
5] < 21K 28) 2R, Ol 2 8 D] @)
Proceeding similarly with I4, Is and I we get
L] < glkl(%)%IIXkE(-/t)IILzllﬁ(-,t)IILZIIE(-J)HLZ/ (28)
Bl < S 1k@0) R, D 2B )R, 29)
[Ie| < %IkI(Zé)%II??kE(vf)IILzIIft(',f)IILzIIE(vf)HLz~ (30)

Thanks to Holder’s inequality, the integral I7 is estimated as follows;

v o= R fk@ﬁ@,tm@)ﬁ(md@]

< | R DRI /21| @
< 1R, Ol 2l xfr L DIE e
3 e~ o 7 -
< SIklC, Ozl X G018 e
Similarly, we have
3 et o 7 .
Is| < SIkIIRC Ol 1%k f2 (1G] ]2 (32)

Now combining the estimates (24)—(32) we obtain
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d
Bk
2 ~

— —min(y, - | (1R©a@ P + |x@)b(E )P )a

21k IRaC Dl (120Dl + 15, 0]2)

+3K(22 26)2 R, 2 1, D) 2B, 1) 2

kIR O NRA G D1 e + 170D 1R 01E ] 69)

< it 50,0+ 2 k12027 (1l + 1%:31) (117 + 1517)

okl (el + 1260l ) (1% 121+ s 1211
< mm(v,w'k' Ak, 1) + 3 K1(20)/ 2V ea(k, ) (]2 + [B2)

2k
2
2 kY Zea(k, 1) (167 121+ o/ 211 )
< —min(v,n) %eﬁ(k, £)+ 5 klea(k, ) (202 V2R2() + 2ha(k, ).
Here we used Serrine’s inequality ([44], Lemma 1) to estimate upper bounds for ||| +
1xxbll and [|xif1/ 1811l + [[Xkf2/ S| || respectively as;

I Zxii] + 1%kl < V2es(k, 1),

IXef1 /1611 + IR f2/ 1611 < V2ha.
Now define the set Bg, by,

Br, = {e:e < Ry/[k|} = {e(k,t) : e(k,t) < Ry(t)/|K|}. (34)

When e(k,t) = ex(k, t) =

Ry(t)
IK|
b3l ) < —MERE(E) + 3R, ()RR, (1) < 0.

Then by chain rule and from the fact that e;(k, t) > 0, we conclude that

d
Eez(k,t) < 0. (35)
Indeed, (35) implies that Bg, is an attracting set for e, (k, t). Therefore, if e (k,0) < le‘o) ,

then ey (k, t) < R‘lk(‘t) forallt € (0,00). O

Lemma 2. Suppose that for a given k € R3 and 2 < p < oo there is a non-decreasing function
R (t) that satisfies the condition

min(v, 1)

27 (20)%/ PR2(t) + 20 (k, t) < Ry(t),

for0 < & < |k|/2V/3.
If a solution to (2) initially satisfies

ep(k,0) < Ry(0)/|Kl,
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then for all 0 < t < oo,

ey (k1) < R|1k(|t).

Proof of Lemma 2. The proof follows same procedure as the proof of Lemma 1. We begin
by taking the time derivative of e (k, t).

d p
A’y

= 3 [IR@aE P + 7@ )| de
= ®{ [ (@ 0P 2 (T@ae ) @EE )
+pIR(EB(E DI ((Re(@)3D(E 1) (Re(DB(E 1)) ) )de |
= —v [ PEPIRU@AE DIz — g [ pEPIRU@BE IPde
+% [ iplR(@(E DR DE DR [ 7(E —)ERE)dAzde (36
+% [ iplR(@(E DI RDRE DR [ B(E - D)2b(E)dzde
+R [ ip|R(@B(E DI R (EDE DTN [ B(E - D)Ea(E)dcde
+% [ iplRe(@b(E O 2RD(E DR [ (& — £)Eb(E)dzde
R [ pIRUOTE DI T @ DR (& 14

R [ pIRBE O 2R(@DBE DR a(E e
= Lh+bh+L+Ii+ 15+ I+ I+ Ig.

(k, t)

In the derivation of (36) we have used the following fact;

LIR@BEN = TV R(@bE NRAOBE D
- R@BE t>|-1(<zzk<s)a£<c, D)% @BE 1)
+<xk<«:>a£<¢,t>><xk<a>5<c,t>>).

We now estimate the integrals at the RHS of (36).

heh = —v [pEPIR@E O~y [ plePIRd@bE DI

< 20 [ igome oraz+ I [g@beora @)
< M) ek, ).

Here we used the fact that for ¢ € supp X, @

Young's inequalities, we have

< |g| < 3|k|. Finally, thanks to Hélder’s and
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Bl = |3 [ PR )P RERE IR [ 7(E - Oz

IN

[ PR DI 2 RITETE DR S [ 7(E - 0(E)dca]

. )Fj"(/m @t [ -z’

pld@)p”(/ G |Pd§) | [ 4@ - )a@dgli

( JIEEG ”dé) (f |ﬁ<@t>|ﬁd¢)

AN
=
7N
—
—_
=)
o
N
=
™
H—
_~:
AN
‘E
Q.
™R

IN
=
N
—
—_
oY)
~
)
S—
=)
—
o)
-~
SN—
=
N
<
Q.
(Y]
——

IN
=
N
—
—_
=)
o
~ —
R
S—
=)
—
S [N
-
N—
=
AN
= N— ~— ~—
<

ul < o/ (mk(c)ﬁ(c,t)v?—l)"pldc)

«(f 1o t)lpdg)l/p (/e t>|v”1d§)”

= off(reneor ) (fermers)
X(/ b 1)rag W(/m(c t)l*”?ldé“)ppl

p—1 'y

< o f(m@ienrt) ) " ( frrimerd)

=
R
-
N~—
S
=
o
Y
N———

|I;| =

< | PR@nE NP RERE DR (6 ]

- 12171k () A1(E 1) )P 4
P
< p(/ Xk (E)u(S, 1) dé) < i )

1/p
< 32’7|k|(/|xk atwd@) ( %6 élft ) .

A similar approach yields,

p-1 1/p
i < 2 ( [ 7o) eupag)”( BEREI ) |

1/p

(38)

(39)

(40)

(41)

(42)

(43)
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Now plugging the estimates (37)—(43) in (36) and rearranging the terms we get,

d p

min(v, 17)
Lok < —mmvn)

plki2el (k, 1)
p—1

+(/'|¢|P|xk<¢>|vdf; { [ 1%:te ctv’dc)”nﬁniz
Bt

([ 1me asmpdg) B + ([ @@ npas) " alialol:

([ 1m@de nrac)
—|k| (/ G |pd§> (/ X (S éllpc: t)]| ) 1/p
3p|k| (/ 12 (E)B(E, 1) |pd§> (/ Xk (S éz'pé t)| ) /p'

We know from the property of xj that ([ [¢|P|xk(¢)[PdE )1/ ¥ is bounded from above as

p—1
P

IIﬁILzIbIILz]

1/p
([ierm@ras) ™ < Flsp. (9

Furthermore, we have

3|k|P (/|A (e, 1) |Pdg) (/ Xk (& J;1|p§t ) vy
+ ([ imonen |”d«:) (/ BOAEL, )W

s w o esnd”
g
= (/ Xk ()u (S, ) I”d€+/|x:< b(E, t)Pclg)p”1
27 </ Xk (& |J;1|p6t +/ [ gft ) 1/p
< 23IKlp eb T (k, )y (k, 1),

N
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and

p=1
v

[</ Xk (8)u(E,t) |pd§) 2 ||uHL2 + (/ |)/C\k(§)ﬁ(§,t)pd§> ”5”%2

+

IN

IN

(/15 @tha) |ﬁ||Lz||b||Lz+</|xk B¢, 1Hu||Lz||b||Lz]

(/ xk@ﬁ(@,twd@) (1 181R) +2( [ @b oraz) " la ey

(( [ m@aen Pdg)p” +(/ |;?k<c>5<a,t>|*7da)p”]) (112 +11512)

2eb 7 (k, 1) R2(1).

-

We next put (44)-(46) together to get,
d 14

dtep(k,t)

< ) g,y 4 2 asyprnatel R +
28k, k)

< 7mmiv 1) plk[2el (K, )+ﬂpep (k, t)( 27 (26)¥ PR2(t) + 21, (k, f))

Once again we consider the set

By, = {e(k,t) 0< ek t) < R|1k(|t) }

Setting e(k, t) = ep(k, t) = le‘t), on the boundary such that |k|e, (k, t) = Ry(t),

P p—1
4 2R1(t) 3lk| Ry (1)
< —— — 1

_ min(v,7) sk RY(t) 3|k| Rffl(t)min(v,ﬂ)

;tep( (251 (20)/PR2(t) + 2, (k, t)) (47)

Rl(f) =0

4 kP TP Tt T 6
Here we used the condition that 27 (26)3/PR2(t) + 2hy(k,t) < M R1(t). Thus, (47)
implies Bg, is an attracting set for e, (k, t). Therefore, if e, (k, 0) < Rb&o) thene,(k,t) < | k(t)

forallt e Rt. O

The following two theorems are the main results of this section, which are direct
consequences of Lemmas 1 and 2.
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Theorem 1. Let the assumptions of Lemma 2 hold. If the weak solution (u,b) of (2) satisfies the
initial condition

sup ep(k,0) < Ri(©)
2<p<o |k|
then for all t > 0,
sup ep(k,t) < Ll(t)/
2<p<co |k‘
holds.
. . R1(0)
Theorem 2. Suppose the weak solution (u,b) of (2) satisfies (15) and sup e,(k,0) < o
2<p<co
Then for all T € R, we have
T
R3(T)
sup e,k t)dt < — 2 P 48
e b0 < S 4
and
1
Ry(T) := 5 (Rs(T) +/4RF(0) + R%(T)) (49)
where
2R%(T 2F(T
Ry(T) = .()+ .(),
mm(v 17) 1’1’111’1(1/ ;7)
Fu(T) = sup ( [IR@F R, + el >fz|Lmdt> (50)
keR {0}

Proof of Theorem 1. The proof is very direct. Lemma 2 implies that e, (k, t) is bounded
uniformly in p. Then taking the supremum over all 2 < p < oo concludes the proof. [

Proof of Theorem 2. Recalling the definition of e, (k, t) from (18), we have

0 = ( [ @ P + 5(@b @tﬁ’d@)f’

Now taking the derivative in time,

Lan - 2([In@reor + m@icore) Sqkn. o

We now plug (36) in (51) to get,
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[ (/ 1x@aeop + 7 <¢,t>|r’da5)’2’1]

|- /p|¢| R DIPAE — 1 [ plEPIR(@B(E e

+% [ iplR(@)(E, DR DR [ 7(E - O)Ea(E)dzde

+% [ ip|%(@)a(E O 2R @RE DO [BE-Ebdeds G
R [ iplR(@b(E )20 DR [ B(E - D)2m(C)dzdz

+% [ iplR(@bE O 2RUODE DRUDN, [ a(E - 5)Eh(E)dzdz

R [ plRe@(e, O P2 R@HE DDA (E )de

2 [ PR DI 2T O DR (e 1|

For the sake of calculation simplicity, we split the RHS of (52) in to the following integrals.

Iy

I5

I7

-1

~2v( [ IR@AE I + 50 (@0D(E |Pd§>
><</|¢|2|xk<c> (601 + EPIR@DE N Pt ),

-1

“E\N

2( [ 1@ 0P + e P )
< (zm a0 2REE DROT; [ 7(E - EaE)4E )

51
2( [ @ ol + 7@ Dl
< [ (iR(@aE 0P 2R@E IR (@ [ 8(E - D@ e,

2_
A 4

2( [ 0n@ O + 5B D P
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<R [ (IR0 D172 RA(ODE DT f(E 1)) de
We now proceed to estimating each of these integrals (I1)-(I7).
21
o= 2 [IR@E 07 + R@bE Pas)
(/1ePime@n@ 0P + 1EPiR @b Pz ) 3

_ _21/( [ IR DI +RUB(E DA )5‘1
TR R{@aE D7 + |7(E)B(E, 17)dg

~ 2/
([ P o + xu@be ninae)

|| =

. 51
2( [ 15 0P + R, t>Pd¢)

AN

/\
/\

\\

S 0=

35»
E)

w‘”’

H_"(—

%“ <

o+

o

=)

Hi\

w

H-

?

Q.

R

N~

=

I

_

TN

—

=

=~

u‘w

H-

Tm

Q.

R

N~

)”(/m |Pdc) ||Hf;/ (& - 2a0)dd

Here we repeatedly used Holder’s inequality. Similar calculations give us

p=2
’

m < 2(fIm@ae t>|P+|xk<><c,t>|Pd¢)f’1(/@ @ nprae) &5

<(f 1 m@twdc)’l’(/ (e |Pd¢) Imte B¢~ 0)gbe)del

< 2( [ IOnE P + R fstwd«:) ([ o gtwaa)p”z 56
<(f 1 >E<¢t|r’d¢)2’(/ %06 |Pd¢) Itz [ B¢~ 2a)ag e,
B < 2( [ R@aEor + R, t>|ﬂd«s)1(/ (@) E@»Wdé)p”z &7

<(f 1@ @t|ﬁdc);(/xk |Pdé§) Imte [ (@ - 2@z

For integrals involving the non-homogeneous forces,
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ol < (/m (e NIP + 1508 étl”dé’)
£)a(E, DI 2REIAE DR O (6| &)
< (/m GNP + 7D e (/m (e 0P )
([ 1x@a ét|ﬂd§)‘l’</|xk GI) Pdé)
Similarly,

vl < 2( [ @ ¢t|f’+|xk<><@,t>|ﬁd¢)§1(/|xk< >E<¢t>|rfd¢)p”2<59>

1 1

<([1m@benra) ([ moneore) .

Now taking the time integral of (52) over the interval [0, T| we get

T
7
& (k, T) — & (k,0) = / Y L.
0

j=1

Then it follows from (53) that,

' 2
2 min(v, 7) {(flél (R(@RE D + RE)BE, t)“,)dC) P
I 0 [ 1xc (@) DI + Rk (E)b(E, 1) [PAE

¢
2/p
([ 16T @R P + [R@BE NP )

< &(k0)—A(kT)+ g/uj\dt.
=20

Once again making use of the Young’s inequality gives,

IIHc/ﬁ(E*E)Cg(é)dCIILw <, )l 20180, Dl e

Therefore,
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p—2
r

IN

2}((/ Xk (8)a(g, 1) + |fk(§)5(g,t)pdg)§1(/ |Xk(g)ﬁ(élt)|pd‘:)
0

([ir@aeora)” (/ mwas) " [ - C)Cﬁ(é)déllw>dt 1)
SZ/T(UW 201 + 7DD |"d¢> (/m O(E ! |Pd§>p’7

0

(f |;zk<¢>|r’d¢)”|ﬁ(-,t>||Lz|raﬁ<-,t>||Lz>dt-

Thus, similar computations yield,

21

z/((/m E DI+ T(OBE DI ©)
(J mcore) ( [1x@ra) I Dl t>||Lz) at,

21

T
2 [ (( [ 1R @ 0P + @b ) (63)
0

(/17 twdc) ( / m@)v’de)’1’||ﬁ<~,t>||Lz||cE<~,t>||Lz)dt,

—
&
=
IA

—
=
=
IA

T T 2_1
[islae < 2 f (( [ 1R@aE 0P + m@bE pra ) (64
0 0

(/@i o) " ( / |xk<5>|Pd¢);||E<-,t>||Lz|cﬁ<~,t>||Lz)dt,
T T 2_1
Jusiae < 2 [ ([1m@ae 00 + @b npra ) )
0 0

(J mcore) ' (f |xk<c>ﬁ<§,t>|r’d¢)’l’dt,

T T 2_q

2/ ( [ 1R@aE0p + e pra ) (66

(/m@ic.o ”dé) ( / |xk<¢>fz<¢,t>r’dc);dt

Now putting estimates (61)—(64) together we get,

—
I
=
IA
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T T T T
/\12|dt+/|13\dt+/|14|dt+/|15|dt
0
2_q

2( [ (o) |Pd¢)/ (/m BE NP + (@B NP

{
[( [1r@)a |Pdc) Dll2Eat, )z + 1B, )l 2185, )12

IN

+( 17 cup)” (1) 12160, >||Lz+||5<~,t>||Lz|¢a<~,t>|Lz)]}dt

2( [ 1560 |Pdf:)/ {([ @ or+1g@ie o)’

[(/ RUORE DI+ |Xk(§)b(§/t)|pd§>pp

-1

IN

< (llgat, Dll2 + 128, Ol ) (17, Ol + B¢, 1)1 2) | et (67)

T
220 [ ([ 1%l +15Pac )
0
1
T 2\ 2
3 N o~ P N ~
2(26)7 ( [ ([ 1%l + widirac) ) sup (] + 18]
0 0<t<T
1
T 2
R ~\2
( [ (1@l + 181 dt)
0
1
T 2\ 2
PN P p
2(26) suppoc < 7] + B ( [ ([ 1%+ gibrae) )
0
1
T 2
( [avul + ||w||>2dt)
0
1
: ! NE)
2(26) R(T) ( [ ([ 1%l + widlrac) ) .

0

IN
==

(1l + We1 ) (11l + 1281 ) de

IN

IN

IN

From (65) and (66) we have,
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< 2/T{ (/ |Xk(O) (& 1) |P + |xK(E)b (glt)pd,;z)’%l
0 1 1
[(/ IXk(8)u(E, t)lpd§> ! (/ IXk(C)ﬁ(C,t)de)p
+ (/ AGUE t)lpdc§> 7 (/ Ifk(é)fz(é,tﬂpdg) :’] }dt
= 2/T{ (/ Rk (E)A(E B[P + | Xk (E)b( g,t)pdg)‘z’l
: 1
((/ [Xk($)H(S, 1) I”dé)pp ( b(E,t) r’dg)%) (68)
<</'X’< OREN ”dé) (/ sztI”’dé‘> )}

= ZO/T{ (/ Xk(@)AE, D17 + [Re(§)D(E, t)pdcj) -

(/ @i op + <a:,t>|Pdc>ppl

(/ m@Reor + m@REHPE) }dt

T % %

= 2(/ [1R@aE ol + 178 (C,f)”dé) dt)
0

( /T ( [IR@AEnr+ |fk<¢>ﬁ<¢,t>|mg) ?Jdt) )
0

Therefore putting (60), (67) and (68) together and using the fact that || > @ in the support
of Xk gives,

3 min(v.1) "'2/(/|Xk (S )P + Re(E)D (ff,t)lpd(',‘)pdt
T ) %
: 2</</ X (€)1, )1 + 12(2)b (Cff)I”dC)pdt) [2(25)%R2(t)+ 69)
0
T

(/(/rxk ORENP +R@AE NP ) d )]+e§<k,o>e%<k,T>.
0
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Now multiplying (69) by |k|?,
2
p
min(, 1) K/ / ([ IR@ator + @b nra) a 70

< 4(/ 4 ([ R@aE 0l + |70 (C,t)I”dC);dt)

T

(25)2R2<t>+(/ ([ 1m@F @D+ 15 >E<¢,t>v’dg)”dt) @
0

1
2
1

+ k|2 [ef,(k,o) — &k, T)].

Define,

Bk T) = / ([ @ ol + m@be npa ), 72)

T 2 %
( ([ m@henr+ m@henra) ”dt) SN
0

We now put (70)—(73) together, use the assumption e, (k,0) < R‘1k(|0) and rearrange terms

to get

=
=
3

[

min(v, )5 (k, T) — 4 {(25)%R2(T) + IF,,(T)} I,(k, T) — R3(0) < 0. (74)

Observe that (74) is quadratic in I,. Solving the associated quadratic equation yields

4 [(25)%1{2(1’) +F,(T)] + \/(4 [(25)%122(”[) +Fy(T)] )2 +4min(v, ) R2(0)
2min(v,7) ’

Elementary mathematics tells us that I, (k, t) cannot exceed the largest positive root of the
associated quadratic equation, which is

4[(25)%R2(T) +Fy(T)] + \/(4[(25)3R2(T) +Fy(T)] )2 +4min(v, ) R2(0)

2min(v,7)

Now set,

3
Rs(T) := 4[(25)pR2(T) +]FP(T)]
Letting p — co completes the proof of Theorem 2. [

3. Estimates on the Spectral Energy Function and Inertial Ranges

This is the section where we present and prove our main results on the spectral energy
function E(k, t), defined by (3), and its inertial range bounds. The results are presented in
three theorems. The first theorem ensures that the spectral energy remains bounded when
the initial conditions and the non-homogeneous external forces satisfy certain conditions,
such as the assumptions in Remark 1. The second theorem estimates the time average of
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the spectral energy; it is shown that the average is always bounded and decays over time.
Finally, the third theorem gives the inertial range bounds and formulates the conditions
expected from the parameters, such as the dissipation rate, the universal constant, and
viscosity coefficients so that the spectral energy decays accordingly with K-41. This is done
by comparing E(k, t) with Kolmogorov’s spectral function Eg (k) given by (1), i.e.,

Ex(k) = Coeik3, (75)

defined over a range of wave numbers called the inertial range; where Cj is a universal
constant called Kolmogorov constant and ¢ is the energy dissipation rate.

Remark 3. Equation (75) is similar to Equation (106) of ([19], p. 267) where Cy and € were
referred to as Kolmogorov constants for MHD turbulence and energy flux, respectively, instead of

Kolmogorov’s constant and energy dissipation rate.

Recall that the spectral energy function for the MHD system (76)

o+ (u-Vu+Vr—(b-Vb—vAu=f; (0,00)xD,
otb+ (u-V)b—(b-V)u—nAb=f, (0,00) x D, 76)
divu =divb =0 D,
ult=0 = to, bli=o = bo D,
is given by the spherical integral
Bkt = [, (8@ 0P+ 0P)as@), 77)

where 0 < k < oo is a radial coordinate in Fourier space.

Theorem 3. Let the assumptions of Theorem 1 hold, f; = 0 for all i = 1, 2 and the initial data
(1o, by) € Br(0), where R satisfies (16). Then, the estimate

E(k,t) < 47R3, (78)

holds for all k and all t, where Ry is as in Theorem 1. Moreover, when f; # 0 for some i = 1,2, (78)
still holds with Ry replaced by R (t) which is still finite and possibly grows in time.

Proof of Theorem 3. When f; = 0, we have from (77) and Theorem 1 that

E(k,t) / (1(&, 1) > + [B(2, 5)[*)dS ()
IS|=k

R2
Has(@)

IN

j&|=k
= 47R3.

Here we used the fact that the surface area of a sphere with radius k is equal to 47tk>.
When the external forces on the system, f; # 0, for some i = 1,2 the proof above
remains same with R replaced with Ry (t). With this we complete the proof. [
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Theorem 4. Suppose the initial data (19, by) € Br(0), where R satisfy the conditions of Theorem 3
and the forces f; € L.([0,00; H-Y(D) N L*(D)) for i = 1,2 is bounded as it appears in (50).

Then for every T, we have

‘ 47R2(T)
< RN
O/ E(k )t < oo s (79)

~| =

where R» is as in Theorem 2.

Proof of Theorem 4. From (77) we have,

T T
%/ E(k t)dt = %/ / (|18, )* + [b(E, H)[)dS(&)dt
0 0 Jgj=k
T
- 7 0/ \; |/ REE O+ @) P
1 RYT)
S = dS(&)
el T min(v, )k*
< s R(T __ 4nRY(T)

min(v,7)Tk*  min(v,n)Tk?’
Here we used (49) and the proof is complete. [

Remark 4. Theorem 3 and (15) imply that the bound of E(k, t) is fully determined by the initial
data (ug, by) and the nature of the non-homogeneous external forces f1 and f,. Additionally, when
no external force is applied to the system, the spectral energy remains uniformly bounded through
out the entire process.

Theorem 5. Let the assumptions of Theorems 3 and 4 hold. Then the following are true about the
inertial range of (2):

1. Inequality (80) is a necessary condition on the parameters so that E(k,t) exhibits K-41-like
phenomenon.

5/3
(min(u,n))5/6C0€2/3§47T<R\2(F;:)> R} (T). (80)

2. Anabsolute lower bound for the inertial range is given by

C3/5g2/5
=0 81
' (4nRr2)3/5 ®1)
3. Anabsolute upper bound for the inertial range is given by
4 31 RY(T)
k2 = (CO min(l/,ﬂ)) e2 T3 (82)

Proof of Theorem 5. Define set S by

s=d(E):0<E(k.) < 4nR2 0< E(k ) < TR (83)
= 7 . >~ 7 = 17 = 7 = m1n(1/,;7)Tk2 .
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Let
A:={(k,E): E=Eg(k)} NS,

be part of the graph of Eg(k) that lies in region S. Figure 1 shows how sets S and A
are related.

E &

dw R}

4w R
min(v, n)Tk?

k ki

Figure 1. Sketch of region S and set A when condition (84) is satisfied.

Due to Theorem 3 we know that the spectral energy of our system is bounded from
above by 47TR? when f; = 0 foralli = 1,2 or 47wR3(T) f; # 0 for some i = 1,2. Furthermore,
from Theorem 4 the time average is bounded by

47tR3(T)
min (v, ) Tk?

Thus, set S represents the behavior of the function E(k, t), and set A is a set where E(k, t)
behaves accordingly with K-41. Therefore, if A = @ then E(k, t) does not exhibit K-41-
like phenomenon.

Note that for A to be non-empty the point where graphs of Ex (k) and % must

intersect below the line E = 47TR%, as in Figure 1, and the intersection occurs when

47tR3(T)
2/3,-5/3 _ 2
Coe™k min(v, ) Tk?
o j 47tR3(T) .
min(v, ) TCpe2/3

47R3

Moreover, the graph of Eg (k) intersects the line E = 47R? below the graph of (v, TR

as in Figure 1, which occurs when
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-3

47tR?\ °

— k = il 21 .
Coe3

=3

= 3
2\ 5 2
Therefore, Ex (k) enters region S at k = (47TR21 ) and leaves at k = (W> .

2
Cpe3 min(v,;7)TCye 3

o (RN (e Y
T\ G/ ’ 27 \ min(v,7)TCoe?/3 |

where k; is the intersection of the graphs of Ex (k) and the constant function 477R? and k; is
2

the intersection of Ex (k) and % Thus the portion of the graph of Ex (k) remains in

region S as long as k is between k1 and k and k; < ky, see Figure 1.

47RY(T .

WZU()T)IQ to the left so that it

intersects Ex (k) above the graph of 471R?, then we get k; > ky and the graph of Ex (k) will
not pass through region S which in turn gives A = @. Hence, A remains non-empty only
when k € [kq, kp).

Now set,

Observe from Figure 2 that if we push the graph of

E

4FR§

A7 R
min(v.q)Tk?

ka kl IS o

Figure 2. Sketch of region S and set A when condition (84) is not satisfied.

Therefore, for the flow model (76) exhibit K-41-like MHD phenomenon we need the

necessary condition
-3/5
47TR? _(_mm N
Coe?/3 — \ min(v,5)TCpe?/3 | *

to be satisfied. Hence,

5/3
Comin(v,7)>/%e?/% < 4n<R2(T)> R} (T). (84)

This completes the proof Theorem 5. [J
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4. Conclusions

In this work, we have investigated the Leray weak solution of the deterministic MHD
model (2) for the K-41-like MHD phenomenon in the presence and absence of external
forces. In the process it is shown in Section 2.2 that when the external the solution field (u, b)
is bounded in the Fourier space (Theorems 1 and 2) and the bound depends on the data.
When the external forces f; and f; are identically 0, the bound is uniform. It is also shown
that the spectral energy of the system E(k, t) is bounded, and when the external forces
fi = 0fori = 1,2 the bound is uniform (Theorem 3) and the average in time decreases in
time and decays proportional to k~2. When f; # 0 for some i = 1,2 the bonds of E(k, t)
possibly depend on time. The other important result of this work is the explicit formulation
of the inertial range bounds and setting the necessary condition on the parameters for the
model to behave accordingly with K-41 (Theorem 5). The lower bound

-3/5
o — 47tR? /
1= m ’
is a constant in time when f; = 0 for i = 1,2 and possibly decreases in time when f; # 0 for
some i = 1,2. The upper bound of the inertial range

o 47tR3(T) °
27 \ min(v, ) TCoe?/3 |

decreases in time when f; = 0 for i = 1,2 and will remain decreasing as long as the Ry o< T*
and « < 1/2. For the case where f; = 0 fori = 1,2, Ry and R; are constants independent of
time and at time T = T, where

2/5
(4m)*SRERY

= 85
64/5C8/5 min(v, 77) )

T():

we get k1 = ky. This means that for any time T > Ty, the spectral range is empty. Conse-
quently, time Tj appears to be the maximal time to exhibit K-41 in the system.
If we assume that the dissipation rate is time dependent then (85) gives

(47.[)3/21{%/21{;/2
Tg/4 min(v, ;7)5/4(:8/2

e(Tp) = (86)

The time Ty, being the maximal time (86), must be the minimum dissipation rate to maintain
a spectral behavior.
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