
Citation: Yu, D.; Zhou, X.; Pan, Y.;

Niu, Z.; Sun, H. Application of

Statistical K-Means Algorithm for

University Academic Evaluation.

Entropy 2022, 24, 1004. https://

doi.org/10.3390/e24071004

Academic Editors: Karagrigoriou

Alexandros and Makrides Andreas

Received: 13 June 2022

Accepted: 16 July 2022

Published: 20 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Application of Statistical K-Means Algorithm for University
Academic Evaluation
Daohua Yu 1, Xin Zhou 2, Yu Pan 2, Zhendong Niu 1,3,* and Huafei Sun 2

1 School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China;
yudaohua@bit.edu.cn

2 School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China;
3120211473@bit.edu.cn (X.Z.); p4nyu@foxmail.com (Y.P.); huafeisun@bit.edu.cn (H.S.)

3 School of Computing and Information, University of Pittsburgh, Pittsburgh, PA 15260, USA
* Correspondence: zniu@bit.edu.cn

Abstract: With the globalization of higher education, academic evaluation is increasingly valued
by the scientific and educational circles. Although the number of published papers of academic
evaluation methods is increasing, previous research mainly focused on the method of assigning
different weights for various indicators, which can be subjective and limited. This paper investigates
the evaluation of academic performance by using the statistical K-means (SKM) algorithm to produce
clusters. The core idea is mapping the evaluation data from Euclidean space to Riemannian space
in which the geometric structure can be used to obtain accurate clustering results. The method can
adapt to different indicators and make full use of big data. By using the K-means algorithm based on
statistical manifolds, the academic evaluation results of universities can be obtained. Furthermore,
through simulation experiments on the top 20 universities of China with the traditional K-means,
GMM and SKM algorithms, respectively, we analyze the advantages and disadvantages of different
methods. We also test the three algorithms on a UCI ML dataset. The simulation results show the
advantages of the SKM algorithm.

Keywords: statistical K-means; academic evaluation; statistical manifold; clustering

1. Introduction

University academic evaluation involves using different indicators and methods to
measure the academic level of universities. It has great motivating, guiding and restrict-
ing effects on the development of universities, thus gaining more and more attention
nowadays [1–4]. In [5], the authors proposed a statistical method of constructing an evalua-
tion system for the transformation of scientific and technological achievements by using
Principal Component Analysis (PCA) and the comprehensive indicator method. In [6],
the authors used Decision-making Trial and Evaluation Laboratory (DEMATEL) and the
entropy-weighting method to give assessments on the research innovation ability of uni-
versities in a subjective and objective way. In [7], the authors used the Analytic Hierarchy
Process (AHP) method to design the evaluation indicators and give the corresponding
weights. However, these works are all based on the specific design of weighted indicators,
which cannot avoid the interference of the subjective thoughts of the evaluators and highly
depend on the type of universities. In addition, with the development of big data, more
and more statistic data are generated yet not properly used, as it is hard to attribute weights
for so many indicators. In this paper, we introduce the statistical K-means algorithm to
give the academic evaluation results of universities. The idea is mapping the evaluation
data together with the clustering problem from Euclidean space to Riemannian space.
Specifically, the local statistics are used as parameters to determine a special parameter
distribution, which projects all data points into parameter space to obtain a parameter point
cloud. This idea has been well applied in many research fields. In [8], the authors take a
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step forward in image and video coding by extending the well-known Vector of Locally
Aggregated Descriptors (VLAD) onto an extensive space of curved Riemannian manifolds.
In [9], the authors propose a method which allows us to fuse information from feature
representations from both Euclidean and Riemannian spaces by mapping data in a Repro-
ducing Kernel Hilbert Space (RKHS). This method achieves state-of-the-art performance on
the problem of pose-based gait recognition. These findings suggest that this idea has great
value and significance in the information field. In this paper, our main contributions can be
summarized as two points. Firstly, we use statistical manifolds theory to extract features
from the origin point cloud, which is capable of processing the high-dimensional data and
proves to be a great substitution of the traditional method PCA. Secondly, we use clustering
methods to give an evaluation on the academic level of Chinese universities instead of
scoring or rating. With the change of the cluster numbers, the underlying relationships of
universities in terms of subject development can be found, and the academic level can be
assessed by the clustering results subjectively. These two points also provide new research
ideas for related problems.

The paper is organized as follows. In Section 2, we introduce some basic knowledge
about multivariate normal distribution manifold, difference functions and Gaussian mixture
models. In Section 3, we introduce the local statistical methods and statistical K-means
(SKM) algorithm. In Section 4, we describe the work of data pre-processing, including the
data source and data pre-processing strategies, and we introduce the criteria for assessing
the clustering algorithms. In Section 5, we conducted the simulation experiments with the
traditional K-means, GMM and SKM algorithm for the top 20 universities of China and
analyze their advantages and disadvantages, respectively. A UCI ML dataset is also tested
to quantitatively measure the algorithms.

2. Preliminary
2.1. Multivariate Normal Distribution Manifold

Information geometry is used to solve some nonlinear and stochastic problems in
the information field, because compared with the treatment in the Euclidean space, the
one of Riemannian manifold can often achieve precise results. The statistical manifold
is a set of all probability density functions with some regular conditions. In addition, by
introducing the Fisher information matrix as a Riemannian metric, the statistical manifold
becomes a Riemannian manifold. It is well known that the Kullback–Leibler divergence
is a suitable difference function measuring the difference of two points on the statistical
manifold, even though it is not a real distance function [10,11]. The manifold of a family of
multivariate normal distributions is an important statistical manifold and is widely applied
to the researches of signal processing, image processing, neural networks and so on. The
K-means algorithm on statistical manifolds introduced in this paper is to transform the data
point cloud in Euclidean space into the parameter point cloud on the statistical manifold of
a family of multivariate normal distributions, and then, it applies cluster analysis to the
parameter point cloud.

Definition 1. We call a set
S = {p(x; θ) | θ ∈ Θ ⊂ Rn}

an n-dimensional statistical manifold, where p(x; θ) is the probability density of functions, with
some regular conditions.

Since each n multivariate normal distribution density function can be determined
by an n-dimensional vector (mean) and an n-order symmetric positive definite matrix
(covariance matrix), the manifold that consists of the family of normal distributions is
closely related to manifold of the symmetric positive definite matrices [12].
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Definition 2. The manifold of symmetric positive definite matrices SPD(n) is defined as

SPD(n) =
{

P ∈ M(n) | PT = P, and xT Px > 0, ∀x ∈ Rn − {0}
}

,

where M(n) is the set of n-order matrices and PT denotes the transpose of the matrix P. The smooth
structure on SPD(n) is induced as the submanifold of the general linear group GL(n,R), which is
a set of all non-singular matrices.

Definition 3. The multivariate normal distribution manifold consists of the probability density
functions of all n multivariate normal distributions, which is defined as

Nn =

{
f
∣∣∣ f (µ, Σ) =

1√
(2π)n det(Σ)

exp
{
− (x− µ)TΣ−1(x− µ)

2

}}
,

where µ ∈ Rn and Σ ∈ SPD(n) are the mean and the covariance matrix of the distributions,
respectively, and (µ, Σ) is called the parameter coordinate of Nn.

It is worth noting that Nn is topologically homeomorphic in the product space Rn × SPD(n).

2.2. Difference Functions on Multivariate Normal Distribution Manifold

In this paper, we need to consider the difference between the probability density
functions of different multivariate normal distributions. We select the Wasserstein distance
as the difference function. At the same time, we also use Kullback–Leibler divergence,
which is a difference function commonly used in classical information theory. We will
introduce these difference functions respectively below [13–15].

2.2.1. Wasserstein Distance

The Wasserstein distance of the probability measure on Rn describes the energy
required to transfer between the two distributions.

In particular, for the multivariate normal distribution, the literature [13] gives a spe-
cific expression.

Proposition 1. The Wasserstein distance between P1, P2 ∈ Nn is

D2
W(P1, P2) = ‖µ1 − µ2‖2 + tr

(
Σ1 + Σ2 − 2(Σ1Σ2)

1
2
)

, (1)

where (µ1, Σ1) and (µ2, Σ2) correspond to the distribution of P1 and P2, respectively.

Unfortunately, there is not a simply explicit expression of the geometric mean of the
Wasserstein distance; hence, this paper temporarily replaces the geometric mean with the
arithmetic mean in the simulation experiments.

2.2.2. Kullback–Leibler Divergence

Kullback–Leibler (KL) divergence is a non-negative function which measures the
difference between any two probability density functions. It is worth noting that KL
divergence is not a distance function, since it does not satisfy the symmetry and triangle
inequality. In the following, we give its definition and the expression of its geometric mean.

Definition 4. Let P1, P2 be two probability density functions. KL divergence is defined as

DKL(P1||P2) = EP1

[
log

P1

P2

]
, (2)

and it can be shown that DKL(P1||P2) ≥ 0; the equality holds if and only if P1 = P2.
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In particular, for any P1, P2 ∈ Nn with the parameters (µ1, Σ1) and (µ2, Σ2), by direct
calculation, we can obtain

DKL(P1‖P2) =
1
2

{
log
|Σ2|
|Σ1|
− n + tr

(
Σ−1

2 Σ1

)
+ (µ2 − µ1)

TΣ−1
2 (µ2 − µ1)

}
. (3)

Under the parameter coordinate (µ, Σ), the expression of the geometric mean c(C) =
argmin

P∈Nn

1
m ∑m

i=1 DKL(Pi||P) is very complicated, and it is not convenient to use. In order to

overcome the difficulty, we will throughout the equation change the probability density
function of P ∈ Nn into the form of exponential distribution. In fact, by setting x1 = x,
x2 = − 1

2 xTx and θ1 = Σ−1µ, θ2 = Σ−1, we can obtain the form of exponential distribution

P(x; µ, Σ) = P(x1, x2; θ) = exp{〈x, θ〉 − ϕ(θ)}, (4)

where x = (x1, x2), θ = (θ1, θ2) is called the natural parameter, 〈x, θ〉 is the inner product
of x and θ, and the function ϕ(θ) = 1

2

(
θT

1 θ−1
2 θ1 − log|θ2| − n log 2π

)
is called the potential

function, which is a convex function.
By using the potential function ϕ, we can define the generalized KL divergence,

namely the Bregman divergence on Nn, as

Bϕ(P2‖P1) := ϕ(θ2)− ϕ(θ1)− 〈∇ϕ(θ1), θ2 − θ1〉, (5)

where θ1, θ2 are two parameters of Nn.

Remark 1. By means of the exponential form for the probability density functions P1, P2 ∈ Nn,
direct calculation yields

Bϕ(P2‖P1) = DKL(P1‖P2).

2.3. Mean of Parameter Point Clouds

The main idea of the traditional K-means algorithm is that for a given data cloud with
the scale m,

Cm = {pi ∈ Rn | i = 1, · · · , m},

which is abbreviated as C, by using the clustering algorithm, we divide the point cloud
into K classes. The effect of the traditional K-means algorithm is mainly affected by the
selection of initial cluster centers, the expression of data and the difference function.

In order to avoid the shortage of the traditional K-means algorithm, we will consider
the clustering algorithm on the Riemannian space instead of the Euclidean space so that
we can use the geodesic distance and KL divergence but the Euclidean distance and obtain
better clustering results.

Now, we give the definition of the geometric mean of point cloud C in Nn under
different difference functions D.

Definition 5. The geometric mean c(C) of point cloud C = {(µ1, Σ1), · · · , (µm, Σm)} in Nn is

c(C) := argmin
(µ,Σ)∈Nn

1
m

m

∑
i=1

D((µi, Σi), (µ, Σ)).

In practical problems, the calculation of the geometric mean of some difference func-
tions may be very complicated; thus, we will use the arithmetic mean instead of the
geometric mean.

Definition 6. The parameter space Rn × SPD(n) of Nn is a convex set. Hence, the arithmetic
mean c(C) of the parameter point cloud C = {(µ1, Σ1), · · · , (µm, Σm)} in Nn can be defined as
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c(C̃) =
1
m

m

∑
i=1

(µi, Σi).

Now, we introduce the geometric mean of the point cloud C with respect to the
KL divergence.

From (5), we can obtain the following proposition [16].

Proposition 2. The geometric mean of the point cloud C with respect to the KL divergence exists
and is unique, and is equal to the arithmetic mean in the above natural coordinates.

Furthermore, we can see that the geometric mean of the point cloud C with respect to
the Bregman divergence Bϕ exists and is unique, and it is equal to the arithmetic mean in
natural coordinates, hence the geometric mean of point cloud C about KL divergence exists
and is unique, and it is equal to the arithmetic mean in natural coordinates, that is,

c(C) = argmin
P∈Nn

1
m

m

∑
i=1

DKL(P‖Pi) = P

(
x1, x2;

1
m

m

∑
i=1

θi

)
. (6)

In the following K-means algorithm with KL divergence as the difference function,
the Proposition 2 ensures that the geometric mean of the parameter point cloud can be
explicitly given by the arithmetic mean after parameter transformation.

2.4. Gaussian Mixture Models

The mixture model is a probability model that can be used to represent an over-
all distribution with K sub-distributions. In other words, the mixture model represents
the probability distribution of observational data overall, which is a mixture of K sub-
distributions. The mixture model does not require the observational data to provide
information about the sub-distributions to calculate the probability that the observational
data are in the overall distribution.

In general, a mixture model can use any probability distribution, but due to the good
mathematical properties and good computational performance of the Gaussian distribution,
the Gaussian mixture model is the most widely used model in practice [17].

Definition 7. The probability distribution of Gaussian mixture models is

P(x | Θ) =
K

∑
i=1

αi pi(x | θi), (7)

where Θ = (α1, . . . , αK, θ1, . . . , θK) such that αi ≥ 0, ∑K
i=1 αi = 1, αi is the probability that the

observational data belong to the i-th submodel and pi is the Gaussian distribution density function
of the i-th submodel, whose parameter is θi.

3. Statistical K-Means Algorithm

The K-means algorithm on statistical manifolds, which we refer to as the SKM algo-
rithm, consists of three parts: local statistical method, K-means algorithm, and selection
of difference function. This section first introduces the K-nearest neighbor local statistical
method and then introduces the details of the SKM algorithm.

3.1. Local Statistical Method

The point cloud is a sampling of some specified features in the objective world,
each of which we consider to have the same properties within a small neighborhood.
Mathematically, we obtain neighborhood properties through local statistics. Specifically, we
use local statistics as parameters to describe a parameter distribution. Two sets of different
local statistics can determine two different distributions on the same parameter distribution
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family. This idea is equivalent to finding a distribution for any point in the point cloud and
its neighbors in the point cloud (subclouds of the point cloud) such that the subcloud is a
sample of that distribution.

For the initial point cloud without any annotation, we have no reason to think that its
local statistics conform to some special distribution. We believe that the factors affecting
the local distribution of point clouds in their natural background are complex enough;
consequently, the local statistics can be generated from a multivariate normal distribution
according to the Central Limit Theorem. Therefore, we only need to calculate the mean and
covariance matrix of each point of the point cloud in its local area to determine a normal
distribution. By doing this, the entire point cloud will be projected as a parameter point
cloud on the family of multivariate normal distribution, and then, the K-means algorithm is
used on the parameter point cloud to cluster the original data. The data are then classified
using their differences in neighborhood densities [18–21].

For the selection of the neighborhood in the point cloud, we use the k-nearest neighbor
method: that is, for any positive integer k, find a k Euclidean nearest neighbor of some
point in the point cloud. This method can reflect the number density of local point clouds.
Next, we introduce the selection method of k-nearest neighbors.

Definition 8. Let Cm = {pi ∈ Rn | i = 1, 2, · · · , m} be a point cloud of scale m, abbreviated C.
For any p ∈ Cm,

k-N(p, k) =
{

pj ∈ Cm, j ∈ [i1, · · · , ik] | ‖pl − p‖ ≥
∥∥pj − p

∥∥, ∀l /∈ [i1, · · · , ik]
}

is called the k-nearest neighbor of p in Cm, abbreviated as k-N, and p ∈ k-N ⊆ C.

Denote µ(k-N) = E[k-N(p, k)] − p and Σ(k-N) = Cov[k-N(p, k)] as the mean and
covariance matrices of the distances between data points in p and N(p, k), respectively,
thus defining the local statistical map

Ψk : C → Nn, (8)

where Ψk(p) := f (µ(k-N), Σ(k-N)) = 1√
(2π)n det(Σ)

exp
{
− (x−µ)TΣ−1(x−µ)

2

}
. It is worth

noting that we refer to the image of point cloud C under the local statistical map Ψk

k̃C := Ψk[C], k̃C ⊆ Nn

as the parameter point cloud under the k-nearest neighbor method in this paper.

3.2. Details of the SKM Algorithm

Giving the image of point cloud C under the k-nearest neighbor and local statistical
mapping k̃C = Ψk[C], which is the parameter point cloud in Nn, it is reasonable that
we cluster the parameter points to gain the potential classifications among the original
data, and the core idea of the SKM algorithm is the application of the K-means algorithm
together with non-Euclidean difference functions. The SKM algorithm’s performance
depends on the choice of difference functions, which makes the SKM algorithm flexible for
various tasks.

The specific steps of the SKM algorithm are as Algorithm 1:
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Algorithm 1 Statistical K-Means Cluster Algorithm

Input: point cloud C, k-nearest neighbor indicator k, initial cluster center c0
1, · · · , c0

k , thresh-
old ε

Output: a K division of point cloud C
1: By local statistics methods, the point cloud C is represented as a point cloud in the

manifold of n-dimensional normal distribution family k̃C
2: Input the initial cluster centers c0

1, · · · , c0
k and, based on the selected difference function,

apply the K-means algorithm to k̃C, where the distances between parameter points are
given by the difference function, and the centroid ci

j is updated to the current geometric
mean of each division

3: According to the indicator division of k̃C clustering l1, · · · , lk, the output C[l1], · · · , C[lk]
is a division of the origin cloud C

4. Data Pre-Processing and Preparations

After the introduction of the SKM algorithm, we can prepare the data for our method
to simulate on. This section mainly explains the work of data pre-processing and the criteria
to assess the cluster results.

4.1. Data Pre-Processing

Here, the original data of the experiment are selected among the top 20 universities
in mainland China in terms of scientific research funding in 2021. A total of 32 types of
indicators from 2010 to 2019 are taken into account. Data sources are the WOS and CSSCI
databases alongside the analysis platform of CNKI [22–24]. The names of universities and
statistical indicators are as Tables 1 and 2.

Table 1. The names of the twenty universities and their abbreviations.

University Name Abbreviation

Tsinghua University THU

Zhejiang University ZJU

Peking University PKU

Sun Yat-sen University SYSU

Shanghai Jiao Tong University SJU

Fudan University FDU

Shandong University SDU

Huazhong University of Science and Technology HUST

Xi’an Jiaotong University XJU

Southeast University SEU

Beihang University BUAA

Harbin Institute of Technology HIT

Tongji University TJU

Wuhan University WHU

Northwestern Polytechnical University NPU

Jilin University JLU

Beijing Normal University BNU

Central South University CSU

Beijing Institute of Technology BIT
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Table 2. Selection of thirty-two statistical indicators.

Category Indicator

SCI
Total Posts

Total Cited

SSCI
Total Posts

Total Cited

CSCD
Total Posts

Total Cited

CSSCI Total Posts

Patent

Number of Patent Applications

Number of Invention Patent Applications

Number of Utility Model Patent Applications

Number of Industrial Design Patent Applications

Number of Patent Authorizations

Number of Invention Patent Authorizations

Number of Utility Model Patent Authorizations

Number of Industrial Design Patent Authorizations

Funding

Amount of State-Level Funding

Amount of Ministrial Funding

Amount of Provincial Funding

Number of National Natural Science Funds

Amount of National Natural Science Funding

Number of National Social Science Funds

Newspaper

Number of Posts

Number of Citations

Average Cited

Number of Downloads

Average Downloads

Posts on Local Newspaper

Posts on Central Newspaper

Rewards

The State Science and Technology Awards

State-Level Teaching Award

Honors from Ministry and Province

Academic Association Awards

Assuming that xi as the i-th indicator, the numerical expression of academic perfor-
mance of a university s in the year y is denoted by

Xs,y = (x1, x2, · · · , xk)
T .

It is natural that we make up a matrix X(s, y) whose element is the academic per-
formance vector Xs,y. Hence, the row represents different universities, and the column
represents the different years. Since our indicators are in different dimensions, we apply
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the z-score normalization on the indicators of every column: namely, normalize the same
indicator of different universities in the year.

xnor =
x−mean(X)

std(X)
, x ∈ X.

The normalization makes indicators among different years comparable, which forms
the basis of clustering.

4.2. Clustering Assessment Criteria

The commonly used clustering assessment criteria can be generally devided into two
classes, external assessment and internal assessment. The external assessment needs a
reference model as the benchmark, while the internal assessment simply measures the
clustering results from the perspective of compactness, connectivity and so on. Since there
is no state-of-the-art reference model or ranking in this field, it is convincing to choose
proper internal assessment criteria. In this paper, we use the Davies–Bouldin Index (DBI),
Dunn Index (DI) and Silhouette Score (SC) as the clustering assessment criteria, which have
been proved to be effective in such problems [25,26].

Assume that C = {C1, C2, · · · , Ck} as the cluster result, where |C| represents the
number of samples in C, dist(xi, xj) represents the distance metric of sample xi and xj, µi
represents the center of cluster Ci. Giving definitions as follows

avg(C) =
2

|C|(|C| − 1) ∑
1≤i≤j≤|C|

dist(xi, xj),

diam(C) = max
1≤i≤j≤|C|

{dist(xi, xj)},

dmin(Ci, Cj) = min
xi∈Ci ,xj∈Cj

{dist(xi, xj)},

dcen(Ci, Cj) = dist(µi, µj).

Then, we can define DBI, DI and SC as

DBI =
1
k

k

∑
i=1

max
i 6=j

(
avg(Ci) + avg(Cj)

dcen(µi, µj)
),

DI =
min

1≤i≤j≤m
{dmin(Ci, Cj)}

max
1≤l≤m

{diam(Cl)}
,

s(xi) =
b− a

max(a, b)
, a =

1
|Cq| − 1 ∑

xi ,xj∈Cq

dist(xi, xj),

b =
1

∑ |C| − |Cq| ∑
xi∈Cq ,xj /∈Cq

dist(xi, xj), SC =
∑ s(xi)

∑ |C|
.

The three indicators evaluate the clustering results from different perspectives. DBI
measures the maximum similarity between clusters; hence, the smaller DBI is, the better
the clustering result is; DI calculates the ratio of the minimum cluster distance and the
largest intra-class discrete distance, and a good clustering result should make the value as
big as possible; the SC value of each sample represents the degree of matching relationship
between the sample and its cluster; therefore, the higher the SC value in general, the better
the clustering result.

5. Data Cloud Simulation

In this section, we will respectively apply the traditional K-means, GMM and the
SKM algorithm on the processed data. By analyzing the cluster results and calculating the
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assessment criteria scores, we can compare the performance of different algorithms as well
as give the academic levels of the 20 universities. The estimation of university academic
level is given by the most reasonable cluster result, as all these cluster algorithms evolve
random processes.

5.1. The K-Means Algorithm Clustering

To avoid the influence of sparse data and speed up the process of convergence, PCA is
used at first to reduce the data dimension [27]. The PCA scree plot is displayed as Figure 1.

Figure 1. PCA Scree Plot. The red line is the variance plot and explains the proportion of variation by
each component from PCA; the green dotted line is the split line to better present components that
have variance bigger than 1.

Often, there are two ways to obtain the number of principal components, that is, to
retain a certain percentage of the variance of the original data or to retain only the principal
components with eigenvalues greater than 1 according to Kraiser’s rule [28,29]. It can be
seen in the shown PCA results that there are five principal components with eigenvalues
greater than 1, and when the number of principal components is 6, the cumulative variance
contribution rate reaches more than 0.8. We finally choose to keep six principal components,
that is, compress the 32-dimension original data to six dimensions. It is worth mention-
ing that several indicators ignored in previous research prove to contribute signficantly
according to the PCA results, which are shown above. This is a strong testament to the
effectiveness of big data.

There are many methods for deciding the number of clusters K. One simple way is
to observe the sum of the squarred errors (SSE) with the change of K and select the point
where SSE changes from steep to gentle. However, the Figure 2 shows that there is no
very clear elbow point. As a consequence, we choose to use the Gap Statistic method [30].
Every K corresponds to a Gapk and sk, and K is selected as the minimal K that makes
Gapk − Gapk+1 + sk+1 ≥ 0. We conduct simulations 50 times, as random sampling is
also used in the Gap Statistic. The results are shown in Figure 3, and Figure 4 shows
the most common case. It can be seen that when K = 4, 6, the GapDiffs are most likely
to be greater than 0. Although inferior to K = 4, 6, K = 5 also shows a considerable
frequency. Considering that academic performance evaluation needs an adequate K to
produce reasonable results, we finally chose K as 4, 5 and 6.

In order to obtain credible results, we limit the iteration times of each simulation to
20, so as to avoid bad cases caused by random initialization. In addition, we merge those
simulations that have very similar initialization and cluster results. We select the most
representive case by comparing their clustering evaluation criteria [31,32]. This strategy
makes it easier for us to analyze the performance of different algorithms. For eack K, we
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conduct 30 independent simulations and give the cluster details. To better visualize the
clusters, we map the original data points to a plane using PCA. The results are shown in
the table and graph below.

Figure 2. Sum of the Squared Errors Plot.

Figure 3. Results of Gap Statistic Simulations.

Figure 4. Gap Statistic Typical Result.



Entropy 2022, 24, 1004 12 of 23

When K = 4, we can see from Figure 5 that the cluster completeness is well preserved.
Only Xi’an Jiaotong University and Tongji University have small parts divided into different
clusters, and the rest of the data points of the same university are all in the same cluster.

Figure 5. Clustering results of K-means when K = 4.

When K = 5, the cluster result Figure 6 still shows very good completeness. However,
some universities have changed from one cluster to another. Peking University itself
becomes one new cluster, and Wuhan University becomes clustered with Beijing Normal
University and Fudan University.

Figure 6. Clustering results of K-means when K = 5.

When K = 6, things begin to change. We can see from Figure 7 that so-called rag bags,
which mean small parts of data points that cannot be well clustered, begin to increase. This
actually has a bad effect on the cluster homogenity. Shanghai Jiao Tong University and
Sun Yat-sen University now also change the cluster and join with Fudan University, while
Wuhan University and Beijing Normal University remain together.
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Figure 7. Clustering results of K-means when K = 6.

It can be seen from Table 3 that the clustering indicators of the K-means algorithm
are relatively stable. DBI is basically maintained between 1.3 and 1.6, DI is basically
maintained between 0.05 and 0.08, and SC is mostly distributed above 0.3. It is in line
with the previous SSE result and proves the cluster result to be reasonable. For results,
with the change of K, the data points of Tsinghua University and Zhejiang University in
all years are always the only two in the same cluster, which indicates that the academic
level of these two universities is very close and there is a large gap between the two and
the remaining universities. In addition, in all years data points of Central South University,
Jilin University, Sichuan University, Huazhong University of Science and Technology,
Shandong University, Tongji University, etc. always appear in the same cluster, indicating
their academic level is close; Northwestern Polytechnical University, Beihang University,
Beijing Institute of Technology, Harbin Institute of Technology and Southeast University
are in the same situation, and the difference between these two clusters may be that the
universities in the latter cluster have a strong color of science and engineering along with a
national defense background. Considering that Xi’an Jiaotong University has a relatively
uniform distribution in the two clusters with the change of K, it is likely that the academic
level is close. We also notice that the clustering results of Wuhan University, Sun Yat-sen
University, Fudan University, Shanghai Jiao Tong University, Beijing Normal University,
Peking University and other universites changed greatly with the change of K. When K = 4,
Beijing Normal University and Peking University are in the same cluster, but it is then
divided as K increases. One explanation is that when K is small, Beijing Normal University
and Peking University are clustered together because they have similar backgrounds in
humanities and social sciences. However, because of the huge difference of academic level,
the two are then divided. This also explains the cluster variance for Fudan University, Sun
Yat-sen University, Wuhan University, and Shanghai Jiao Tong University. These are all
comprehensive universities, and characteristics of both (1) humanities and social science
and (2) science and engineering are relatively distinct. Therefore, for different K, they
can be in the same cluster with Beijing Normal University or in the cluster of science and
engineering backgrounds.
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Table 3. K-means clustering results.

K Number of Cases Samples in Different Clusters DBI DI SC

4 27 90 60 30 20 1.56 0.06 0.30

4 3 84 65 31 20 1.68 0.06 0.29

5 14 91 50 29 20 10 1.45 0.07 0.33

5 7 86 55 29 20 10 1.47 0.08 0.33

5 4 84 56 30 20 10 1.49 0.07 0.32

5 4 75 67 28 20 10 1.50 0.06 0.32

5 1 82 57 30 20 11 1.40 0.06 0.32

6 10 71 51 27 21 20 10 1.41 0.07 0.34

6 7 74 51 30 20 15 10 1.40 0.07 0.34

6 5 78 51 28 22 11 10 1.39 0.07 0.34

6 4 81 58 20 20 11 10 1.30 0.07 0.35

6 4 78 51 30 20 11 10 1.35 0.07 0.35

5.2. The GMM Clustering

Different from the K-means algorithm, the Gaussian mixture model uses Gaussian dis-
tributions as feature descriptors, and it is able to softly assign weights for each component
thanks to the Expectation Maximization (EM) algorithm. Consequently, the GMM can form
clusters of more complicated shapes, which makes it suitable for the university academic
data. Under the consideration of consistence with K-means and from the experience of
previous work [33], we take the same simulation conditions as the K-means. The Gap
Statistic method can also be applied to the GMM, so it is reasonable to choose the same K
values. The results are shown in the table and graph below.

We can see from Table 4 that the overall performance of the GMM is better than the
K-means in terms of clustering criteria. During the change of N-class, we can see that
there are actually two patterns. The results of Figures 8 and 9 are actually very similar
to that of the K-means. However, Figures 10 and 11 present a very unbalanced result.
In thier case, almost all the universities of science and technology are clustered together,
and the rest of the universites are actually always the same ones. Although good cluster
criteria scores are obtained, the results of the GMM actually cannot be used for university
academic evaluation, as they make no effective divisions. This indicates that a different
feature extraction method is needed, and we use the SKM algorithm.

Table 4. GMM clustering results.

N Class Number of Cases Samples in Different Clusters DBI DI SC

4 14 102 48 30 20 1.52 0.08 0.31

4 8 95 75 20 10 1.61 0.08 0.29

4 5 140 20 20 20 1.35 0.18 0.34

4 3 102 48 30 20 1.52 0.08 0.31

5 11 102 48 20 20 10 1.31 0.10 0.33

5 7 91 49 30 20 10 1.46 0.15 0.32

5 6 89 47 30 20 11 1.40 0.06 0.33

5 4 55 53 52 20 20 1.68 0.03 0.27

5 2 120 20 20 20 20 1.34 0.16 0.36
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Table 4. Cont.

N Class Number of Cases Samples in Different Clusters DBI DI SC

6 11 91 49 20 20 10 10 1.34 0.17 0.33

6 5 83 47 30 20 10 10 1.32 0.07 0.36

6 4 70 51 49 10 10 10 1.50 0.15 0.30

6 4 70 49 40 20 11 10 1.40 0.15 0.33

6 3 118 41 11 10 10 10 1.19 0.14 0.38

6 2 120 20 20 20 10 10 1.19 0.16 0.38

6 1 120 20 20 20 20 1.18 0.21 0.38

Figure 8. One case of the GMM when N = 4.

Figure 9. One case of the GMM when N = 5.
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Figure 10. The other case of the GMM when N = 4.

Figure 11. The other case of the GMM when N = 5.

5.3. The SKM Algorithm Clustering

The idea of the SKM algorithm is based on the assumption that in the original data
point cloud, the neighborhood of each point should have a convergent property with this
point. The point cloud is the sampling and discretization of real physical quantities, so the
rationality of this assumption is quite natural. In our simulation, we firstly use the k-nearest
neighbor method to select points near each data point and map this subcloud to an N-
dimensional normal distribution family manifold. Then, we apply the SKM algorithm with
non-Euclidean difference functions and analyze their clustering results. For the selection of
k, we simply choose k = 10, which is the number of the points in the origin point cloud
for every university. The choice not only enables the points from the same university to
be mapped to one distribution on statistical manifolds in theory: it also has been proven
in our simulation that when k = 10, the SKM algorithm could achieve convergence faster
compared to other k-values.

In this simulation, we use the KL divergence and the Wasserstein difference functions.
Due to the use of the local statistical method, there is no need for dimension reduction;
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in other words, the application of PCA is skipped. Especially, as there is a one-to-one
correspondence between the point clouds on Euclidean space and on manifolds, and in the
Euclidean space we have obtained K values, we just keep it unchanged as our simulation
parameters[34]. The other simulation strategies are the same as those in Section 4.1. The
results are shown in the table and graph below.

The first is the result of using KL divergence.
When K = 4, we can see similar results with K-means from Figure 12; the cluster

completeness is also well preserved. However, this time, Peking University is divided into
a separate cluster, and Beijing Normal University is divided into a large cluster.

Figure 12. Clustering results of SKM about KL divergence when K = 4.

Compared with K-means, we can see from Figure 13 that the biggest difference when
K = 5 is that this time, Sun Yat-sen University, Fudan University, and Shanghai Jiao Tong
University are in the same cluster. Except for Peking University, Zhejiang University, and
Tsinghua University, the rest are divided into two main clusters.

Figure 13. Clustering results of SKM about KL divergence when K = 5.
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When K = 6, it also fails to cluster a small number of data points well. In Figure 14,
Peking University, Tsinghua University, and Zhejiang University were each divided into
a cluster.

Figure 14. Clustering results of SKM about KL divergence when K = 6.

The result for the Wasserstein distance is below.
When K = 4, we can see from Figure 15 that the difference between using Wasserstein

distance and KL divergence is that when using Wasserstein distance, Fudan University
is divided into the same cluster as Peking University. The rest of the results are basically
the same.

Figure 15. Clustering results of SKM about Wasserstein distance when K = 4.

When K = 5, the SKM results in Figure 16 are basically the same with using Wasser-
stein distance and KL divergence, but with using KL divergence, it is more likely that small
parts of data points cannot be well clustered.
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Figure 16. Clustering results of SKM about Wasserstein distance when K = 5.

When K = 6, the clustering results with using Wasserstein distance in Figure 17
are less stable relative to KL divergence. In addition, the Wasserstein distance produce
clusters with a very small number of samples, which indicates that it cannot distinguish
the mainfolds on this problem very well.

Figure 17. Clustering results of SKM about Wasserstein distance when K = 6.

We can see from Tables 5 and 6 that the SKM algorithm is inferior to the K-means and
GMM method on the two indicators of DBI and DI. From the definitions of DBI and DI,
we speculate that this can be caused by the local statistical methods. During the process
of selecting a local point cloud, we use the K-nearest neighbor strategy. It can better
reflect the statistical density characteristics of a local point cloud, but on the other hand, it
may also cause the selected area to be non-convex, resulting in a diffrent distribution in
parameter space from the original space. However, the SC indicator of both metrics for
the SKM algorithm performs better than that in K-means and GMM. We attribute this to
the introduction of non-Euclidean metrics, which achieve a more granular comparison.
It can also be seen from the degree of dispersion of the statistical indicators that the two
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indicators in this section fluctuate considerably, as the selection of the initial cluster center
will greatly affect the final clustering, which is a manifestation of the high sensitivity of
the SKM algorithm. Between the two metric functions of the SKM algorithm, the KL
divergence performs better, as it gives more stable results and better interpretability, while
the Wasserstein distance has greatly varied indicators and gives clusters of high similarities.

Table 5. SKM clustering results with KL divergence.

K Number of Cases Samples in Different Clusters DBI DI SC

4 17 110 60 20 10 2.51 0.04 0.65

4 8 103 67 20 10 2.77 0.04 0.63

4 5 100 60 20 20 3.23 0.03 0.64

5 12 104 46 20 20 10 2.87 0.04 0.66

5 11 109 38 23 20 10 3.40 0.03 0.65

5 4 58 57 55 20 10 3.10 0.04 0.67

5 3 87 52 31 20 10 3.08 0.05 0.66

6 13 109 39 22 10 10 10 3.12 0.04 0.66

6 10 84 43 25 20 18 10 4.55 0.02 0.64

6 7 68 41 39 22 20 10 3.54 0.03 0.69

Table 6. SKM clustering results with Wasserstein distance.

K Number of Cases Samples in Different Clusters DBI DI SC

4 21 119 61 10 10 2.03 0.07 0.54

4 5 140 40 10 10 1.78 0.11 0.58

4 4 101 60 20 19 2.66 0.02 0.54

5 15 101 54 20 19 6 2.34 0.02 0.56

5 8 84 59 37 10 10 2.68 0.04 0.54

5 7 73 67 30 20 10 3.11 0.03 0.55

6 17 101 54 19 10 10 6 2.17 0.04 0.58

6 7 84 59 37 10 9 1 2.37 0.02 0.56

6 6 92 63 19 10 10 6 2.66 0.05 0.56

In terms of clustering results, the clusters given by the SKM algorithm are generally
similar to the results of K-means and general cases of GMM, and they actually have better
discrimination on the universities of science and technology than the other case of GMM,
but there are still some interesting phenomena. After verification and comparison, it can
be seen that using several Riemann metrics defined on symmetric positive definite man-
ifolds, the obtained clustering effect is not as good as KL divergence. Hence, we choose
KL divergence as the distance function for clustering. In the results of KL divergence,
the clustering results are relatively more stable and have no university spans from one
cluster to another. The biggest difference is that the KL divergence does not give a divi-
sion among comprehensive universities; instead, it further divides universities of science
and engineering, resulting in the cluster of Peking University, Beihang University and
Northwestern Polytechnical University as well as Harbin Institute of Technology, Southeast
University, Xi’an Jiaotong University. As for Wasserstein distance, it has unsatifactory
indicators and results. Especially when K = 6, the Wasserstein metric produce clusters with
a very small number of samples, which indicates that it cannot distinguish the mainfolds
on this problem very well. It is worth noting that the dimension of the data on which the
SKM algorithm is applied is 32 compared to six for the traditional K-means and GMM
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algorithms. In this case, the SKM algorithm still obtains remarkable clustering results,
which proves the potential of the SKM algorithm in terms of processing large amounts of
high-dimensional data.

To further assess the three algorithms quantitatively, we apply them on a UCI ML
dataset [35] and compare the accuracies. We choose to use the ’Steel Plates Faults Data
Set’ provided by Semeion from the Research Center of Sciences of Communication, Via
Sersale 117, 00128, Rome, Italy. Every sample in the dataset consists of 27 features, and
the task is to classify whether a sample has any of the seven faults. We choose this dataset
because it has similar feature dimensions with our origin problem and it provides various
indicators to classify, which can better assess the different clustering algorithms. The
results are produced under the same condition as the simulation set above, including data
pre-processing methods and cluster parameters. The classification accuracies of different
algorithms on the seven faults are shown in Table 7.

Table 7. Classification Accuracies on the Fault Dataset.

Fault Type K-Means GMM SKM (KL Div.) SKM (Wass)

Pastry 0.7208 0.7398 0.7450 0.9181

Z-Scratch 0.7084 0.7244 0.7400 0.9016

K-Scatch 0.9366 0.9521 0.9547 0.7991

Stains 0.7609 0.7810 0.7979 0.9624

Dirtiness 0.7697 0.7897 0.7970 0.9711

Bumps 0.5971 0.6131 0.6318 0.7924

Other Faults 0.6033 0.6121 0.6479 0.6528

Ave. Accu. 0.7281 0.7433 0.7592 0.8568

We can see that the SKM algorithm is greatly advantageous over the K-means and the
GMM algorithm on accuracy scores. In comparison, the dataset provider’s model has an
average accuracy of 0.77 on this dataset [36]. In addition, in terms of cluster indicators, we
can see from Table 8 that the SKM algorithm has better performance on the SC score, but
it does not perform well on the DBI score, which is basically consistent with the results
on the Chinese University dataset. The result exactly reveals the great potential of the
SKM algorithm on the application of many other fields. It could be a great replacement of
traditional Euclidean-based cluster methods in a certain problem.

Table 8. DBI, DI and SC Indicators on the Fault Dataset.

Indicator K-Means GMM SKM (KL Div.) SKM (Wass)

DBI 1.53 1.43 2.99 2.67

DI 0.01 0.02 0.01 0.02

SC 0.36 0.37 0.54 0.49

6. Conclusions and Future Work

In this paper, we propose a university academic evaluation method based on statistical
manifold combined with the K-means algorithm, which quantifies the academic achieve-
ment indicators of universities into point clouds and performs clustering on Euclidean
space and the family of multivariate normal distributions manifolds, respectively. The
simulation results show that in terms of DBI and DI, the SKM algorithm is inferior to the
method of direct PCA weight reduction and K-means clustering in Euclidean space. On
the SC indicator, the SKM algorithm is significantly better than the traditional K-means
method in both difference functions. The GMM has a slightly better performance than
the K-means, but it still lacks necessary discrimination to tell apart the universites of sim-
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ilar backgrounds. This shows that the SKM algorithm can extract features that are hard
to capture in Euclidean space, thus achieving more fine-grained feature recognition and
clustering. The great ability is attributed to the process of mapping original data to the
local statistics, which forms the parameter distribution on statistical manifold.

By analyzing the cluster results, we can also demonstrate that most of the universities
evaluated have very similar academic levels, and their main differences come from their
developing backgrounds. This conclusion explains the reason why university ratings
could vary greatly in different leaderboards, and it indicates that different evaluation
perspectives may be taken for different universites. Clustering would be useful when
seperating different types of universities, and this paper provides a promising way.

In the future, we need to strictly construct the theoretical model of the point cloud
and explain the principle of local statistics according to the theory of probability theory.
On this basis, we try to propose other local statistical methods and analyze their effective-
ness. Furthermore, this paper discusses the case where KL divergence and Wasserstein
distance are used as difference functions, and other distance functions can be discussed
as difference functions later, which may lead to better clustering algorithms. Finally, the
explicit expression of the geometric mean of the Wasserstein distance adopted in this paper
is still an unsolved problem, and we replace its geometric mean with the arithmetic mean.
If this problem is solved, it is possible that the simulation results of the algorithm will be
more accurate.
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