Conserved Control Path in Multilayer Networks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Control Path Based on Structural Controllability
2.2. Conserved Control Path
2.3. Conserved Control Path Detection Method
Algorithm 1. CoPath |
(1) Input: A directed multilayer network . |
(2) Loop: For each layer l ; 1: Classify El into (, , ); 2: Assign weight in ; 3: Construct a bipartite network ; 4: = maximum-cardinality matching with maximum weight (); 5: ← add to . |
(3) Output: |
3. Results
3.1. Conserved Control Path Pattern in Synthetic Networks
3.2. Application in Pan-Cancer
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ruths, J.; Ruths, D. Control Profiles of Complex Networks. Science 2014, 343, 1373–1376. [Google Scholar] [CrossRef] [PubMed]
- Lou, Y.; He, Y.; Wang, L.; Chen, G. Predicting Network Controllability Robustness: A Convolutional Neural Network Approach. IEEE Trans. Cybern. 2020, 52, 4052–4063. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.Y.; Slotine, J.J.; Barabási, A.L. Controllability of Complex Networks. Nature 2011, 473, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.G.; Ma, X. Dominating Communities for Hierarchical Control of Complex Networks. Inf. Sci. 2017, 414, 247–259. [Google Scholar] [CrossRef]
- Baggio, G.; Bassett, D.S.; Pasqualetti, F. Data-Driven Control of Complex Networks. Nat. Commun. 2021, 12, 1429. [Google Scholar] [CrossRef]
- Zañudo, J.G.T.; Yang, G.; Albert, R.; Levine, H. Structure-Based Control of Complex Networks with Nonlinear Dynamics. Proc. Natl. Acad. Sci. USA 2017, 114, 7234–7239. [Google Scholar] [CrossRef] [Green Version]
- Boccaletti, S.; Bianconi, G.; Criado, R.; del Genio, C.I.; Gómez-Gardeñes, J.; Romance, M.; Sendiña-Nadal, I.; Wang, Z.; Zanin, M. The Structure and Dynamics of Multilayer Networks. Phys. Rep. 2014, 544, 1–122. [Google Scholar] [CrossRef] [Green Version]
- Danziger, M.M.; Barabási, A.-L. Recovery Coupling in Multilayer Networks. Nat. Commun. 2022, 13, 955. [Google Scholar] [CrossRef]
- Danziger, M.; Bonamassa, I.; Boccaletti, S.; Havlin, S. Dynamic Interdependence and Competition in Multilayer Networks. Nat. Phys. 2019, 15, 178–185. [Google Scholar] [CrossRef] [Green Version]
- Zheng, W.; Wang, D.; Zou, X. Control of Multilayer Biological Networks and Applied to Target Identification of Complex Diseases. BMC Bioinform. 2019, 20, 271. [Google Scholar] [CrossRef] [Green Version]
- Guo, W.-F.; Zhang, S.-W.; Feng, Y.-H.; Liang, J.; Zeng, T.; Chen, L. Network Controllability-Based Algorithm to Target Personalized Driver Genes for Discovering Combinatorial Drugs of Individual Patients. Nucleic Acids Res. 2021, 49, e37. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Zhang, C.; Ma, M.; Gong, Q.; Yu, L.; Guo, X.; Gao, L.; Wang, B. Inferring Essential Proteins from Centrality in Interconnected Multilayer Networks. Phys. A Stat. Mech. Its Appl. 2020, 557, 124853. [Google Scholar] [CrossRef]
- Liu, X.; Maiorino, E.; Halu, A.; Glass, K.; Prasad, R.B.; Loscalzo, J.; Gao, J.; Sharma, A. Robustness and Lethality in Multilayer Biological Molecular Networks. Nat. Commun. 2020, 11, 6043. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.R.; Jia, C.X.; Lai, Y.C. Remote Control of Cascading Dynamics on Complex Multilayer Networks. New J. Phys. 2019, 21, 045002. [Google Scholar] [CrossRef]
- Wang, D.; Zou, X. Control Energy and Controllability of Multilayer Networks. Adv. Complex Syst. 2017, 20, 1750008. [Google Scholar] [CrossRef]
- Yuan, Z.; Zhao, C.; Wang, W.X.; Di, Z.; Lai, Y.C. Exact Controllability of Multiplex Networks. New J. Phys. 2014, 16, 103036. [Google Scholar] [CrossRef] [Green Version]
- Nacher, J.C.; Ishitsuka, M.; Miyazaki, S.; Akutsu, T. Finding and Analysing the Minimum Set of Driver Nodes Required to Control Multilayer Networks. Sci. Rep. 2019, 9, 576. [Google Scholar] [CrossRef]
- Lin, C.-T. Structural Controllablity. IEEE Trans. Autom. Control 1974, 19, 201–208. [Google Scholar]
- Vinayagam, A.; Gibson, T.E.; Lee, H.J.; Yilmazel, B.; Roesel, C.; Hu, Y.; Kwon, Y.; Sharma, A.; Liu, Y.Y.; Perrimon, N.; et al. Controllability Analysis of the Directed Human Protein Interaction Network Identifies Disease Genes and Drug Targets. Proc. Natl. Acad. Sci. USA 2016, 113, 4976–4981. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Gao, H.; Wang, J.; Wu, F.X. Control Principles for Complex Biological Networks. Brief. Bioinform. 2019, 20, 2253–2266. [Google Scholar] [CrossRef]
- Kalman, R.E. Mathematical Description of Linear Dynamical Systems. J. Soc. Ind. Appl. Math. Ser. A Control 1963, 1, 152–192. [Google Scholar] [CrossRef]
- Wang, B.; Gao, L.; Gao, Y.; Deng, Y.; Wang, Y. Controllability and Observability Analysis for Vertex Domination Centrality in Directed Networks. Sci. Rep. 2014, 4, 5399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, B.; Gao, L.; Zhang, Q.; Li, A.; Deng, Y.; Guo, X. Diversified Control Paths: A Significant Way Disease Genes Perturb the Human Regulatory Network. PLoS ONE 2015, 10, e0135491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zdeborová, L.; Mézard, M. The Number of Matchings in Random Graphs. J. Stat. Mech. Theory Exp. 2006, 2006, P05003. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Liu, G. Number of Maximum Matchings of Bipartite Graphs with Positive Surplus. Discret. Math. 2004, 274, 311–318. [Google Scholar] [CrossRef] [Green Version]
- Jia, T.; Barabási, A.L. Control Capacity and a Random Sampling Method in Exploring Controllability of Complex Networks. Sci. Rep. 2013, 3, srep02354. [Google Scholar] [CrossRef] [Green Version]
- Régin, J.C. A Filtering Algorithm for Constraints of Difference in CSPs. Proc. Natl. Conf. Artif. Intell. 1994, 3011, 65–79. [Google Scholar]
- Galil, Z. Efficient Algorithms for Finding Maximum Matching in Graphs. ACM Comput. Surv. 1986, 18, 23–38. [Google Scholar] [CrossRef]
- Barabási, A.L.; Albert, R. Emergence of Scaling in Random Networks. Science 1999, 286, 509–512. [Google Scholar] [CrossRef] [Green Version]
- Erdös, P.; Rėnyi, A. On Random Graphs. Publ. Math. 1959, 6, 290–297. [Google Scholar]
- Network, T.C.G.A. Comprehensive Molecular Characterization of Human Colon and Rectal Cancer. Nature 2012, 487, 330–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchez-Vega, F.; Mina, M.; Armenia, J.; Chatila, W.K.; Luna, A.; La, K.C.; Dimitriadoy, S.; Liu, D.L.; Kantheti, H.S.; Saghafinia, S.; et al. Oncogenic Signaling Pathways in the Cancer Genome Atlas. Cell 2018, 173, 321–337.e10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, T.H.; Barrera, L.O.; Zheng, M.; Qu, C.; Singer, M.A.; Richmond, T.A.; Wu, Y.; Green, R.D.; Ren, B. A High-Resolution Map of Active Promoters in the Human Genome. Nature 2005, 436, 876–880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dang, C.V. Links between Metabolism and Cancer. Genes Dev. 2012, 26, 877–890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Georgakopoulos-Soares, I.; Chartoumpekis, D.V.; Kyriazopoulou, V.; Zaravinos, A. EMT Factors and Metabolic Pathways in Cancer. Front. Oncol. 2020, 10, 499. [Google Scholar] [CrossRef]
- Li, J.; Gong, B.; Chen, X.; Liu, T.; Wu, C.; Zhang, F.; Li, C.; Li, X.; Rao, S.; Li, X. DOSim: An R Package for Similarity between Diseases Based on Disease Ontology. BMC Bioinform. 2011, 12, 266. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Zhang, Q.; Chen, Z.; Xu, D.; Wang, Y. A Network-Based Pathway-Extending Approach Using DNA Methylation and Gene Expression Data to Identify Altered Pathways. Sci. Rep. 2019, 9, 11853. [Google Scholar] [CrossRef] [Green Version]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Wang, B.; Hu, J.; Wang, Y.; Zhang, C.; Zhou, Y.; Yu, L.; Guo, X.; Gao, L.; Chen, Y. C3: Connect Separate Connected Components to Form a Succinct Disease Module. BMC Bioinform. 2020, 21, 433. [Google Scholar] [CrossRef]
- Ghiassian, S.D.; Menche, J.; Barabási, A.L. A DIseAse MOdule Detection (DIAMOnD) Algorithm Derived from a Systematic Analysis of Connectivity Patterns of Disease Proteins in the Human Interactome. PLoS Comput. Biol. 2015, 11, e1004120. [Google Scholar] [CrossRef]
- Gómez-Gardeñes, J.; Moreno, Y. From scale-free to Erdos-Rényi networks. Phys. Rev. E-Stat. Nonlinear Soft Matter Phys. 2006, 73, 056124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Random—Python 3.6 Documentation. In Press. Available online: https://docs.python.org/3.6/library/random.html (accessed on 18 December 2019).
- Cerami, E.G.; Gross, B.E.; Demir, E.; Rodchenkov, I.; Babur, Ö.; Anwar, N.; Schultz, N.; Bader, G.D.; Sander, C. Pathway Commons, a web resource for biological pathway data. Nucleic Acids Res. 2011, 39, 685–690. [Google Scholar] [CrossRef] [PubMed]
- Tomczak, K.; Czerwińska, P.; Wiznerowicz, M. The Cancer Genome Atlas (TCGA): An immeasurable source of knowledge. Wspolczesna Onkol. 2015, 1A, A68–A77. [Google Scholar] [CrossRef]
- Leek, J.T.; Monsen, E.; Dabney, A.R.; Storey, J.D. EDGE: Extraction and analysis of differential gene expression. Bioinformatics 2006, 22, 507–508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stuart, J.M.; Segal, E.; Koller, D.; Kim, S.K. A Gene-Coexpression Network for Global Discovery of Conserved Genetic Modules. Science 2003, 302, 249–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruan, J.; Dean, A.K.; Zhang, W. A general co-expression network-based approach to gene expression analysis: Comparison and applications. BMC Syst. Biol. 2010, 4, 8. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.P.; Wang, Y.; Zhang, X.S.; Xia, W.; Chen, L. Detecting and analyzing differentially activated pathways in brain regions of Alzheimer’s disease patients. Mol. Biosyst. 2011, 7, 1441–1452. [Google Scholar] [CrossRef]
- Mosteller, F.; Fisher, R.A. Questions and Answers. Am. Stat. 1948, 2, 30–31. [Google Scholar] [CrossRef]
- Kamburov, A.; Stelzl, U.; Lehrach, H.; Herwig, R. The ConsensusPathDB interaction database: 2013 Update. Nucleic Acids Res. 2013, 41, D793–D800. [Google Scholar] [CrossRef]
- Brown, A.S.; Patel, C.J. A standard database for drug repositioning. Sci. Data 2017, 4, 170029. [Google Scholar] [CrossRef] [Green Version]
- Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res. 2018, 46, D1074–D1082. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Hou, Y.; Shen, J.; Huang, Y.; Martin, W.; Cheng, F. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discov. 2020, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, F.; Kovács, I.A.; Barabási, A.L. Network-based prediction of drug combinations. Nat. Commun. 2019, 10, 1197. [Google Scholar] [CrossRef] [PubMed]
- Guney, E.; Menche, J.; Vidal, M.; Barábasi, A.L. Network-based in silico drug efficacy screening. Nat. Commun. 2016, 7, 10331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Cancer Type | # Nodes | # Critical Edges | # Redundant Edges | # Ordinary Edges/Nodes |
---|---|---|---|---|
BLCA | 5001 | 333 | 12,190 | 32,467/4704 |
BRCA | 5700 | 255 | 19,731 | 53,541/5481 |
COAD | 5528 | 264 | 17,337 | 46,915/5307 |
ESCA | 4295 | 437 | 7480 | 16,603/3830 |
HNSC | 5431 | 262 | 16,115 | 43,560/5209 |
KICH | 5368 | 326 | 14,996 | 39,849/5091 |
KIRC | 5724 | 254 | 17,571 | 54,308/5520 |
KIRP | 5440 | 287 | 16,017 | 43,072/5190 |
LIHC | 5354 | 250 | 14,702 | 41,302/5153 |
LUAD | 5710 | 262 | 18,377 | 49,641/5488 |
LUSC | 5744 | 263 | 18,964 | 51,889/5521 |
PRAD | 5559 | 273 | 16,038 | 50,544/5330 |
READ | 4982 | 363 | 11,952 | 30,957/4632 |
STAD | 5407 | 335 | 13,585 | 39,380/5095 |
THCA | 5561 | 280 | 17,389 | 46,640/5327 |
UCEC | 5538 | 257 | 17,202 | 46,959/5323 |
Functional Gene Set | # Genes | Source |
---|---|---|
CGC cancer | 572 | https://cancer.sanger.ac.uk/cosmic/ (accessed on 16 July 2018) |
GWAS disease | 19,110 | http://www.ebi.ac.uk/gwas/ (accessed on 2 January 2018) |
OMIM disease | 9915 | https://omim.org/ (accessed on 8 February 2018) |
Virus host | 947 | http://interactome.dfci.harvard.edu/V_hostome (accessed on 1 January 2018) |
Promoter | 6222 | Kim, T. H. et al. 2005 [33] |
Essential | 8253 | http://tubic.tju.edu.cn/deg/ (accessed on 6 December 2017) |
Kinase | 516 | http://kinase.com/human/kinome (accessed on 31 December 2017) |
Drug target | 2994 | http://www.dgidb.org/ (accessed on 8 January 2018) |
Oncogene | 119 | https://www.oncokb.org/ (accessed on 8 July 2019) |
BLCA | BRCA | ||
---|---|---|---|
Names of Enriched Pathway | # CCPs | Names of Enriched Pathway | # CCPs |
Metabolism | 23 | Metabolism | 33 |
Metabolism of lipids | 14 | Metabolism of lipids | 19 |
Phosphatidylinositol signaling system | 11 | Phosphatidylinositol signaling system | 9 |
Inositol phosphate metabolism | 9 | T cell receptor signaling pathway | 10 |
Phospholipid metabolism | 9 | Inositol phosphate metabolism | 9 |
Human T-cell leukemia virus 1 infection | 9 | Human T-cell leukemia virus 1 infection | 9 |
Glycerophospholipid metabolism | 8 | Ras signaling pathway | 9 |
T cell receptor signaling pathway | 8 | PI3K-Akt signaling pathway | 9 |
PI3K-Akt signaling pathway | 7 | VEGFA-VEGFR2 signaling pathway | 9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Ma, X.; Wang, C.; Zhang, M.; Gong, Q.; Gao, L. Conserved Control Path in Multilayer Networks. Entropy 2022, 24, 979. https://doi.org/10.3390/e24070979
Wang B, Ma X, Wang C, Zhang M, Gong Q, Gao L. Conserved Control Path in Multilayer Networks. Entropy. 2022; 24(7):979. https://doi.org/10.3390/e24070979
Chicago/Turabian StyleWang, Bingbo, Xiujuan Ma, Cunchi Wang, Mingjie Zhang, Qianhua Gong, and Lin Gao. 2022. "Conserved Control Path in Multilayer Networks" Entropy 24, no. 7: 979. https://doi.org/10.3390/e24070979
APA StyleWang, B., Ma, X., Wang, C., Zhang, M., Gong, Q., & Gao, L. (2022). Conserved Control Path in Multilayer Networks. Entropy, 24(7), 979. https://doi.org/10.3390/e24070979