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Abstract: The goal of this study is to provide an analysis of a Fisher-KPP non-linear reaction problem
with a higher-order diffusion and a non-linear advection. We study the existence and uniqueness
of solutions together with asymptotic solutions and positivity conditions. We show the existence
of instabilities based on a shooting method approach. Afterwards, we study the existence and
uniqueness of solutions as an abstract evolution of a bounded continuous single parametric (t)
semigroup. Asymptotic solutions based on a Hamilton–Jacobi equation are then analyzed. Finally,
the conditions required to ensure a comparison principle are explored supported by the existence of
a positive maximal kernel.
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1. Introduction and Problem Outline

The problem is formulated as follows:

wt = −wxxxx + c(wq)x + w(a− w), (1)

with the initial conditions:

w0(x) ∈ X = L2
loc(R) ∩ L∞(R),

w0,x ∈ Lq(R), (2)

where q > 0, a > 0.
The interactive motion in a domain requires studying the diffusion accurately, for

example, via statistical concepts based on a random walk approach (see [1]). Other pro-
posals to analyze diffusive processes have been followed in [2,3] based on the free energy
of Landau–Ginzburg. This approach ends in a non-regular (or heterogeneous) diffusion
compared to that derive from the classical Fick law. Such non-regularity can be observed
as oscillating profiles of solutions in the proximity of two particular concentration values
given by the stationary conditions.

Reaction–diffusion models were formally introduced by Fisher [4] and Kolmogorov,
Petrovskii and Piskunov [5] to study the interaction of genes and the behaviour of flames
in combustion theory, respectively. The approach followed by the cited authors was based
on a Fickian diffusion and a reaction term of the following form: f (u) = u(1− u). The
problem was tracked with the Travelling Waves (TW) solutions to understand the behaviour
of diffusion acting in a wave front and to understand the propagation features of each
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specie involved. The Fisher or KPP model is ubiquitous to several applied sciences (see
for example [6–8]). Furthermore, and more recently, KPP-models have been analyzed with
fractional operators [9], with a p-Laplacian Porous Medium Equation [10] and higher order
operators [11].

Alternatively to the heterogeneous diffusion discussed, the higher-order operators
may be seen as perturbations to regular-order two diffusion; see [12–15] for some extensions
of the Fisher–Kolmogorov equation to fourth-order operators.

Some further notable analysis can be cited related to modelling with heterogeneous
diffusion. For instance, in [16], the authors study a biological interaction between species
with advection, which precludes a non-linear diffusion. In addition, [17] studies the spectral
stability of a class of solutions to model the haptotaxis cancer invasion.

The proposed equation is formed of a higher-order operator (in the sense of non-
homogeneous), a non-linear advection and a KPP term:

wt = −wxxxx + c(wq)x + w(a− w),
w0(x) ∈ X = L∞(R) ∩ L2

loc(R), w0,x ∈ Lq(R), a > 0, q > 0.
(3)

The paper layout is as follows:
Firstly, solutions are proved to exhibit oscillations supported by a shooting method.

Afterwards, we study the existence of solutions as an abstract evolution of a bounded
continuous single parametric (t) operator. We continue with the study of uniqueness and a
precise evolution of such unique solution is obtained under the Hamilton–Jacobi equation
scope. Finally, the conditions required to ensure a comparison principle are explored.

2. Existence and Uniqueness

For the analysis of existence and uniqueness, we consider the following norm:

‖w‖2
Γ =

∫
R

Γ(ω)
4

∑
k=0
|Dkw(ω)|2dω, (4)

where D = d
dω , w ∈ H4

Γ(R) ⊂ L2
Γ(R) ⊂ L2(R) and the weight Γ is considered as (see [11]

together with [18]):

Γ(ω) = ea0|ω|
4
3− 1

ωq
1

tγ
∫ t

0 (‖wx(s)‖q+1)ds, (5)

a0 > 0 sufficiently small and γ > q + 1.
The defined functional space form of functions w ∈ H4

Γ(R) ⊂ L2
Γ(R) ⊂ L2(R) with

norm ‖w‖Γ is a complete Banach space. This last statement follows from standard theory:
Consider a sequence {wn(ω) : n ∈ N} ∈ H4

Γ. To this end, fix ε ≥ 0 and assume the Cauchy
definition; that is, there shall exist µ ∈ N such that given m, n > µ, ‖wm − wn‖Γ ≤ ε.

2.1. A Priori Bounds

Let us denote by L = (−D4
x + qwq−1cDx) the spatial operator and assume the homo-

geneous equation:
wt = Lw. (6)

Then, the following lemma holds for different conditions in the initial distribution (Note
that these conditions are different to that in (3), but are described to further characterize the
bounds of solutions).

Lemma 1. Given w0 ∈ L2(R), then:

‖w‖L2 ≤ ‖w0‖L2 . (7)

Let us consider r ∈ R+, so that given w0 ∈ Hr(R) ∩ L2(R):

‖w‖Hr ≤ ‖w0‖Hr , (8)
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and
‖w‖Hr ≤ ‖w0‖L2 , f or t ≥ r

4
. (9)

In addition,

‖w‖Γ ≤ κ‖w‖Hr ≤ κ‖w0‖Hr , κ = 25 sup
ζ∈R
{w, D1w, D2w, D3w, D4w}. (10)

Proof. The fundamental solution to the basic evolution equation can be expressed as:

w(x, t) = etLw0(x), (11)

and considering the Fourier transformed function in (ζ):

ŵ(ζ, t) = et(−ζ4+qŵq−1cζi) ŵ0(ζ). (12)

Let us consider now the isometric Fourier property in L2:

‖w‖2
L2 =

∫ ∞

−∞
|et2(−ζ4+qŵq−1cζi)| |ŵ0(ζ)|2dζ =

∫ ∞

−∞
e−2ζ4t|ŵ0(ζ)|2dζ

≤ sup
ζ∈R

(e−2ζ4t)
∫ ∞

−∞
|ŵ0(ζ)|2dζ = ‖w0‖2

L2 .
(13)

Then, ‖w‖L2 ≤ ‖w0‖L2 . Now, assume the following mollifying norm for r ∈ R+ and
0 ≤ t < ∞ satisfying the Ap-condition (see [19]) for p = 1:

‖w‖2
Hr =

∫ ∞

−∞
erζ2 |ŵ(ζ, t)|2dζ. (14)

Then:

‖w‖2
Hr =

∫ ∞

−∞
erζ2 |ŵ(ζ, t)|2dζ =

∫ ∞

−∞
erζ2 |et2(−ζ4+qŵq−1cζi)| |ŵ0(ζ)|2dζ

≤ sup
ζ∈R

(e−2ζ4t)
∫ ∞

−∞
erζ2 |ŵ0(ζ)|2dζ = ‖w0‖2

Hr .
(15)

Assume w0 ∈ L2(R), then:

‖w‖2
Hr =

∫ ∞

−∞
erζ2 |ŵ(ζ, t)|2dζ ≤ sup

ζ∈R
(erζ2

e−2ζ4t)
∫ ∞

−∞
|ŵ0(ζ)|2dζ. (16)

After a simple operation, the following holds:

‖w‖2
Hr ≤

( r
4t

)1/2
‖w0‖2

L2 , ‖w‖Hr ≤ ‖w0‖L2 , (17)

for t ≥ r
4 , as postulated.

Eventually:

‖w‖2
Γ =

∫
R

Γ(ζ)
4

∑
k=0
|Dkw(ζ)|2dζ ≤

∫
R

erζ2
4

∑
k=0
|Dkw(ζ)|2dζ ≤ κ2

∫
R

erζ2 |w(ζ)|2dζ ≤ κ2 ‖w‖2
Hr , (18)

being κ = 25 supζ∈R{w, D1w, D2w, D3w, D4w}.
The scaling term κ is defined according to the continuous inclusions in Sobolev

spaces ([20], p. 79). Derivatives up to the third order are sufficiently regular. The fourth-
order derivative is regarded as a controlling term. If this fourth-order derivative is regular,
then the mollifying norm bounds the norm ‖·‖Γ.
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Consider, now, the following representation to the homogeneous equation (Note that
the bi-laplacian is introduced as −∆2 for commonality with the semi-group representation;
nonetheless, in our case, the reader shall consider the one-dimensional case):

G(x, t) = e−∆2t. (19)

The operator −∆2 can be seen as the infinitesimal representation of a strongly continu-
ous semi-group with the parameter t > 0:

w(t) = e−∆2tw0 +
∫ t

0

[
c · ∇e−∆2(t−s)wq(s) + e−∆2(t−s)w(s)(a− w(s))

]
ds. (20)

Consider the Fourier transformation for wt = −wxxxx with w(x, 0) = δ(x), then:

w̃(t) = e−ζ4tw̃0. (21)

Based on this fundamental solution, the kernel for the homogeneous equation reads:

G(x, t) = F−1(e−ζ4t) =
1

2π

∫
R

e−ζ4t−iζxdζ =
∫
R

e−ζ4tcos(ζx)dζ. (22)

The last integral is bounded and exists for ζ in R.
Once a kernel has been obtained, it is possible to rewrite the abstract evolution (20) in

the space H4
Γ(R), such that:

Tw0,t : H4
Γ(R)→ H4

Γ(R), (23)

given by:

Tw0,t(w) = G(x, t) ∗ w0(x) +
∫ t

0
[c Gx(x, t− s) ∗ wq(s) + G(x, t− s) ∗ w(x, s)(a− w(x, s))]ds. (24)

In the last equation, the following assessment holds for the advection:

G(x, t) ∗ c (wq(x, s))x =
∫ ∞

−∞
G(x− θ, t) c (wq(θ, s))x dθ = −

∫ ∞

−∞
wq(θ, s) c Gx(x− θ, t) dθ

= −
∫ ∞

−∞
wq(θ, s) c ∂(x−θ)G(x− θ, t)

∂(x− θ)

∂θ
dθ =

∫ ∞

−∞
wq(θ, s) c ∂(x−θ)G(x− θ, t)

= c Gx(x, t) ∗ wq(x, t).

(25)

The following lemma shows the bound properties of the above defined operator.

Lemma 2. The one parameter (with t) operator Tw0,t is bounded in H4
Γ(R) with the norm (4).

Proof. Firstly, the following is shown:

b0‖w0‖Γ ≤ ‖w‖Γ. (26)

To this end:

‖w‖2
Γ =

∫
R

Γ(ζ)
4

∑
k=0
|Dkŵ(ζ)|2dζ =

∫
R

Γ(ζ)
4

∑
k=0
|Dk
[
et(−ζ4+qŵq−1cζi) ŵ0

]
|2dζ

≥
∫
R

Γ(ζ)
4

∑
k=0
|Dk
[
et(−ζ4+qŵq−1cζi)

]
|2

4

∑
k=0
|Dkŵ0|2dζ ≥ b2

0

∫
R

Γ(ζ)
4

∑
k=0
|Dkŵ0|2dζ = b2

0‖w0‖2
Γ,

(27)
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such that

b2
0 = inf

ζ∈Br
{

4

∑
k=0
|Dk
[
et(−ζ4+qŵq−1cζi)

]
|2} > 0 (28)

and small in Br = {ζ, |ζ| < r} for r > 0.
Coming to the operator Tw0,t, the following holds:

‖Tw0,t(w)‖Γ ≤ ‖Tw0,t‖Γ ‖w‖Γ ≤ ‖G‖Γ ‖w0‖Γ +
∫ t

0
[‖c Gx‖Γ ‖wq‖Γ + ‖G‖Γ ‖w‖Γ ‖a− w‖Γ]ds

≤
[
‖G‖Γ

1
b0 t

+
∫ t

0

[
‖c Gx‖Γ ‖w

q−1
0 ‖Hr + ‖G‖Γ | ‖a‖Γ − b0‖w0‖Γ|

]
ds
]

t ‖w‖Γ.
(29)

where inequalities (15) and (18) have been used for the term ‖wq−1‖Γ , indeed:

‖wq−1‖Γ ≤ ‖wq−1‖Hr ≤ ‖wq−1
0 ‖Hr . (30)

Conclusively:

‖Tw0,t‖Γ ≤
[
‖G‖Γ

1
b0 t

+
∫ t

0

[
‖c Gx‖Γ ‖w

q−1
0 ‖Hr + ‖G‖Γ | ‖a‖Γ − b0‖w0‖Γ|

]
ds
]

t. (31)

This last norm is bounded locally for any value in the single parameter t, in other
words for any t > 0.

2.2. Oscillating Behaviour of the Solution

The proposed analysis to show the oscillatory character of solutions is based on a
shooting method approach. This technique has been previously employed in [21] for a
system of equations. Nonetheless, such a process is partly modified to account for the
nonlinear advection term in equation (3).

The oscillatory behaviour is shown for a step-like initial condition:

w0(x) = H(−x), (32)

H being the Heaviside function. The choice of a step-like function is related to the possibility
of studying the asymptotic behavior in the proximity of zero as H(−x) = 0 in x → ∞. For
the following lemma, assume preliminary that solutions exist and are unique (this will be
shown afterwards) to illustrate the oscillatory behaviour of the solutions.

Lemma 3. Any solution to (3) with Heaviside initial condition (32) exhibit an oscillatory character.

Proof. We consider the following Navier conditions for |x| → ∞:

w(t, |x| → ∞) = w′′(t, |x| → ∞, ) = 0, (33)

so that both derivatives are defined by the following two parameters:

w′(t, |x| → ∞) = µ, w′′′(t, |x| → ∞, ) = ω, (34)

where µ, ω ∈ R.
We consider only the stationary equation to (3) as the intention is to show the oscillating

solutions in view of the higher-order spatial operator:

− wxxxx + c (wq)′ + w(a− w) = 0. (35)
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A Hamiltonian holds and is of the form (refer to [14] for a complete discussion on
Hamiltonians for higher-order operators):

H(w) = w′′′w′ − 1
2

w′′2 + wq−1 c
q

w′ +
1
3

w3 − a
2

w2 + G. (36)

Note that for x → ∞ (in the asymptotic approximation to the stationary w = 0), it can be
assumed that the oscillatory character reduces, such that the action energy tends to zero,
hence it can be considered that globally w ∼ w′ and small. This approach can be followed
as the idea is to study the sign character rather than the local precise behaviour of w and w′.
The Hamiltonian can be understood as an energy functional (also referred as orbit), and
shall be small (null for our purposes) for |x| → ∞, so that for w = 0 and w = a:

lim
|x|→∞

H(w′′′(x), w′′(x), w′(x), w(x)) = 0. (37)

The value of G is obtained by operating in the Hamiltonian, which is made particular
for one of the stationary solutions (either w = 0 or w = a). For the sake of simplicity, the
solution w = a is considered:

H(a) =
1
3

a3 − a
2

a2 + G = 0 → G =
a3

6
. (38)

So that:

H(w) = w′′′w′ − 1
2

w′′2 + wq−1 c
q

w′ +
1
3

w3 − a
2

w2 +
1
6

a3. (39)

Note that q > 0 and might adopt a value in the interval (0, 1). Then, for technical
reasons, we introduce the following supporting function [18]:

f ε =
1
q
(w + ε)q−1 − 1

q
εq−1, with ε→ 0+. (40)

Any heteroclinic orbit defined between the stationary solutions w = 0 and w = a can
be obtained by a minimization problem in the Hamiltonian. The minimal energy of such
orbits behaves as the stationary solutions for |x| → ∞. Considering the Navier conditions
in (33), the following holds:

H(w) = w′′′(|x| → ∞)w′(|x| → ∞) + f εcw′(|x| → ∞) +
1
6

a3 = 0. (41)

If w′′′(t, |x| → ∞, ) = ω, w′(t, |x| → ∞, ) = µ, there is a relation between both
derivatives in the asymptotic approach |x| → ∞:

µ = − a3/6
ω + f εc

. (42)

According to the previous equation, the third and first derivatives have opposite signs.
In addition, a solution satisfies:

lim
x→∞

(w(x), w′(x), w′′(x), w′′′(x)) = (0, 0, 0, 0). (43)

To prove the existence of oscillating solutions, a locating variable σ is introduced, to
account for the decreasing behaviour of solutions down to w = 0:

σ(µ) = sup{x > 0 | w′(µ, ω(µ), ·) < 0 in (0, x)}. (44)
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Furthermore, let us define:

µ∗ = sup{w′ | u(µ, ω(µ), σ(µ)) < 1}, ω∗ = sup{w′′′ | u(µ, ω(µ), σ(µ)) < 1}. (45)

The existence of oscillating solutions means that a finite value of σ(µ) holds. To this
end, define µ as:

µ = − 1
σ(µ)

. (46)

The negative sign in the last expression permits us to state that the supreme value of
µ is obtained for the supreme value of σ. Now, consider the expression (42) to state the
relation between ω and µ:

− 1
σ(µ)

ω = − a3/6
ω + f εc

. (47)

We consider µ = µ∗ (for the supreme value of σ) and ω = ω∗, so that σ is given by:

σ(µ∗) =
ω∗(ω∗ + f εc)

a/6
. (48)

Any heteroclinic orbit connecting the stationary solutions w = 0 and w = 1 shall
exhibit a finite value of ω∗. Indeed, the following holds:

lim
x→∞

(w(x), w′(x), w′′(x), w′′′(x)) = (0, 0, 0, 0), lim
x→−∞

(w(x), w′(x), w′′(x), w′′′(x)) = (a, 0, 0, 0). (49)

A maximum and finite value for the third derivative ( referred as ω∗) holds for any
continuous non-trivial solution. Hence, σ(µ∗) is finite (note that | f ε| might be big in
the proximity of the stationary solutions as per the definition given in expression (40),
nonetheless it can be stated that | f ε| < ∞ in such proximity).

Operating similarly to the search for a finite spatial value x > σ(µ∗), the first derivative
is positive in the interval (σ(µ∗), x). To this end, define:

ψ(µ) = sup{( x− σ(µ∗) ) > 0 | w′(µ, ω(µ), ·) > 0 in (σ(µ∗), x)}. (50)

In addition:

µ∗∗ = inf{w′ | u(µ, ω(µ), ψ(µ)) > 0}, ω∗∗ = inf{w′′′ | u(µ, ω(µ), ψ(µ)) > 0}. (51)

It is possible to define a suitable value of the parameter µ considering that the connect-
ing orbit is non-decreasing in (σ(µ∗), x). As a consequence, the value of µ is positive, and
according to (42), the sign of ω is negative. Considering the finite function step (δ) in the
interval (σ(µ∗), x), we have:

µ =
δ

ψ− σ
, (52)

Now, considering the expression (42):

δ

ψ− σ
ω = − a3/6

ω + f εc
. (53)

Then:
ψ = σ− 6δω

a3 (ω + f εc). (54)
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Let us consider the value µ = µ∗∗, then the infimum rate of growth is obtained, leading
to the supreme value of ψ. Furthermore, let us consider the infimum value of (ω∗∗). Then,
the following value of ψ is the supreme of the finite spatial location:

ψ(µ∗∗) = σ +
6δ|ω∗∗|

a3 (|ω∗∗|+ f εc). (55)

It has been proven that any stationary orbit between the stationary solutions w = 0
and w = a is non-increasing in the interval (0, σ(µ∗)) and is non-decreasing in the interval
(σ(µ∗), ψ(µ∗∗)), where σ(µ∗) and ψ(µ∗∗) are finite. This monotonous behaviour of the
orbits reflects the presence of instabilities (also called oscillations).

2.3. Uniqueness

The uniqueness of solutions is provided based on the definition of a map Tw0,t
(see (23)) that complies with a unique fix point argument, i.e., w(x, t) = Tw0,t(w(x, t)). To
this end:

‖Tw0,t(w1)− Tw0,t(w2)‖Γ ≤
∫ t

0
‖c Gx(x, t− s) ∗ (wq

1 − wq
2) + G(x, t− s) ∗ [w1(a− w1)− w2(a− w2)]‖Γds

=
∫ t

0
‖
∫ s

t
{c Gx(x, t− s− r)(wq

1 − wq
2) + G(x, t− s− r)[w1(a− w1)− w2(a− w2)]}dr‖Γds

≤
∫ t

0

∫ s

t
{‖c Gx(x, t− s− r)(wq

1 − wq
2)‖Γ + ‖G(x, t− s− r)[w1(a− w1)− w2(a− w2)]‖Γ}drds

=
∫ t

0

∫ s

t
{‖c Gx(x, t− s− r)‖Γ‖w

q
1 − wq

2‖Γ + ‖G(x, t− s− r)‖Γ‖w1(a− w1)− w2(a− w2)‖Γ}drds

≤ M
∫ t

0

∫ s

t
{‖wq

1 − wq
2‖Γ + ‖w1(a− w1)− w2(a− w2)‖Γ}drds,

(56)

It shall be noted that g and Gx are bounded in accordance with (22). Then:

M = sup{‖‖c Gx(x, t− s− r)‖Γ, G(x, t− s− r)‖Γ ∀t > 0, x ∈ R}, (57)

for any s, r.
With the aim of assessing the resulting integrals in (56), the following function is

defined:

a(ε, s) =

[ w1(ε,s)q−w2(ε,s)q

w1(ε,s)−w2(ε,s) f or w1 6≡ w2

qwq−1
1 otherwise

]
. (58)

Consider two arbitrary values for ε and s = T; then, the previous function is bounded
and satisfies the following equation:

0 ≤ a(ε, s) ≤ c0(q, ‖w0‖∞, T). (59)

Then:
‖wq

1 − wq
2‖Γ ≤ C0‖w1 − w2‖Γ, (60)

where C0 = ‖c0‖Γ.
The left-hand side integral reads:
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‖[w1(a− w1)− w2(a− w2)]‖2
Γ =

∫
R

Γ(ω)
4

∑
k=0
|Dk[w1(a− w1)− w2(a− w2)]|2dω

=
∫
R

Γ(ω)

{
|w1(a− w1)− w2(a− w2)|2 +

4

∑
k=1
|Dk[w1(a− w1)− w2(a− w2)]|2

}
dω

=
∫
R

Γ(ω)

{
|(w1 − w2)(a− (w1 − w2)|2 +

4

∑
k=1

k

∑
i=1
|
(

k
i

)
(w1 − w2)

(i)(a− (w1 − w2)
(k−i)|2

}
dω

≤ 25P2
∫
R

Γ(ω)

{
|(w1 − w2)|2 +

4

∑
k=1

k

∑
i=1
|
(

k
i

)
(w1 − w2)

(i)|2
}

dω

= 25P2
∫
R

Γ(ω)
4

∑
k=0
|Dk[w1 − w2]|2dω = 25P2‖w1 − w2‖2

Γ.

(61)

Note that P2 = max{|a− (w1 − w2)|2, |a− (w1 − w2)]
k−i|2}.

Finally:

‖Tw0,t(w1)− Tw0,t(w2)‖Γ ≤ M(5P + C0)
∫ t

0

∫ s

t
‖w1 − w2‖Γdsdr = M(5P + C0)t(t− s)‖w1 − w2‖Γ. (62)

For any interval with center t and proportionally to t− s, uniqueness holds if w1 ↙ w2
for a contractive mapping Tw0,t such that Tw0,t(w1)↙ w1 in H4

Γ.

2.4. Asymptotic Analysis to Determine a Local Inner Region of Positiveness

The solutions have been shown to exhibit an oscillatory behaviour. As a consequence,
in the proximity of the null condition, solutions may be negative. The positiveness of
solutions is explored under the following lemma:

Lemma 4. Solutions to (3) are positive in the inner ball region Bρ(t), where ρ(t) is shown to be:

ρ(t) = |ln t| t1/4, (63)

for a sufficiently small t.

Proof. Firstly, assume the following scaling [11]:

ω =
x

t1/4 ; τ = ln t→ −∞ , t→ 0+. (64)

The Equation (3) in the new variables and considering v(ω, τ) reads:

vτ =

(
C− 1

4
I
)

v + vωe3/4τ + eτv(1− v), (65)

where the operator C = −D4
ω + 1

4 ωDω + 1
4 I.

Consider the stationary solutions to:(
C− 1

4
I
)

ve = 0, ve(∞) = 0, ve(−∞) = 1. (66)

The pseudo-boundary conditions are given by the step-like Heaviside function, as
pointed out in Section 2.2.

Note that the solution is expressed as the following sum:

v(ω, τ) = ve(w) + α(ω, τ), (67)
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such that, closing the equilibrium with |α| � 1 and after replacement into (65), the follow-
ing holds:

ατ =

(
C− 1

4
I
)

α + ve,ωe3/4τ + eτve(1− ve). (68)

Assume that α, ve ∈ H4
Γ(R) ⊂ L2

Γ(R) ⊂ L2(R) and that the asymptotic smoothing permits
the following separation of variables:

α(ω, τ) = σ(w)ψ(τ), (69)

where σ, ψ ∈ H4
Γ(R) ⊂ L2

Γ(R) ⊂ L2(R).
Upon standard operations in (68):

ψ′

ψ
=

(
C− 1

4 I
)

σ + σ′e3/4τ + eτve(1− ve) / ψ

σ
= K, (70)

so that:
ψ(τ) = eτ , (71)

where K = 1 for convenience.
Note that a solution to σ(w) is given considering the condition ve(∞) = 0, such that:(

C− 1
4

I
)

σ + σ′e3/4τ = σ. (72)

The operator C hosts a discrete set of eigenfunctions in H4
Γ ⊂ L2

Γ [22]. Consequently,
any spanned solution σ converges in H4

Γ, and any solution can be simply expressed as:

σ(w) = eγω. (73)

Upon replacement in (72) and balancing the leading terms: γ4 = −1, provided that

1
4

ω + e3/4τ � 1, (74)

which is equivalent to:

t ≥ |x|
4

. (75)

This is the condition to ensure that the exponential expression (73) holds. Assume,
now, the following two main real roots in γ:

σ+ = eγω, ω → −∞ ; σ− = e−γω, ω → ∞, (76)

so that:
α(ω, τ) = eτ(eγω + e−γω). (77)

The expression (67) reads:

v(ω, τ) = ve(w) + eτ(eγω + e−γω). (78)

Returning to (x, t):

w(x, t) = ve

( x
t1/4

)
+ t(eγ x

t1/4 + e−γ x
t1/4 ). (79)

Note that |α| � 1 for x → ∞, then:

|te−γ x
t1/4 | � 1 → |x| � ln t t1/4. (80)



Entropy 2022, 24, 915 11 of 16

As ln t < 0:
|x| � |ln t|t1/4 = ρ(t), (81)

which includes the region defined in (75). Then:

|x| < 4t� |ln t|t1/4 (82)

for t� 0+.

Finally, note that the same process can be pursued for any t = t0 > 0. To this end,
it suffices to assume the scaling τ = ln(t− t0). Consequently, the positive region applies
locally provided the following inequality holds:

|x| � |ln(t− t0)|(t− t0)
1/4. (83)

3. Solution Profiles

Assume the non-linear transformation:

w = eu. (84)

For dedicated discussions about this proposed scaling, the reader is referred to [23].
Other interesting exploration of solutions with exponential scaling are given in [24–26].

As shown, the operator { ∂
∂t + D4

x} is oscillatory; thus, any solution (or at least one of
the leading profiles) shall be oscillatory. Consequently, the function u shall be generally
defined as complex:

u : X× [0, T]→ C. (85)

Following an idea in [27], the function u satisfies a Hamilton–Jacobi type of equation:

ut = H4

(
u,

∂u
∂x

)
+ P4

(
u,

∂iu
∂xi

)
, i = 2, 3, 4, (86)

where
H4(u) = −u2

xu2
x + cquxe(q−1)u + a− eu, (87)

and:

P4(u) = −∆2u− ∆(∇u · ∇u)− 2∇u · ∇∆u− 2(∇u · ∇u)∆u− 2∇u · ∇(∇u · ∇u)− (∆u)2. (88)

For commonality with the expression used in [27], we consider the spatial derivatives
with the ∆ operator. The reader shall consider the one-dimensional case only. The higher-
order operator P4 is of order three, while the Hamilton–Jacobi operator is of order four. This
can be shown by considering a sufficiently smooth function σ ∈ H4(R) with continuous
derivatives and an arbitrary constant β ∈ R, such that:

|P4(λσ)| = O(λ3 ∂iσ)� H4(λσ) = O(λ4 σx), i = 1, 2, 3, 4. (89)

Considering the leading terms, the equation (3) is rewritten as:

ut = −u2
xu2

x + cquxe(q−1)u + a− eu. (90)

In the search of standing wave solutions to the first-order Equation (90), we assume
that such solutions are expressed making use of the standard separation of variables [27]:

u(x, t) = (τ + t)−
1
3 θ(x), (91)
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where τ < t < T. Upon substitution in (90) and considering the asymptotic approach with
t→ ∞:

− 1
3

θ = −θ4
x + cq(τ + t)θx + a1, (92)

where it is considered τ � 1 and any t < k0τ, k0 > 1, a1 = (a− 1) (k0 + 1)4/3 τ4/3.

Note that eu = e(τ+t)−
1
3 θ(x) → 1, e(q−1)u = e(q−1)(τ+t)−

1
3 θ(x) → 1, for τ � 1. Making

the balance of the leading terms in (92) for |θx| � 1:

− 1
3

θ = cq(τ + t)θx + a1. (93)

Then:
θ(x) = 3

(
e−

x
3cq(τ+t) − a1

)
. (94)

In the asymptotic approximation t→ ∞, the following transport front is obtained in
the long spatial oscillating period (this is |θx| � 1):

|x| = 3 c q ln(a1) t. (95)

Balancing the first derivative |θx| � cq(τ + t)� |θ4
x|, we have:

− 1
3

θ = −θ4
x + a1. (96)

So that a solution is:

θ(x) = 3
(

1
4

D(i)x
) 4

3
− 3a1, (97)

where D(i) = (−1)
1
4 . As a consequence:

u(x, t) = 3t−
1
3

((
1
4

D(i)x
) 4

3
− a1

)
. (98)

Now and considering (84), the solution is given as:

w(x, t) = e−3a1t−
1
3 e3t−

1
3 ( 1

4 D(i)x)
4
3

. (99)

This solution is oscillatory (according with the complex D(i)) and corresponds to the
case of short spatial oscillating period, where the nonlinear term θ4

x dominates over the
single θx (which was shown to provide a propagating front when dominating).

4. Order Preserving and Positive Evolution

A maximal evolution is obtained in the asymptotic x → ∞, where u → 0. Dur-
ing such evolution, we search for the spatial extreme values envelope along wq, which
means (wq)x = 0. Hence, in the asymptotic approach, the Equation (3) reduces to the
homogeneous one:

wt = −wxxxx, w0(x) ∈ X = L2
loc(R) ∩ L∞(R). (100)

Our intention is to characterize the dynamics in the proximity of the null solution,
then we will consider the step-like Heaviside initial condition w0(x) = H(−x).

As described, the solutions obtained for a higher-order operator exhibit oscillations.
This makes the formulation of a comparison principle difficult. As a consequence, our
objective is to determine the dynamics of a maximal positive and pure monotone solution
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for which a maximum principle holds. For this purpose, let us consider the following
self-similar scaling:

n(x, t) = ett−
1
4 f (y),

y = x

t
1
4

. (101)

Introducing the expression (101) into the Equation (100), the following elliptic ODE
is obtained:

− f 4 +
1
4

f ′y +
1
4

f = 0;
∫
R

f (y)dy = 1. (102)

The following estimation for the re-scaled kernel f (y) holds [28] :

| f (y)| ≤ C0F(y), F(y) = ξ1e−k0|y|
4
3 > 0, ξ1 =

(∫
R

e−k0|y|α dy
)−1

. (103)

The normalizing constant ξ1 guarantees that the maximal positive kernel F satisfies
the normalization condition

∫
R

F(y)dy = 1, which is a necessary property to support the
construction of a maximal kernel with a finite energy and in compliance with the pseudo-
boundary conditions converging to zero at infinity. The parameter C0 > 0 can be considered
as the order deficiency of the higher order operator and shall be selected sufficiently large
so that C0F(y) > f (y). This is particularly relevant as the decreasing rate of F(y) and f (y)
are different. Figure 1 shows a combination of values for the parameters C0 and k0 to avoid
the intersection of both functions f , F while keeping the maximal evolution of F.

Figure 1. The monotone kernel F is kept maximal to the oscillatory kernel f for the for C0 = 3 and
k0 = 0.5. The figure has been obtained by numerical explorations. Note the asymptotic similar
decreasing behaviour.

The next step, in the characterization of the maximal kernel (F), is to obtain a suitable
value for k0. For this purpose, we use an asymptotic approach for the self-similar kernel
elliptic ODE (102), so that:

y→ ∞; f → 0⇒ − f (4) +
1
4

y f ′ = 0. (104)

According to Figure 1, the maximal kernel F(y) behaves, asymptotically, as the solution
f (y), but keeping the global monotone decreasing property. Then, k0 can be determined by
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a Wentzel–Kramers–Brillouin (WKB) approximation. Asymptotically, let us consider the
solution as a single parameter evolution of the form:

e−k0G(y), (105)

where:
G(y) = y

4
3 . (106)

Now, we employ the WKB approximation into the asymptotic Equation (104), consid-
ering that:

f ′ = −k0
4
3

y1/3e−k0y4/3
, (107)

f (4) =
(

k0
4
3

)4
y4/3e−k0y4/3 −

(
k0

4
3

)3
e−k0y4/3 − 2

3

(
4
3

)2
k3

0e−k0y4/3 − k3
0

16
27

e−k0y4/3
, (108)

and into the Equation (104):

−
(

k0
4
3

)4
y4/3e−k0y4/3

+

(
k0

4
3

)3
e−k0y4/3

+
2
3

(
4
3

)2
k3

0e−k0y4/3

+ k3
0

16
27

e−k0y4/3 − 1
4

yk0
4
3

y1/3e−k0y4/3
= 0.

(109)

Balancing the leading terms:

−
(

k0
4
3

)4
− 1

4
k0 = 0,→ k0 = Re

(
−33

28

) 1
3

. (110)

Once a value for k0 has been obtained, we note that two kernels are available at this
point given by f and F:

n(x, t) = t−
1
4 et f (y), N(x, t) = t−

1
4 etF(y), y =

x

t
1
4

. (111)

The kernel N(x, t) represents the asymptotic evolution of the kernel n(x, t) and has the
positivity property. Solutions obtained under the kernel N are referred as w̃ while solutions
obtained under n are referred as w. Based on this, the following comparison lemma holds:

Lemma 5. Assume that the initial condition satisfies w̃0(x) ∈ X, such that w̃0(x) ≥ w0(x), then
w̃(x, t) ≥ w(x, t).

Proof.

w̃(t)− w(t) = N(t) ∗ w̃0 − n(t) ∗ w0 ≥ N(t) ∗ w̃0 − |n(t)| ∗ |w0|
≥ N(t) ∗ w̃0 − N(t) ∗ |w0| = N(t)(w̃0 − |w0|).

(112)

considering w̃0 ≥ |w0|:
w̃(t) ≥ w(t). (113)

Now, consider the variable x ∈ R. To this end, assume a boundary problem in
R+ ×R+ with a symmetry at x = 0 while evolving in x > 0:

wx(t, 0) = wxxx(t, 0) = 0, t > 0. (114)

Similarly, for w̃:

w̃(x)− u(x) = N(x) ∗ w̃0(t)− n(x) ∗ w0(t) ≥ N(x) ∗ w̃0 − |n(x)| ∗ |w0|
≥ N(x) ∗ w̃0 − N(x) ∗ |w0| = N(x)(w̃0 − |w0|),

(115)
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so that
w̃0 ≥ |w0| → w̃(x) ≥ u(x), (116)

as we intended to show.

5. Conclusions

The existence and uniqueness of solutions, together with an asymptotic assessment
of profiles based on a Hamilton–Jacobi equation, have been analyzed for the problem
in (3). The main question tracked in this analysis consisted of the exploration of positivity
conditions for solutions to a higher-order operator with nonlinear advection and a KPP
reaction. As a main conclusion, a maximal positive kernel has been sharply estimated as
an asymptotic expansion. In addition, and under the scope of such a maximal kernel, a
comparison principle has been proved to hold.
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