Experimental Diagnosis on Combustion Characteristic of Shock Wave Focusing Initiation Engine
Abstract
:1. Introduction
2. Experimental Facility and Methodology
2.1. Experimental Facility
2.2. Measurement Methodology
2.3. Experimental Conditions
3. Experimental Results and Analysis
3.1. Composition Analysis of Pre-Combustion Pyrolysis Products
3.2. Shock Wave Focusing Combustion Mode Identification
3.3. Effects of Structural and Import Flow Parameters on Shock Focusing Combustion Characteristics
3.4. Experimental Error Analysis
4. Conclusions
- (1)
- Due to the different matching relationship between the import air flow and the width of the annular slot, two combustion modes can be observed in the experiment, named the stable combustion mode and the pulsating combustion mode. Through image, time-frequency analysis, and nonlinear time series analysis methods, these two modes can be effectively distinguished. It is believed that the interaction between the resonant cavity combustion chamber and the supply plenum is the fundamental reason for the different combustion modes. The pulsating combustion mode can only be observed under the operation condition of small slot width (4 mm) with high air flow (1.78 kg/s).
- (2)
- Within a certain range, a low supplementary fuel ratio can improve kerosene pyrolysis rate. High injection pressure before the annular slot can enhance the intensity of shock wave. Each can effectively increase the probability of successful shock wave focusing initiation. When the injection pressure is greater than 0.53 Mpa, the successful initiation equivalence ratio ranges from 0.6 to 0.95. When the injection pressure is lower than 0.45 Mpa, only the operation condition of 0.6 equivalence ratio can achieve successful initiation. From the perspective of pressure utilization efficiency, the injection pressure should not be too high. The highest pressure recovery coefficient can reach 0.595 under the operation condition of large slot width (8 mm) with low air flow (1.38 kg/s).
- (3)
- The low equivalence ratio and high injection pressure can shorten the combustion cycle and increase the frequency of combustion pressure fluctuation. Generally speaking, the influence scope of the above parameters is limited. The fluctuation frequency is maintained between 38 and 48 Hz.
Author Contributions
Funding
Conflicts of Interest
References
- Lee, J.H.S. The Detonation Phenomenon; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Heiser, W.; Pratt, D. Thermodynamic cycle analysis of pulse detonation engines. J. Propul. Power 2002, 18, 68–76. [Google Scholar] [CrossRef]
- Frolov, S.; Aksenov, V.; Ivanov, V. Experimental proof of Zel’dovich cycle efficiency gain over cycle with constant pressure combustion for hydrogen–oxygen fuel mixture. Int. J. Hydrog. Energy 2015, 40, 6970–6975. [Google Scholar] [CrossRef]
- Qi, L.; Wang, Z.; Zhao, N.; Dai, Y.; Zheng, H.; Meng, Q. Investigation of the pressure gain characteristics and cycle performance in gas turbines based on interstage bleeding rotating detonation combustion. Entropy 2019, 21, 265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smirnov, N.N.; Betelin, V.B.; Nikitin, V.F.; Phylippov, Y.G.; Koo, J. Detonation engine fed by acetylene–oxygen mixture. Acta Astronaut. 2014, 104, 134–146. [Google Scholar] [CrossRef]
- Pandey, K.M.; Debnath, P. Review on recent advances in pulse detonation engines. J. Combust. 2016, 2016, 4193034. [Google Scholar] [CrossRef]
- Murray, A.P.; Smith, T.L.; Pittman, E.D.; Liu, H.; Crisp, E.M.; Moore, J.D.; Risha, G.A. Frequency and Spark Timing Effects on Thrust for Pulse Detonation Engine. J. Propuls. Power 2021, 37, 242–251. [Google Scholar] [CrossRef]
- Levin, V.A.; Nechaev, J.N.; Tarasov, A.I. A New Approach to Organizing Operation Cycles in Pulse Detonation Engines. In High-Speed Deflagration and Detonation: Fundamentals and Control, Proceedings of the International Colloquium on Control and Detonation Processes, Moscow, Russia, 4–7 July 2000; Roy, G.D., Frolov, S.M., Netzer, D.W., Borisov, A.A., Eds.; Calhoun: Grantsville, WV, USA, 2001; pp. 223–238. [Google Scholar]
- Afonina, N.E.; Gromov, V.G.; Levin, V.A.; Manuilovich, I.S.; Markov, V.V.; Khmelevskii, A.N. Investigation of the Spectral Composition of the Gas Pressure and Thrust Pulsations in Nozzles Equipped with a Deflector. Fluid Dyn. 2019, 54, 414–427. [Google Scholar] [CrossRef]
- Levin, V.A.; Afonina, N.E.; Gromov, V.G.; Smekhov, G.D.; Khmelevskii, A.N.; Markov, V.V. Gas dynamics and thrust in the exhaust system of a jet engine with an annular nozzle. Combust. Explos. Shock Waves 2012, 48, 406–417. [Google Scholar] [CrossRef]
- Levin, V.A.; Afonina, N.E.; Gromov, V.G.; Smekhov, G.D.; Khmelevsky, A.N.; Markov, V.V. Investigating an annular nozzle on combustion products of hydrocarbon fuels. Thermophys. Aeromechanics 2013, 20, 265–272. [Google Scholar] [CrossRef]
- Levin, V.A.; Afonina, N.E.; Gromov, V.G.; Manuylovich, I.S.; Khmelevsky, A.N.; Markov, V.V. Spectra signals of gas pressure pulsations in annular and linear dual-slotted nozzles. Combust. Sci. Technol. 2019, 191, 339–352. [Google Scholar] [CrossRef]
- McManus, K.; Dean, A. Experimental Evaluation of a Two-Stage Pulse Detonation Combustor. In Proceedings of the 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Tucson, AZ, USA; 2005; p. 3773. [Google Scholar]
- Smirnov, N.N.; Penyazkov, O.G.; Sevrouk, K.L.; Nikitin, V.F.; Stamov, L.I.; Tyurenkova, V.V. Onset of detonation in hydrogen-air mixtures due to shock wave reflection inside a combustion chamber. Acta Astronaut. 2018, 149, 77–92. [Google Scholar] [CrossRef]
- Smirnov, N.N.; Penyazkov, O.G.; Sevrouk, K.L.; Nikitin, V.F.; Stamov, L.I.; Tyurenkova, V.V. Nonequilibrium processes in meta-stable media⋆. Eur. Phys. J. E 2018, 41, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Smirnov, N.N.; Penyazkov, O.G.; Sevrouk, K.L.; Nikitin, V.F.; Stamov, L.I.; Tyurenkova, V.V. Detonation onset following shock wave focusing. Acta Astronaut. 2017, 135, 114–130. [Google Scholar] [CrossRef]
- Smirnov, N.N.; Nikitin, V.F.; Stamov, L.I. Different scenarios of shock wave focusing inside a wedge-shaped cavity in hydrogen-air mixtures. Aerosp. Sci. Technol. 2022, 121, 107382. [Google Scholar] [CrossRef]
- Gray, J.A.T.; Lemke, M.; Reiss, J.; Paschereit, C.O.; Sesterhenn, J.; Moeck, J.P. A compact shock-focusing geometry for detonation initiation: Experiments and adjoint-based variational data assimilation. Combust. Flame 2017, 183, 144–156. [Google Scholar] [CrossRef]
- Gelfand, B.E.; Khomik, S.V.; Bartenev, A.M.; Medvedev, S.P.; Grönig, H.; Olivier, H. Detonation and deflagration initiation at the focusing of shock waves in combustible gaseous mixture. Shock Waves 2000, 10, 197–204. [Google Scholar] [CrossRef]
- Zhang, B.; Li, Y.; Liu, H. Analysis of the ignition induced by shock wave focusing equipped with conical and hemispherical reflectors. Combust. Flame 2022, 236, 111763. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, N.; Jia, X.; Liu, S.; Zheng, H.; Li, Z. Numerical investigation on detonation initiation using toroidal shock wave focusing. Aerosp. Sci. Technol. 2019, 92, 300–313. [Google Scholar] [CrossRef]
- Yang, H.; Chen, X.; Zhao, N.; Zheng, H. Parametric study of hydrogen concentration on detonation initiation by shock focusing. Int. J. Hydrog. Energy 2022, 47, 20265–20275. [Google Scholar] [CrossRef]
- Chen, X.; Wang, C.; Tan, S.; He, L.; Zhang, Q. The influence of radial entrance width of the circular cavity on incident shock wave focusing. Propuls. Power Res. 2018, 7, 120–128. [Google Scholar] [CrossRef]
- Chen, X.; Tan, S.; He, L.; Rong, K.; Zhang, Q.; Zhu, X. The influence of incident shock Mach number on radial incident shock wave focusing. AIP Adv. 2016, 6, 045110. [Google Scholar]
- Zhang, H.; Chen, X.; Xu, S.; Bian, D. Influence of flow parameters on single shock-wave-focusing detonation and initial verification. AIP Adv. 2021, 11, 085319. [Google Scholar] [CrossRef]
- Song, F.; Wu, Y.; Xu, S.; Jin, D.; Chen, X. Pre-combustion cracking characteristics of kerosene. Chem. Phys. Lett. 2019, 737, 136812. [Google Scholar] [CrossRef]
- Song, F.; Wu, Y.; Xu, S.; Yang, X.; Chen, X. Effects of refueling position and residence time on pre-combustion cracking characteristic of aviation kerosene RP-3. Fuel 2020, 270, 117548. [Google Scholar] [CrossRef]
- Song, F.; Wu, Y.; Xu, S.; Yang, X.; Chen, X. The impact of fuel ratio and refueling mode on pre-combustion cracking properties of RP-3 kerosene. Int. J. Hydrog. Energy 2020, 45, 28505–28519. [Google Scholar] [CrossRef]
- Kaneshige, M.; Shepherd, J.E. Detonation Database; California Institute of Technology: Pasadena, CA, USA, 1997. [Google Scholar]
- Austin, J.M.; Shepherd, J.E. Detonations in hydrocarbon fuel blends. Combust. Flame 2003, 132, 73–90. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Q.; Meng, H.L.; Weng, C.S.; Wu, Y.W.; Feng, W.K.; Wu, M.L. Experimental research on the instability propagation characteristics of liquid kerosene rotating detonation wave. Def. Technol. 2020, 16, 1106–1115. [Google Scholar] [CrossRef]
- Peng, L.; Wang, D.; Wu, X.; Ma, H.; Yang, C. Ignition experiment with automotive spark on rotating detention engine. Int. J. Hydrog. Energy 2015, 40, 8465e74. [Google Scholar] [CrossRef]
- Zhong, Y.; Wu, Y.; Jin, D.; Yang, X.; Chen, X. Rotating detonation mode recognition using non-intrusive vibration sensing. Energy 2020, 199, 117466. [Google Scholar] [CrossRef]
- He, W.; Xie, Q.; Ji, Z.; Rao, Z.; Wang, B. Characterizing continuously rotating detonation via nonlinear time series analysis. Proc. Combust. Inst. 2019, 37, 3433–3442. [Google Scholar] [CrossRef]
- Kennel, M.B.; Brown, R.; Abarbanel, H.D.I. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 1992, 45, 3403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosso, O.A.; Blanco, S.; Yordanova, J.; Kolev, V.; Figliola, A.; Schürmann, M.; Başar, E. Wavelet entropy: A new tool for analysis of short duration brain electrical signals. J. Neurosci. Methods 2001, 105, 65–75. [Google Scholar] [CrossRef]
- Rosenstein, M.T.; Collins, J.J.; De Luca, C.J. A practical method for calculating largest Lyapunov exponents from small data sets. Phys. D Nonlinear Phenom. 1993, 65, 117–134. [Google Scholar] [CrossRef]
- Hegger, R.; Kantz, H. Improved false nearest neighbor method to detect determinism in time series data. Phys. Rev. E 1999, 60, 4970. [Google Scholar] [CrossRef]
- Yang, X.; Song, F.; Wu, Y.; Zhong, Y.; Xu, S. Investigation of rotating detonation fueled by a methane–hydrogen–carbon dioxide mixture under lean fuel conditions. Int. J. Hydrog. Energy 2020, 45, 21995–22007. [Google Scholar] [CrossRef]
- Xiao, F.; Li, Z.; Zhu, Y.; Yang, J. Hypersonic type-IV shock/shock interactions on a blunt body with forward-facing cavity. J. Spacecr. Rockets 2017, 54, 506–512. [Google Scholar] [CrossRef]
- Xiao, F.; Li, Z.; Zhu, Y.; Yang, J. Experimental and numerical study of hypersonic type IV shock interaction on blunt body with forward facing cavity. In Proceedings of the 20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Glasgow, Scotland, 6–9 July 2015; p. 3666. [Google Scholar]
- Xiao, F.S.; Li, Z.; Zhu, Y.; Yang, J. An Investigation of Type IV Shock Interaction Over a Blunt Body with Forward-Facing Cavity. In Proceedings of the 30th International Symposium on Shock Waves 1, Tel-Aviv, Israel, 19–24 July 2015; Springer: Cham, Switzerland, 2017; pp. 199–204. [Google Scholar]
Operational Condition Serial Number | Experiment Serial Number | Slot Width/mm | Air Flow/ (kg∙s−1) | Kerosene Flow/ (g∙s−1) | Supplementary Fuel Ratio | Equivalence Ratio |
---|---|---|---|---|---|---|
Con. 1 | 15–18 | 4 | 1.38 | 56.0 | 5.49 | 0.60 |
Con. 2 | 15–20 | 4 | 1.38 | 75.0 | 7.35 | 0.80 |
Con. 3 | 15–22 | 4 | 1.35 | 85.0 | 9.55 | 0.93 |
Con. 4 | 16–04 | 4 | 1.80 | 70.7 | 7.81 | 0.58 |
Con. 5 | 16–18 | 4 | 1.84 | 96.0 | 10.65 | 0.77 |
Con. 6 | 16–29 | 4 | 1.83 | 112.0 | 12.73 | 0.90 |
Con. 7 | 12–44 | 8 | 1.38 | 57.8 | 5.58 | 0.62 |
Con. 8 | 12–45 | 8 | 1.39 | 74.3 | 7.10 | 0.79 |
Con. 9 | 12–47 | 8 | 1.40 | 91.6 | 8.64 | 0.97 |
Con. 10 | 12–56 | 8 | 1.78 | 78.0 | 7.50 | 0.64 |
Con. 11 | 12–58 | 8 | 1.78 | 98.2 | 9.35 | 0.81 |
Con. 12 | 12–59 | 8 | 1.77 | 114.5 | 11.08 | 0.95 |
Species | Cell Width/mm | Critical Initiation Energy/J |
---|---|---|
H2 | 8.0~15.1 | 4248.8~9040.0 |
CO + 2.9%H2 | 32 | |
CO + 8.69%H2 | 16.9 | |
C2H2 | 4.6~9.2 | 4332.0~6780.0 |
CO + 1.3%C2H2 | 29.9 | |
CO + 3.71%C2H2 | 10.9 | |
C2H4 | 19.5~33.8 | 55,596.0~60,568.0 |
CO + 2.14%C2H4 | 33.8 | |
CO + 4.23%C2H4 | 25.2 | |
CH4 | 279.6~349.5 | 88,658,800.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, S.; Song, F.; Chen, X.; Zhang, H.; Yang, X.; Zhou, J. Experimental Diagnosis on Combustion Characteristic of Shock Wave Focusing Initiation Engine. Entropy 2022, 24, 1007. https://doi.org/10.3390/e24071007
Xu S, Song F, Chen X, Zhang H, Yang X, Zhou J. Experimental Diagnosis on Combustion Characteristic of Shock Wave Focusing Initiation Engine. Entropy. 2022; 24(7):1007. https://doi.org/10.3390/e24071007
Chicago/Turabian StyleXu, Shida, Feilong Song, Xin Chen, Hesong Zhang, Xingkui Yang, and Jianping Zhou. 2022. "Experimental Diagnosis on Combustion Characteristic of Shock Wave Focusing Initiation Engine" Entropy 24, no. 7: 1007. https://doi.org/10.3390/e24071007
APA StyleXu, S., Song, F., Chen, X., Zhang, H., Yang, X., & Zhou, J. (2022). Experimental Diagnosis on Combustion Characteristic of Shock Wave Focusing Initiation Engine. Entropy, 24(7), 1007. https://doi.org/10.3390/e24071007