
Citation: Pan, Y.-L.; Wu, J.-L.

Rate-Distortion-Based Stego: A

Large-Capacity Secure

Steganography Scheme for Hiding

Digital Images. Entropy 2022, 24, 982.

https://doi.org/10.3390/e24070982

Academic Editor: Jiayi Ma

Received: 13 June 2022

Accepted: 13 July 2022

Published: 15 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Rate-Distortion-Based Stego: A Large-Capacity Secure
Steganography Scheme for Hiding Digital Images
Yi-Lun Pan 1,2 and Ja-Ling Wu 1,3,*

1 Department of Computer Science and Information Engineering, National Taiwan University,
Taipei 10617, Taiwan; d06922016@csie.ntu.edu.tw

2 National Center for High-Performance Computing, Hsinchu 30076, Taiwan
3 Graduate Institute of Networking and Multimedia, National Taiwan University, Taipei 10617, Taiwan
* Correspondence: wjl@cmlab.csie.ntu.edu.tw

Abstract: Steganography is one of the most crucial methods for information hiding, which embeds
secret data on an ordinary file or a cover message for avoiding detection. We designed a novel
rate-distortion-based large-capacity secure steganographic system, called rate-distortion-based Stego
(RD-Stego), to effectively solve the above requirement. The considered effectiveness of our system
design includes embedding capacity, adaptability to chosen cover attacks, and the stability of the
trained model. The proposed stego scheme can hide multiple three-channel color images and QR
codes within another three-channel color image with low visual distortion. Empirically, with a certain
degree of robustness against the chosen cover attack, we state that the system offers up to 192+
bits-per-pixel (bpp) embedding of a payload and leaks no secret-related information. Moreover, to
provide theoretical foundations for our cost function design, a mutual information-based explanation
of the choices of regulation processes is herein included. Finally, we justify our system’s claimed
advantages through a series of experiments with publicly available benchmark datasets.

Keywords: image steganography; information hiding; rate-distortion; mutual information; generative
adversarial network

1. Introduction

Information hiding can imperceptibly transfer secret information into chosen cover
media [1]. It can ensure the origins of data and behave as a second channel for data
transmission. Steganography is the art of covering or hiding extra data inside a chosen cover
message, e.g., an image. The term itself dates back to the 15th century; in a typical scenario,
the sender hides a secret message inside a cover image and transmits it to the receiver,
who recovers the message. Even if eavesdroppers monitor or intercept the communication
in-between, no one besides the sender and receiver should detect the presence of the
hidden message. Compared to cryptography, steganography has the advantage that non-
target intermediaries will not suspect the existence of secret information itself. The media
embedded within extra messages is called the stego media, and the media used to host
the embedded messages are called the cover media. Attackers use steganalysis techniques
to prevent the successful transmission of secret information. To conduct steganography
is challenging because embedding extra messages can alter the cover’s appearance and
underlying statistical distribution.

The first common challenge in designing a steganography scheme is how to enlarge
the amount of transmittable payload, named the scheme’s capacity. Steganography capacity
is usually measured in bits-per-pixel (bpp). The longer the embedded message, the larger the
bpp and the more altered the cover. Suppose the visual appearance of the hidden-message
embedded image (denoted as the stego-image) does not appear close to that of the cover
images. In that case, non-photo-realistic issues may result in the associated synthesis-based
applications, such as the anchor face generation application in the metaverse. Existing
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image steganography approaches are only practical for embedding a relatively low payload
of around 0.4 bits per pixel [2]. With vigorous developments in generative adversarial net-
works (GANs), many works have applied GAN-based approaches to steganographic design
methods [3–5], which saw a boom in image steganography’s applicability. Reference [6] is
the first article that attempts to address the application of GAN in image steganography
with acceptable performance. Afterwards, with the help of GAN, Zhang et al. proposed
the SteganoGAN [7], which achieves the embedding capacity with a payload of 4.4 bits per
pixel. In 2020, Fu et al. improved the work of SteganoGAN; they proposed the HIGAN [8],
which can handle a 24-bit-sized payload. Investigating the possibility of further increasing
information capacity is one of the to-be-conquered challenges of this study.

Furthermore, to enlarge the information embedding capacity to higher than 192+ bpp,
inspired by the authors of [9], we leverage the rate-distortion loss functions to ensure the
visibility of the cover image and enhance the compressibility of the embedding image. In
other words, our primary goal is to optimize the visual quality of the stego-image and hide
as much secret-related information as possible at the same time.

The second challenge of steganography is its poor robustness against the chosen cover
attacks [6]. When an attacker knows both the stego and the cover images, conducting a
simple pixel differencing operation may leak secretly-related information. Although the
recent work proposed by Lu et al. [10] can hide multiple secret images, low system security
against simple pixel-differencing operations is still the main weak point of the approach,
i.e., the confidential information will be exposed. In contrast, our proposed multiple-secret-
image embedding scheme, besides enlarging the capacity, will also significantly improve
the system’s security.

The third challenge concerns the stability of the trained model. Most of the related
works developed a supervised cover synthesis steganography, as addressed in [11], to face
the model’s training stability issues.

As for the state-of-the-art in the field of NN-based steganography published in the
past three years, we recommend the following five highly related works: Duan et al. [12],
SteganoGAN [7], HIGAN [8], SteganoCNN [13], and ISN [10]. Among them, [7,8,13] are
limited in their model capabilities and can only process a singular secret image or text
information. Nevertheless, it is worth noting that the quality of the images processed
in [12] is superior. Inspired by [12], we also tried to make the quality of the generated
stegos and the reconstructed images as good as possible. SteganoCNN increased the
embedding payload capacity to 47.92 bpp, while ISN considered how to handle multiple
secret images hidden. Increasing the embedding capacity and relatively high computational
complexity are still weaknesses of these proposals. Our work reduces the computational
complexity from the perspective of network architecture. In summary, compared with
the works mentioned above, our approach enlarged the payload capacity, enhanced the
computational stability, and increased the computational efficiency simultaneously.

Besides, most of the above studies did not provide theoretical information-based anal-
yses of their work, which might bring further insights for comprehending the approaches’
physical meaning. To respond to this concern, we not only propose the RD-Stego system
but also provide an informational-theoretic explanation of the design of the adopted cost
functions. We take Shannon’s mutual information (MI) into the construction of the RD-
Stego system’s cost functions, including (a) visual acceptability—in maximizing the MI
lower bound of the difference between the cover and the stego-images, which is equivalent
to maximizing the acceptable perception range between them. (b) Recovery fidelity—
maximizing the MI lower bound between the embedded secret and the reconstructed secret,
which is equivalent to maximizing the retrieval fidelity related to the secret messages.

Inspired by HIGAN [8,9], this work designs a novel rate-distortion-based, large-
capacity, secure, semi-supervised cover synthesis steganographic system, i.e., the RD-Stego.
It can hide multiple full-color secret images with N * N * (RGB) (i.e., 256 * 256 * 3) pixels
and QR-coded image pixels into another N * N * (RGB) cover image of the same size
with low perceptible distortion to the cover. The proposed RD-Stego provides relatively
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large information capacity and can resist chosen cover attacks compared to previous
works. Notice that because RD-Stego can smooth the discontinuity of the gradient calcula-
tion during training (we will address it in later sections), the RD-Stego trained model is
relatively stable.

The proposed RD-Stego is a semi-supervised synthesis steganography algorithm that
establishes a mapping between the class labels of the generated images and the secret
information to be embedded automatically. Thus, there is no human intervention needed
during network training. In addition, the advantages of such a design can also prove that
the visual acceptability and recovery radiality cost functions can guide the learning of RD-
Stego for more stable training in the subsequent theoretical information-theoretic analysis.
Moreover, coupled with the design of the rate-distortion loss function, the RD-Stego can do
elementwise addition, channel by channel, on each secret image vertically, allowing the
encoder to perform encoding training more efficiently.

The contributions of this work can be summarized as follows:

• Providing an informational-theoretic-based high capacity steganographic algorithm to hide
multiple security-sensitive messages, such as multiple RGB images and QR-coded images;

• Using rate-distortion theory to ensure better fidelity of the stego-image and increase the
compressibility of the embedded secret images (the information embedding capacity
is higher than those within the existing competing works, with better or similar
PSNR ratios);

• Enhancing the system’s security with appropriate machine learning techniques. The
proposed RD-Stego can survive the chosen cover attacks, which is another strong
point compared to previous works;

• Deriving maximized MI lower bounds for the cover vs. the stego and the embedded
secret vs. the reconstructed secret during network training, which provides reasonable
regulations for the training process and enhances the stability of the trained model;

• Justifying the claimed ability to embed and reconstruct many payloads, such as multi-
ple full-color images and QR-coded images, through a series of concrete experiments.

We summarize the advantages and the limitations of the proposed RD-Stego compared
with the related works in Table 1. We have added the “information-theoretic analyses”
as one of the comparison items to emphasize the specific contribution of the proposed
RD-Stego.

Table 1. Comparisons of the advantages and limitations of the proposed RD-Stego and the above-
mentioned related works.

Methodology Payload
Capacity Advantages

Info.
Theoretic Based
Analyses

Limitations

Deep Stegano. [6],
2017.

Larger than
0.4 bpp

- It is the first process that
attempts to address the
application of GAN to image
steganography with
acceptable performance.

-N/A

- The payload capacity needs to
be increased.

- Poorly performed under the
chosen cover attack (CCA).

Duant et al. [12],
2019 8 bpp

- The method is based on a U-Net
structure, and the quality of
images processed by the method
is relatively superior.

-N/A

- The payload capacity needs to
be increased.

- Poorly performed under CCA
and LSB attacks.

SteganoGAN [7],
2019. 4.4 bpp

- The method targets the hiding of
arbitrary binary data in
an image.

-N/A

- The method is suitable for
hiding binary data only.

- Poorly performed under the LSB
cover attack.
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Table 1. Cont.

Methodology Payload
Capacity Advantages

Info.
Theoretic Based
Analyses

Limitations

HIGAN [8], 2020. 24 bpp
- HIGAN is the first process that

can handle the embedding of
one three-channel color image.

-N/A

- The payload capacity needs to
be increased.

- Poorly performed under CCA
and LSB attacks.

- The color-cast problem worsens
the reconstructed secret images
when the number of embedding
messages increases.

SteganoCNN [13],
2020. 48 bpp

- SteganoCNN can handle two
color images. -N/A

- The payload capacity needs to
be increased.

- The color-cast problem worsens
the reconstructed secret images
when the number of embedding
messages increases.

- Poorly performed under CCA
and LSB attacks.

ISN [10], 2021 24∼120 bpp
- ISN successfully increases the

embedding payload capacity to
24∼120 bpp.

-N/A

- Computational time is too long.
- Hard to extend the

payload capacity.
- Poorly performed under CCA.

RD-Stego 192 + bpp

- It is the first write-up engaging
the rate-distortion theory in the
entire NN architecture for
enlarging the hiding capability.

- It can resist the LSB attack.
- It can resist the chosen cover

attack(CCA).
- It applies to cross-domain

applications.

-Yes

- Performance is dominated by
the physical limitations of the
GPU accelerator’s memory.

- Besides CCA and LSB, the
scheme’s robustness to other
attacks, such as compression
attacks and noise-adding attacks,
must be investigated further.

To verify our claims, we use the following datasets—FaceScrub [14], CASIA-WebFace [15],
and CelebA-HQ/CelebA [16] to train the proposed model and use ImageNet [17] to evalu-
ate and test for cross-domain performance. Experimental results show that the proposed
approach can generate photo-realistic stego-images without sacrificing the embedded
information capacity compared with all related methods.

2. Related Works

This section briefly reviews the recent progress in steganography based on GANs
and focuses specifically on the limitations in the embedding capacity and the ability to
resist attacks.

2.1. Steganography Based on GANs

With the great help of GAN, several researchers found that GAN-based steganography
can solve the problem of non-photo-realistic appearance in cover synthesis. Abadi et al. [18]
first applied this idea to steganography’s cover synthesis and added an adversarial network
to their algorithm. Zhu et al. [19] proposed an encoder-decoder network architecture to
deal with the embedding and extraction of secret information. The shortcomings of [18,19]
are the adopted loss functions, which complicate the system design and make the training
process unstable. Zhang et al. [7] significantly improved the loss function design and
presented an end-to-end GAN-based steganographic model. They used adversarial training
to solve the steganography task and regarded message embedding and extraction as
encoding and decoding problems. Tancik et al. [20] achieved robust decoding even under
“physical transmission” by adding a set of differential image corruptions between the
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encoder and decoder that successfully approximate the space of distortions. However, in
the above three articles, the steganographic images generated by the neural network are
highly correlated with the original cover.

Hu et al. [21] tried to accomplish the cover synthesis of steganography in an unsu-
pervised manner. The key idea is finding a map from the noise to message and hiding
messages into noises. A special extractor is then trained to extract messages from the
noise. However, the high implementation cost of the latter training handicaps its value in
practical usage. In response to unsupervised cover synthesis steganography being hard to
use in practice, subsequent works redirect themselves toward the semi-supervised coun-
terparts instead. Inspired by ACGAN, Liu et al. [22] proposed establishing a mapping
relationship between the class label and noise first and then generating stego-images. Our
proposed RD-Stego model leverages the advantages of semi-supervised cover synthesis
steganography algorithms. In our work, the encoder network comprises a convolution
layer and the residual block. As a result, the generated steganography image has much
lower distortion and closer distribution to the original carrier image. Moreover, our work
can smooth the discontinuity in gradient calculation during training. Such a smoothing
gradient calculation characteristic provides reasonable training stability and conforms to
steganographic basic conditions (BSC) [23,24].

• Sstego = Emb(c
∣∣C, m, kemb) , where Emb(.) denotes a data-embedding method based

on a specific carrier c or a set of carriers C. The sender needs to design a scheme to
construct stego media Sstego with an embedding key kemb.

• m′ = Ext
(
Sstego, kext

)
, where Ext(.) denotes a message extraction operation, which

needs the inputs Sstego and the extraction key kext. The receiver can recover a secret
message m′ by using kext and the message extraction operation.

• Ddistinguishability
(
Ccover, Sstego

)
≤ ε, where Ccover and Sstego represent the cover set and

the stego set, respectively, and ε stands for a quantifiable level of security for indistin-
guishability, the so-called ε-security.

2.2. The Limitations of the Current Steganography Works

At present, the most apparent limitations of GAN-based steganography algorithms
are their low embedding capacity and low robustness against the chosen cover attacks. As
for the embedding capacity, Baluja [6] presented an encoder–decoder network and tried to
increase the amount of information it carried [6], successfully embedding a color image into
another color image of the same size, yet the resulting stego-image may expose confidential
information. Rehman et al. [25] tried to hide a gray-level picture into a color picture of the
same size, but severe color distortion was observed in the resultant stego-image. Zhang
et al. [26] proposed the ISGAN process, which hides a grayscale image into the Y channel
of a color cover image and improves the security of the model through adversarial training
between the encoder–decoder and steganalysis networks.

Zhang et al. [26] inspired us to use another channel to aggregate the information that
needs to be protected. Besides traditional RGB color channels, we use an extra channel for
hiding QR code/text information in our work. In this way, we can use the SteganoGAN [7]
to hide the color, grey-scale, and binary data in a hosted picture and enlarge the information
capacity contained in the stego-image. In doing so, SteganoGAN achieves 4.4 bits-per-
pixel embedding capacity; this is still not good enough. Fu et al. [8] enlarged the payload
of [7] in 2020. Whether it is possible to continue to increase the embedding capacity is the
main target of this work. The lesson learned from [8] tells us that using other channels to
handle non-color information, such as QR-coded messages, seems to be a good choice. In
other words, if the designed RD-Stego can rebuild QR-coded messages perfectly, we will
completely solve the embedding capacity issue.

Deep Steganography [6], proposed by Baluja, faces the problem of chosen cover attacks,
especially when attackers have both the stego and cover images. The attackers can magnify
the difference between the stego and the cover images and easily extract secret-related
information. This shortage comes from the Deep Steganography method inputting both
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the cover and the secret images into its pre-trained model and then connecting them back
into GAN in series. Therefore, an attacker can choose a specific cover image as input and
subtract it from the associated stego-image to find their difference. To deal with this issue,
Tang et al. [27] proposed an adversarial embedding scheme based on CNN-ADV-EMB
architecture to resist the above-mentioned chosen cover attack. Unfortunately, this type
of method is of a security concern. Instead of directly concatenating the cover and the
stego-images, the proposed RD-Stego uses element-wise additions to perform perturbation,
significantly enhancing system security. In 2021, although the method proposed by Lu
et al. [10] can hide multiple secret images, the main weakness of the method is also apparent
in terms of security, which requires a simple pixel-differencing operation for the secret
information to be exposed. On the contrary, our proposed method also significantly
improves security, especially for this problem.

3. The Proposed Approach

This section presents the proposed RD-Stego method in detail from the perspective of
the following three aspects: (1) the network architecture—encoder and decoder framework,
(2) the disentangle efficacy of the designed rate-distortion loss functions, and (3) the
information-theoretic based analyses—cost functions.

3.1. The RD-Stego Network Architecture

Our RD-Stego network incorporates the encoder–decoder framework and the informa-
tion maximization technique [28] to build a semi-supervised cover synthesis steganography
system. The most important part is to emerge the rate-distortion idea of compression theory
into the entire network architecture for enlarging the hiding capability, as shown in Figure 1.
It consists of four networks, including:
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Figure 1. The architecture of the RD-Stego system.

1. An encoder uses a three-channel color cover image, multiple three-channel color
secret images, and even a QR code as inputs to generate a stego-image;

2. A decoder takes the stego-image as the input and reconstructs the secret-related
messages and the QR-coded messages as well;

3. A latent encoder takes the stego latents as the input and quantizes these stego latents
to the nearest integer. Then, the entropy model proceeds to calculate the entropy
between the stego latents and quantized stego latents;

4. A Discriminator uses PatchGAN-D [29] to judge whether the cover and the stego-
images, the secret and the reconstructed secret photos, or the embedded QR-coded
and the reconstructed QR-coded messages are similar.
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As Figure 1 shows, the Encoder of the RD-Stego system consists of two subnetworks.
One is the Feature Extractor (the subnetwork labeled as “1” and symbolized by blue rect-
angular blocks), and the other is the Hiding Network (the subnetwork labeled as “2” and
symbolized by orange rectangular blocks). Feature Extractor is mainly responsible for pro-
cessing input images, including cover images (C) and multiple secret images (s1, s2, . . . , sn).
In practice, dealing with a three-channel color image is more complicated than non-color
information. Since we want RD-Stego to be capable of embedding more generic messages,
the Feature Extractor is designed to be able to handle three-channel color and non-color
images simultaneously. Our Feature Extractor puts the non-color images (e.g., QR-code
or text information) on the blue channel. For processing, the proposed scheme regards a
non-color image as a three-channel color image but pads zero values on the red and green
channels. Next, the Feature Extractor performs elementwise addition vertically on all input
images. It then feeds the results into the Hiding Network, which is in charge of generating the
stego-image (C’), so the entire calculation work of the Encoder can be automatically executed.

Our RD-Stego’s Decoder consists of three subnetworks, including the Feature Extractor
(also labeled as “1” and symbolized by blue rectangular blocks), the Latent Encoder (the
subnetwork labeled as “3” and symbolized by green rectangular blocks), and the Reveal
Network (the subnetwork labeled as “4” and symbolized by red rectangular blocks). On
the one hand, the Feature Extractor extracts the secret image’s features from the stego-
image (C’) and feeds the result into the Reveal Network for subsequent processing of the
reconstructed secret images. On the other hand, in the meanwhile, the Feature Extractor
also generates the Stego Latents and inputs them to the Latent Encoder. Then, the Latent
Encoder is in charge of quantizing the latent codes and calculating the cross-entropy via
the green-colored entropy model.

Our whole model behaves as a minimax game, and the goal is to let the encoder
learn distributions PEn(x) and PDe(x) that match the hidden data distribution Pdata(x).
The proposed network can disentangle the identity-related attributes of the secret or the
QR-coded message from the non-identity-related attributes of the cover. Then, we design
specific rate-distortion loss functions to control the relationship between the visibility of the
cover image and the compressibility of the secret. After that, we analyze the corresponding
physical meaning based on information theory, including (a) the mutual information
between the cover and the stego-images and (b) the mutual information between the
authentic secret and the reconstructed secret images. The detailed specific rate-distortion
loss functions will be explained in Section 3.2.1.

From the labels in Figure 1 above, we correspond these with those in Figure 2 and
show the details about the individual network layers in each component of our proposed
RD-Stego architecture. As outlined in Figure 2, to analyze the entire RD-Stego system from
the perspective of a network structure, the Feature Extractor is used to downsample and
executes the subsequent processing operations for the input three-channel color images.
Conversely, the Hiding Network and the Reveal Network perform the upsampling task
and rebuild the three-channel color images. Therefore, the basic structures of the Hiding
Network and the Reveal Network are the same, but their purposes are different. The
purpose of The Hiding Network is to hide the secret-related features and generate the
stego-image. In contrast, the primary purpose of the Reveal Network is to process the
reconstructed secret images after obtaining the secret-related features. The task of the
Latent Encoder is relatively independent, mainly focusing on calculating the loss associated
with the rate term.
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3.2. The Disentangle Efficacy of the Designed Loss Functions
3.2.1. Rate-Distortion Loss Functions

The training goal is to minimize the expected length of the bitstream as well as the
expected distortion of the reconstructed stego-image and multiple secret images with respect
to their original versions, giving rise to the following rate-distortion optimization problem:

R+ λ ∗ D =

rate︷ ︸︸ ︷
Ex∼Px

[
−log2 pĉ′(〈En(x)〉)

]
+ λ1 ∗

distortion(encoder)︷ ︸︸ ︷
Ex∼Px [d(c, 〈En(x)〉)] + λ2 ∗

distortion(decoder)︷ ︸︸ ︷
Ex∼Px

[
d
(
x,
〈

De
(
c′
)〉)]

(1)

where λ is the Lagrange multiplier determining the desired rate-distortion trade-off, Px is
the unknown distribution of a chosen image x. X is the set of cover images and multiple
secret-related images, so that we can define x ∈ X = {c, s1, s2, . . . , sn}. Let 〈.〉 denote the
rounding to the nearest integer operator (i.e., the quantizer). The stego-image is the output
after encoding the chosen image x, and we can define the corresponding stego-image
as c′ = En(x). Thus, ĉ′ = 〈c′〉 are the quantized latents, pĉ′ is the discrete probability
model associated with ĉ′. x′ is the output after conducting the decoding process, that is,
x′ = De(c′), so x′ represents the combined result of the reconstructed cover image and the
reconstructed secrets. In Equation (1), the rate term stands for the cross-entropy between
the marginal distribution of the latents and the learned entropy model, which will be
minimized when the two distributions are identical. The distortion term may correspond to
a closed-form likelihood ratio when d(c, c′) and d(x, x′) are measured by the mean squared
error (MSE) between their concerning arguments. Under such conditions, the model can be
interpreted as a variational autoencoder (VAE). When optimizing the model using other
perceptual distortion metrics, such as SSIM or MS-SSIM, the distortion terms can simply be
treated as subjective perceptual distance functions to be minimized.

Firstly, to discuss the acquisition of the rate loss function, we calculate the cross-
entropy between c′ and ĉ′, as expressed in Equation (2). The intention is to use the rate
loss function to form a compression ratio control factor—Lc′ ,ĉ′ . This factor controls the
rate at which the cover image can be adequately compressed within a visually acceptable
range. Moreover, when the compression is complete, the remaining bit budget has to leave
enough room to allow for the embedded multiple secret images to coexist. In other words,
these multiple secret images also need to go through a certain degree of compression to fit
in the original capacity constraints.

Lc′ ,ĉ′ = Ex∼Px

[
−log2 pĉ′

(
〈c′〉
)]

, (2)

Secondly, let us discuss the encoder distortion loss function. We optimize the weights
of the encoder network through adversarial training. Thus, we use the L1 smooth loss
function (denoted as |. |1; smooth in Equation (3)) to constrain the distance between the
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cover image (such as c) and the stego-image (such as c′). The encoder’s distortion loss
function can be expressed as:

Lc,c′ = Ec∼PEn

[
1

3×W × H

∣∣∣∣c− En(s1, s2, . . . , sn, c)|1;smooth

]
, (3)

where the smooth L1 loss can be interpreted as a combination of conventional L1 loss and
L2 loss. It behaves as an L1 loss when the absolute value of the argument is high (i.e., larger
than the given threshold α), and it behaves like an L2 loss when the absolute value of the
argument is close to zero. Mathematically, we express it as:

L1;smooth =

{
|x| i f |x| > α

1
|α| x

2 i f |x| ≤ α
(4)

The smooth L1 loss combines the advantages of L1 loss (steady gradients for large
values of x) and L2 loss (less oscillations during updates when x is small).

Finally, let us focus on the distortion loss functions designed for the decoder. The
decoder is in charge of reconstructing the secret-related information. We also use the smooth
L1 loss to measure the similarity between the secret-related images S and the reconstructed
secret-related images S′, where S′ , {s′1, s′2, . . . , s′n}. The decoder’s distortion loss
functions can be expressed as:

Ls1,s′1 = Es1:secret∼pDe [
1

3×W × H
|
(

s1 − De
(
c′ :∈ s′1

)
|1;smooth] (5)

and:
Ls2,s′2 = Es2:qrcode∼pDe [

1
3×W × H

|
(

s2 − De
(
c′ :∈ s′2

)
|1;smooth] (6)

and:
Lsn ,s′n = Esn :secret∼pDe [

1
3×W × H

|
(

sn − De
(
c′ :∈ s′n

)
|1;smooth] (7)

After defining the rate-distortion loss functions of the encoder and the decoder, we
can form the overall adversarial loss function as:

Ladv = Lc′ ,ĉ′ + λcLc,c′ + λs1 Ls1,s′1 + λs2 Ls2,s′2 + . . . + λsn Lsn ,s′n . (8)

We use the following parameter settings, λc = 2, λs1 = λs2 = . . . = λsn = 1, for conducting
all the experiments in this work; we had to consider making the stego-image more visually
similar to the cover image and, at the same time, maintain the same clarity of each secret
image when dealing with multiple hidden secret images. This requirement also makes us
choose the weight of λc to be larger than the weight of λs1 , λs2 , . . . ,λsn , which are the same
weights recommended for each secret image (i.e., λs1 = λs2 = . . . = λsn ). The system will
set the weights according to the number of embedded images. For example, if there are
two secret images to be embedded, the system will set λc = 2, and λs1 = λs2 = 1; or λc = 4,
λs1 = λs2 = 2, which means we keep the ratio between λc: λsi = 2:1, where i is the number
of embedded images. Intuitively, the reconstructed images will be blurred, or the color cast
problem will get serious if the number of embedded payload increases. Empirically we
found that when we set the ratio of λc: λsi to 2:1 or 4:1, our RD-Stego provides acceptable
quality of the reconstructed secret images. How to find the best ratio, of course, needs to be
invested further, and we mark this as one of our future works.

3.2.2. The Overall Loss Function and the Discriminator

We use the PatchGAN-D [29] as our discriminator, denoted as D in the rest of this
writeup. The primary purpose of D is to judge whether the cover and the stego-images, the
secret and the reconstructed secret messages, and the QR-coded and the reconstructed QR-
coded images are similar. Therefore, we design the following closeness classification loss
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functions, Lcls, to be in charge of correcting the discriminator in the proposed Stego-system.
Lcls includes the following sub-classification loss functions:

• Lclsc , −EX∼pEn [log D(En(c, s1, s2, . . . , sn|yc ))]. This loss guarantees D will accu-
rately classify the cover image to the stego-image associated with the label information
yc and correct for the bias of the encoder.

• Lclss1
, −EX∼pDe [log D(De(c′|ys1 ))]. This loss guarantees D will accurately classify

the first secret image to the first reconstructed secret image associated with the first
secret label information ys1 , and correct for the bias of the decoder.

• Lclss2
, −EX∼pDe [log D(De(c′|ys2 ))]. This loss guarantees D will accurately classify

the second secret image to the second reconstructed secret image associated with the
second secret label information ys2 and correct for the bias of the decoder.

• Lclssn
, −EX∼pDe [log D(De(c′|ysn ))]. This loss guarantees D will accurately classify

the nth secret image to the nth reconstructed secret image associated with the nth
secret label information ysn , and correct for the bias of the decoder.

Thus, the overall closeness loss function becomesLcls = Lclsc +Lclss1
+Lclss2

+ · · ·+Lclssn
.

Now, taking the adversarial loss function into account, the total embedding loss function
would be:

L = Ladv + Lcls. (9)

As for the discriminator, the following loss functions are included:

• D_Lclsc , −EX∼pEn [log D(En(c, s1, s2, . . . , sn|yc ))]−EX∼pEn [log D(c
∣∣∣yc)] . This loss

guarantees that D will accurately correct its bias with the aid of the cover image label
information yc.

• D_Lclss1
, −EX∼pDe [log D(De(c′|ys1 ))]−EX∼pEn [ log D(s1

∣∣∣ys1 )] . This loss guarantees
that D will accurately correct its bias with the aid of the secret label information ys1 .

• D_Lclss2
, −EX∼pDe [log D(De(c′|ys2 ))]−EX∼pEn [ log D(s2

∣∣∣ys2)] . This loss guaran-
tees that D will accurately correct its bias with the aid of the second secret image
label information ys2 .

• D_Lclssn
, −EX∼pDe [log D(De(c′|ysn ))]−EX∼pEn [ log D(sn

∣∣∣yn)] . This loss guaran-
tees that D will accurately correct its bias with the aid of the nth secret image label
information ysn .

Therefore, the total discriminator loss can be expressed as:

LD = YcD_Lclsc + Ys1 D_Lclss1
+ Ys2 D_Lclss2

+ · · ·+ Ysn D_Lclssn
(10)

where the settings Yc = Ys1 = Ys2 = · · · = Ysn = 0.5 are used in this writeup.

3.3. The Information-Theoretic Based Analyses—Cost Functions

For stabilizing the trained model, some cost functions are designed to guide the
learning of RD-Stego. We consider both our system’s visual acceptability and recovery
radiality more specifically.

3.3.1. Visual Acceptability

To provide a certain degree of visual acceptability, we use the following minimax game
to regularize the maximal lower bound of the incurred distortion between the reconstructed
cover and the stego-images. Our target is to maximize the acceptable perception range
related to the cover and stego-images. That is:

minEnmaxDVI(D, En) = V(D, En)− λ1 I(c; En(S, c)). (11)

Its primary purpose is to ensure that the stego-image generated by the RD-Stego sys-
tem can visually approximate the cover image under the control of the visual acceptability
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cost function. It can also prevent secret-related information from being attacked by sorting
out the latent space. The visual acceptability can avoid attackers from making the chosen
adaptive cover attack to cause secret-related information omissions, as shown in Figure 3 below.
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Figure 3. In the latent space, an illustration of the visual similarity between the stego-image and
the cover image. This visual closeness is achieved under the constraint of the proposed visual
acceptability cost function, which prevents secret-related information from being attacked by sorting
out the latent space.

As sketched in Figure 3, the inputs to the RD-Stego Encoder are the original cover
image and the multiple secret images. After completing the encoding, the output will be a
latent space representation of the stego-image. This latent space representation contains
latent codes associated with the secret-related image features, the cover image features,
and noises. Through the designated visual acceptability cost function, the proposed RD-
Stego ensures that the latent codes corresponding to essential features of the secret-related
information are hard to distinguish from one another and keep the stego-image visually
similar to the stego-image simultaneously. When RD-Stego faces the chosen cover image
attack, attackers simultaneously know the stego-image c’ and the original cover image c.
Let us denote the result of multiplying the magnitudes of the difference between c’ and c
by twenty as “Residual × 20”. As evident by the snapshots of Residual × 20, as shown in
Figure 3, the RD-Stego leaks nearly no secret-related information.

The relation between the cover image c and the set of secret-related images
S = {s1, s2, . . . , sn} can also be represented as En(S, c) = c′ after processing through
the encoder’s function and then producing a stego-image. Here, the stego-image is denoted
as c′.

In the following, we regularize the objective function of the encoder by maximizing
the mutual information between the cover and the stego-images to derive a lower bound
for the tolerable visual difference between the cover and the stego-images. Let c represent
the latent codes of the cover image, and S = {s1, s2, . . . , sn} be the set of embedded secrets.
We treat S as a set of random variables in the following discussions. From the information-
theoretic viewpoint, we can use the mutual information (MI), I (X; Y), between the two
random variables, X and Y, to measure the “amount of information” learned for X from
knowing Y, and vice versa. Mathematically, we can represent the MI between X and Y as:

I(X; Y) = H(X)− H(X|Y) = H(Y)− H(Y|X). (12)

Therefore, the MI (or the distribution distance) between the cover and the stego-images
can be expressed as I (c; c′) = I(c; En(S, c)). We can derive the maximal value of I (c; c′)
because a deterministic and invertible encoding function, En(.), is used to relate c and
c′. This interpretation makes it easy to formulate a cost function for constraining the
visual difference between c and c′ within a specific range, which is one of the essential
requirements in steganography. From the machine learning viewpoint, the above expression
stands for the information contained in the latent code of c will not be lost too much in the
generation process of the encoder. According to Equation (12), I (c; c′) can be expressed as:

I
(
c; c′
)
= I(c; En(S, c)) = H(c)− H(c|En(S, c)) (13)
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Although, as mentioned above, the encoding function En(.), which relates c to c′ is
deterministic and invertible. However, it is hard to directly find the maximal value of
Equation (13) because of lacking knowledge about the posterior probability p(c|En(S, c)).
We approach this difficulty in computing the mutual information of the encoder by using a
variational approximation as follows. Let p(x) denote the distribution of the data x, and
we need to bound H(c|En(S, c)) suitably. The positive characteristic of Kullback–Leibler
(KL) divergence tells us that:

∑c p(c|En(S, c))log p(c|En(S, c))− p(c|En(S, c))log q(c|En(S, c)) ≥ 0 (14)

where q(c|En(S, c)) is an arbitrary obtainable variational distribution. Therefore,

I(c; En(S, c)) = H(c)− H(c|En(S, c))
≥ H(c) + 〈log q(c|En(S, c))〉p(c,En(S,c))
, Ĩ(c; En(S, c))

(15)

where H(c) = −〈log p(c)〉p(c), H(c|En(S, c)) = −〈log p(c|En(S, c))〉p(c,En(S,c)), and

Ĩ(c; En(S, c)) are approximations of I(c; En(S, c)) based on q(c|En(S, c)) . In other words,
the meaning of KL divergence tells us that the relation indicated in Equation (15) is equiv-
alent to depicting a moment matching approximation of p(c|En(S, c)) by q(c|En(S, c)) .
Let’s view En(S, c) as an information channel with input c and output c’, the probability of
constructing c′ given c can be expressed as:

log p (c′|c) = log
∫

En(S,c) p(c′|En(S, c))p(En(S, c)|c)
≥ 〈log p (c′|En(S, c)) 〉p(En(S,c)|c)

(16)

After averaging Equation (16) over all possible c and combining it with the approxi-
mation result obtained in Equation (15), we have:

∑c p(c) log p(c′|c) ≥ ∑c 〈log p(c′|En(S, c))〉p(c,En(S,c))
≈ 〈log q (c|En(S, c)) 〉p(c,En(S,c))

(17)

By exchanging the terms on the different sides of Equation (15), we have:

H(c|En(S, c)) ≥ H(c)− Ĩ(c; En(S, c)). (18)

Equation (18) can be used to derive the lower bound of the prediction error of c by
giving En(S, c) measured based on q(c|En(S, c)) . Now, for a fixed p(c), finding the maxi-
mization of Ĩ(c; En(S, c)) measured based on q(c

∣∣∣En(S, c)) is equivalent to computing the
desired lower bound.

3.3.2. Recovery Fidelity

As for the recovery fidelity, we also use the minimax game to maximize the lower
bound of the incurred distortion between the embedded secret and the reconstructed secret
images. Our target is to maximize the retrieval fidelity of the embedded messages. Thus,
we can write the information-theoretical cost function for designing a practical decoder of
our RD-Stego system as:

minDemaxDVI(D, De) = V(D, De)− λ2 I
(
S; De

(
c′
))

= V(D, De)− λ2 I
(
S; S′

)
. (19)

The primary goal of adopting the recovery fidelity cost function is to maximally restore
the original secret message from the contaminated stego-image and erase the incurred
noise as much as possible through the operation of the decoder. Figure 4 conceptualizes
the effectiveness of the proposed fidelity cost function.
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Suppose we view De(c′) as another information processing channel and let S′

be its output. In that case, the MI between S and S′, I(S; S′) provides an effective tool
for measuring the reconstruction quality of the proposed stego system. This is because
stego-image c′ contains the information related to the embedded secret, which is helpful
to give the decoder an appropriate guide. That is, we can use the information De(c′) to
reconstruct the secret back into S′. Based on the symmetric property of MI, we can obtain
the following equation:

I
(
S; S′

)
= I
(
S; De

(
c′
))

= H(S)− H
(
S
∣∣De

(
c′
))

. (20)

Similar to Section 3.3.1, we want to bound H(S|De(c′)), and once again, the positivity
property of the Kullback–Leibler divergence gives us:

∑
S

p(S|De
(
c′
)
)log p(S|De

(
c′
)
)− p(S|De

(
c′
)
)log q(S|De

(
c′
)
) ≥ 0. (21)

Therefore,
I(S; De(c′)) = H(S)− H(S|De(c′))
≥ H(S) + 〈log q(S|De(c′))〉p(S,De(c′))

, Ĩ(S; De(c′)).
(22)

where q(S|De(c′)) is another variational distribution, obtainable at the decoder site. Since
our derivation is also based on KL divergence, the relation indicated in Equation (22)
is again equivalent to a moment matching approximation of p(S|De(c′)) by q(S|De(c′)).
Hence, when we fixed p(S), doing the maximization of Ĩ(S; De(c′)) is the same as maxi-
mizing the lower bound on the probability of correctly reconstructing the secret-related
images. It means that the lower bound becomes tight as Ĩ(S; De(c′)) = H(S) approaches
the actual posterior distribution, and the maximal MI is achieved.

The associated experimental results and related discussions about the effects of the
cost functions mentioned above will be given in Section 5.

4. Experimental Materials and the Related Benchmarking Methods

To verify our claims and justify the applicability of RD-Stego, we conducted a se-
ries of experiments and compared the outcomes with some selected benchmarks. This
section summarizes the experimental-related materials and the characteristics of selected
benchmarking works.

4.1. Experimental Environments and Testing Datasets

Table 2 summarizes the characteristics of our experimental environments, including
the hardware specifications and software environment settings. We use the following
datasets—FaceScrub [14], CASIA-WebFace [15], and CelebA-HQ/CelebA [16] to train
RD-Stego and use ImageNet [17] to investigate cross-domain performance. FaceScrub
comprises 106,863 face images of 530 male and female celebrities, including 200 images
per person. As such, it is one of the largest publicly available face databases. Due to its
having about 200 shots per person, RD-Stego can learn the face attributes more efficiently
and be effectively applied to other datasets. Besides using FaceScrub to train our model,
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we use CASIA-WebFace and CelebA-HQ/CelebA to do the validation tasks. CASIA-
WebFace has over 453,453 face images of 10,575 people, while CelebA-HQ/CelebA has over
30,000 face images of 10,177 people. The ImageNet dataset contains 14,197,122 annotated
images, 1,034,908 images with bounding box annotations, 1000 synsets with SIFT features,
and 1.2 million images with SIFT features from the WordNet hierarchy. ImageNet is the
most well-known and widely used benchmark for image classification and object detection.

Table 2. The hardware specifications and the software environments we used to conduct our experiments.

CPU Model CPU
Memory Frequency # of CPU Cores GPU

Model # of GPU

Intel(R) Xeon(R)
Gold 6128 CPU 192 GB 3.4 GHz 24 Tesla V100 2

Operation
System Docker # of GPUs

in Docker
GPU Memory

in Docker
CUDA
Version Language

Ubuntu 20.04 20.10.13 1 12GB 11.4 Python 3.7.10
Pytorch 1.9.0

4.2. Evaluation Metrics

We dedicate our experiments to the following perceptual-based image quality metrics:
the structural-similarity index measure (SSIM) and peak signal-to-noise ratio (PSNR). SSIM
aims to measure the quality of steganographic images in brightness, contrast, and structure.
The higher SSIM value means higher similarity between the cover and the stego-images.
PSNR evaluates the visual quality of images by calculating the error between the two. The
larger the PSNR values, the smaller the distortion between the compared images.

On the other hand, to justify that the behavior of RD-Stego is close to those of the
human senses, we also use PieAPP [30], whose primary function is to simulate human
perception for quality assessment. Therefore, a lower PieAPP error value is preferred. We
also use an existed tool, StegExpose [31], to examine RD-Stego’s anti-steganalysis ability.
StegExpose is specialized in detecting LSB steganography in lossless compressed images,
such as PNG and BMP processed images.

4.3. The Related Benchmarking Methods

Before analyzing the experimental results, we will name several critical NN-based
steganography studies, including Deep Steganography [6], Duan et al. [12], SteganoGAN [7],
HIGAN [8], and ISN [10]. Noticeably, the methods mentioned above (besides ISN), and the
works presented in [6–8,12] can only hide a single secret image or text due to the limitation
of the restricted model. This study also includes ISN [10], which can conceal multiple
private messages, into our performance comparison for completeness. Finally, we will
present the detailed analyses of our Experimental Results in the next section.

5. Experimental Results and Analysis

To demonstrate the effectiveness of the proposed approach, we conduct both quantita-
tive and qualitative experiments as follows. First, we compare the quantity of RD-Stego
with other works. Then, we use the pre-described metrics to evaluate the qualities of the
steganographic and the reconstructed images generated by the RD-Stego system. Table 3
reports the subjective (SSIM) and objective (PSNR) quality measurements of the proposed
and benchmarked approaches. From Table 3, our RD-Stego produces better qualities in both
stego and reconstructed secret images than those produced by existing comparable meth-
ods. In the hiding of one image scenario, the performance of the stego-images generated by
RD-Stego is better than in previous works regarding SSIM and PSNR values. Although
the quality of the reconstructed secret images is not as good as that of Duan et al. [12], the
quality is still acceptable and very close to that in [12]. From such experimental results, we
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can speculate that since the advantage of [12] is to use U-Net to tackle the limited payload
capacity, the SSIM and the PSNR values of the reconstructed secret are better. Compared
to [12], the advantage of RD-Stego is its ability to increase the payload capacity. In hiding
multiple images (e.g., hiding two images), RD-Stego performs better than ISN [10] on both
stego-images and reconstructed secret images. This positive result shows that the proposed
stego system does make good use of rate-distortion theory for processing multiple hidden
messages and ensuring the visibility of the cover and the compressibility of the secret.
Therefore, we think RD-Stego could provide a higher embedding capacity than existing
approaches. The possible reason is that the multiple secret images and QR-coded features
are amplified firstly in the encoding process, and then compression is conducted to increase
the amount of transmittable information after doing an elementwise addition and the
rate-distortion calculation. Therefore, the embedding capacity that our stego system can
handle is more significant than ISN [10]. Since there are three color channels with an 8-bit
bandwidth for each, in our experiments, RD-Stego’s embedding payload reaches 192+ bpp.
And the limitation of RD-Setgo relies on the physical constraints of the memory space of
the GPU accelerator.

Table 3. This table compares the qualities of the steganographic and reconstructed secret images for
the proposed and the benchmarked stego systems in SSIM and PSNR.

Method Hiding
Images

Stego
(SSIM)

Stego
(PSNR)

Re-Constructed
Secret (SSIM)

Re-Constructed
Secret PNSR)

DeepStegano. [6] 1 0.92 28.41 0.92 28.06

Duan [12] 1 0.95 36.71 0.96 36.97

HIGAN [8] 1 0.94 30.95 0.94 29.67

Ours 1 0.965 36.8 0.94 36.81

ISN [10] 2 0.94 36.2 0.92 35.2

Ours 2 0.96 36.58 0.94 35.5

We now investigate the quality of the generated images (let us take hiding one ordinally
image and one QR-coded image as an example). Figure 5 visually presents the snapshots
of images generated by our RD-Stego system, including steganographic images and the
recovered secret-related information. The quality of those pictures indicates that the
proposed method works well in visual fidelity preservation. Suppose attackers have both
the cover and the stego-images and launch a chosen cover image attack. We multiply the
magnitudes of the difference image (obtained by subtracting the stego-image from the
cover image) by five (denoted as “Residual× 5” in the following discussions) and show the
results in the rightmost three columns of Figure 6. From the snapshots of “Residual × 5”, it
is evident that there is nearly no secret-related information leakage during the processes of
the proposed stego system. This positive observation implies that the stego formed by the
RD-Stego model provides no signs to attackers for detecting the secret-related information.
In other words, our method offers a certain degree of robustness against the chosen cover
image attack.

In the tests of “Residual × 10” and “Residual × 20”, depicted in Figure 7, we compare
the visual appearances of the related snapshots obtained using the RD-Stego with those of
Deep Steganography. The magnified residues evidence that the proposed system provides
better security than Deep Steganography [6] since we can detect much less secret-related
information from them. Compared to Deep Steganography, the advantages of RD-Stego
come from its increased payload capacity and resistance to the chosen cover attack.

In the next part, we conduct cross-domain verification experiments based on the
popular dataset, ImageNet [17]. Notice that the usage of the RD-Stego system is not limited
to human faces. According to the snapshots presented in Figure 8, there is nearly no color
cast in between the cover vs. stego-images and the secret vs. reconstructed messages. In
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other words, there is almost no high-frequency information loss in the proposed system.
Moreover, our experiments are carried out simultaneously with no cover and secret images
appearing in the training dataset.
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Figure 5. The visual-fidelity investigation of the proposed RD-Stego system: the first row shows
the snapshots of the cover images, the second depicts that of the hidden secret photos, the third
row presents the snapshots of the hidden QR-coded images, and the fourth is that of the generated
stego-images, with the fifth giving the snapshots of the reconstructed secret images and the last row
showing the snapshots of the reconstructed QR-coded images.
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Figure 6. The visual quality investigation of the “Residual × 5”. The leftmost (“Original”) part
presents the snapshots of the original cover images, the hidden secret photos, and QR-coded pictures.
The Center (“Reconstructed”) part shows the snapshots of the cover images embedded with the
secret photos and the QR-coded photos. The proposed RD-Stego system generates the reconstructed
secret images and QR-coded images. The rightmost part depicts the magnified residuals obtained
from the difference between the cover and the hidden messages. These experimental results evidence
that there is nearly no secret-related information leakage during the processes of the proposed
stego system.
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Figure 7. Visual quality investigations for testing cases of “Residual × 10” and “Residual × 20”
were conducted based on RD-Stego and Deep Steganography. The top two rows present the results
generated using the RD-Stego system, while the bottom two rows depict that of Deep Steganography.
We can find some secret-related information (such as the glass-wearing) in the residual images
produced by Deep Steganography.
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Figure 8. The cross-domain performance testing. Using ImageNet as the testing target, we find
only a negligible color cast between the “cover vs. stego” images and the “embedded secret vs.
reconstructed secret” messages. In other words, there is almost no high-frequency information loss in
the proposed RD-Stego system.

The following experiment shows one of the strengths of the RD-Stego system—hiding
multiple secret images. Benefiting from rate-distortion theory, RD-Stego allows us to hide
up to eight color-secret pictures. This limitation comes from the constraint on the simulation
platform’s computing resources and the tolerable degree of visual degradation. To justify
this claim, we conducted an extra experiment concerning the relation between the RD-
Stego’s time spent and GPU memory consumption. The corresponding experimental results
are presented in Appendix A. As can be seen from Figure 9, the RD-Stego can handle high-
payload secret-related information. Still, the trade-off status is that when a higher amount
of data is hidden, the compression rate gets higher, and the larger the high-frequency part
of the information that is lost, the worse the color cast problem becomes.
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We also compare the proposed RD-Stego with the ISN [10], which can hide multiple
color images. From Figure 10, we see that ISN can hide multiple secret images very well;
however, there is an obvious problem of hidden information leakage. This shortage can
be observed by examining the case of hiding four images. The bottom part of Figure 10b
shows the original cover images, the stego-images generated by ISN, and the corresponding
magnified error images. From the snapshots of the error images, evident information-
leakage traces can be found, especially apparent in the ‘wearing glasses’ image (one of the
embedded secret images). The above-mentioned information-leakage phenomena can be
found in nearly every magnified error image produced by ISN (cf. the bottommost row of
Figure 10). Compared with RD-Stego, which can successfully avoid the chosen cover attack,
there is no such problem (cf. the left part of Figure 10b). Thus, compared with ISN, the
advantages of RD-Stego are its ability to increase the payload capacity and the resistance to
the chosen cover attack.
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Besides the above information leakage issue, we now empirically analyze the per-
formance drop of RD-Stego caused by the increasing number of hidden images, where
ISN is again chosen as our benchmark. Figure 11 shows the PSNR performance drops
associated with the stego-images and the reconstructed secret (Reconstructed) images by
hiding two, three, four, and five secret images generated by RD-Stego and ISN, respectively.
Figure 11 shows, indeed, that there are PSNR drops for all tested cases when the number
of embedded images increases. Notably, the INS’s PSNR drop in “Reconstructed” is more
severe than in RD-Stego because of INS’s information leakage issue, as mentioned above.
Moreover, the stego-images’ PSNR performances for both RD-Stego and ISN dropped as
the number of embedded images increased. By checking the first and the third chunks
of Figure 11, we found that the slope of the PSNR-dropping curve associated with RD-
Stego is more even than that of ISN. This fact implies that as the number of embedded
secret images grows continuously, ISN’s PSNR drop will worsen more severely. In other
words, the higher degree of limitation in RD-Stego’s distortion comes from the effect of
the visual acceptability-related cost function. Similarly, RD-Stego’s better performance in
reconstructed secret images, we think, is due to the regulation induced by the recovery
fidelity-related cost function, which contributes a lot to this issue.
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Regarding time complexity, the clever incorporation of the rate-distortion loss function
into the design of RD-Stego’s architecture benefits its realization efficiency. With the aid of
the loss function mentioned above, we can now use stacks vertically (i.e., we can perform
elementwise additions in parallel) to train the encoder, even if multiple secret images are to
be embedded simultaneously. This computational structure is very different from that of
other benchmarked works. Let us take the state-of-the-art ISN [10] as an example, in which
the secret images are concatenated horizontally. This series-natured computing structure
will increase the ISN encoder’s computation during the training when the number of
hidden images increases. Figure 12 shows the timing performance comparison between
the state-of-the-art ISN and the proposed RD-Stego when embedding different numbers of
secret images.

As shown in Figure 12, when processing three to six hidden secret images, RD-Stego
outperforms ISN in computing time. Moreover, even if RD-Stego is used to hide seven or
eight secret images, the required computing time is much less than that of ISN for hiding
only six secret images. (We found from our implementation that ISN cannot handle the task
of hiding more than six secret images.) To dive into the comparison in a bit more detail,
in encoding, after the Feature Extractor performs elementwise additions, the RD-Stego’s
Hiding Network will not increase processing time even if a new secret image is added.
Similarly, in decoding, the RD-Stego’s Reveal Network will not increase training time when
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extra hidden images are considered. Therefore, RD-Stego makes hiding multiple secret
images easier and needs shorter encoding, decoding, and overall training times than the
state-of-the-art ISN.
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We also examine the SSIM and PSNR performances of RD-Stego on multiple datasets,
as presented in Table 4. Table 4 indicates that RD-Stego performs well on the Celeba and the
FaceScrub classes of the ImageNet datasets. Of course, as shown in the last two (ImageNet)
columns, performance degradation in both SSIM and PSNR can be expected due to more
complicated and variational images without relevant classifications.

Table 4. The SSIM and PSNR performances of RD-Stego on multiple datasets.

Dataset CelebA FaceScrub ImageNet

PSNR/SSIM PSNR/SSIM PSNR/SSIM

Stego Secret Stego Secret Stego Secret

2 Secret 36.58/0.960 35.50/0.931 36.27/0.952 34.86/0.925 34.80/0.932 32.87/0.917

3 Secret 35.64/0.951 34.19/0.925 35.04/0.941 34.05/0.921 34.30/0.923 31.65/0.907

4 Secret 34.86/0.939 33.905/0.913 34.25/0.923 33.75/0.911 33.98/0.914 30.52/0.898

5 Secret 34.76/0.921 33.176/0.906 34.1/0.916 32.15/0.905 33.39/0.901 29.92/0.891

6 Secret 34.5/0.909 31.905/0.901 33.92/0.902 31.02/0.891 32.18/0.896 28.87/0.885

In the following, two useful and well-developed tools, PieAPP and StegExpose, are
applied to justify RD-Stego’s applicability further. PieAPP [30] is a learning-based percep-
tual image-error assessment tool. We use PieAPP to assess the perceptual errors generated
in each epoch during RD-Stego’s training upon different datasets. Figure 13 shows that the
error value associated with PieAPP decreases steadily along with epoch evolution. Specifi-
cally, all tested cases in CelebA and FaceScrub show the same error evolution trend: the
more the secret images are hidden, the closer the error values approach a fixed value of 0.5.
This fact indicates that the designated visual acceptability-related cost function is helpful
for the convergence of the training process. In contrast, in the ImageNet dataset, the error
value is slightly more prominent when the number of hidden images increases; fortunately,
the corresponding visual effect is still acceptable for steganographic applications.

We also utilize PieAPP to now analyze the error value of different datasets. For
example, according to Table 5, the PieAPP error value of the stego-image generated by the
RD-Stego system is outstanding. Relatively, although the error value of the reconstructed
secret image is higher than that of the stego-image, its performance is also quite good due
to the impact of the recovery fidelity cost function.
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Figure 13. From left to right, the training statuses generated via the application of the perceptual
image-error assessment tool PieAPP [30] to Celeba, Facescrub, and ImageNet datasets, respectively.

Table 5. Analyzed error values for PieAPP on different datasets.

Dataset CelebA FaceScrub ImageNet

PieAPP PieAPP PieAPP

Stego Secret Stego Secret Stego Secret

2 Secret 0.110 0.396 0.133 0.385 0.262 0.447

3 Secret 0.131 0.329 0.152 0.392 0.265 0.597

4 Secret 0.169 0.387 0.157 0.450 0.230 0.618

5 Secret 0.163 0.419 0.162 0.475 0.322 0.621

6 Secret 0.215 0.481 0.138 0.562 0.421 0.751

Anti-steganalysis ability is an essential characteristic of a good stego system. In
response to this challenge, we use an existing tool, StegExpose [31], to examine the RD-
Stego’s anti-steganalysis ability. StegExpose is specialized in detecting LSB (least significant
bit) steganography in lossless images, such as PNG and BMP. A best-performed stego
system should report a detection value of 0.5 upon checking via effective steganalysis
tools. This fact means that the tested stego-images can successfully survive being checked
through a steganalysis tool, such as the StegExpose. Figure 14 depicts the associated receiver
operating characteristic (ROC)-curve of our RD-Stego system. We note that StegExpose is
more effective than random guessing in steganalysis, with an area under the ROC curve of
0.49 (very nearly 0.5), even for up to 32-bit payloads. Our method performs better than
SteganoGAN (its area under the ROC curve is 0.6) and Baljua’s Deep Steganography (its
area under the ROC curve is 0.44). In conclusion, RD-Stego can successfully evade standard
steganalysis tools and meet the minimum viable steganography algorithm requirements.
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Finally, we also conducted the following experiments to justify the effectiveness of
the proposed MI-based cost functions. As shown in Figure 15, the encoder’s lower bound
Ĩ(c; En(S, c)) quickly reaches its theoretical maximum H(c) ≈ 2.5 bits. This phenomenon
means the proposed method can better approach the desired maximal mutual information
between the cover and the stego-images than a standard GAN model. Also, this observation
demonstrates that our RD-Stego uses latent codes better than a normal GAN. The decoder’s
lower bound Ĩ(S; De(c′)) = H(S) quickly reaches the theoretical maximum H(S) ≈ 6 bits.
The same statements also hold for the case between the embedding and the reconstructed
secret message.
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6. Conclusions and Future Work

This work proposes a novel rate-distortion-based large-capacity secure semi-supervised
cover synthesis steganographic system. To emphasize its foundational origin from Shan-
non’s information theory, we denote it as the Rate-distortion-based Stego (RD-Stego) system.
Our RD-Stego can effectively hide multiple three-channel color images and QR-coded im-
ages simultaneously. It can achieve an embedding capacity up to 192 bpp, which is higher
than that of existing competing methods. Meanwhile, the proposed stego system provides
higher visual fidelity in-between both the cover vs. stego-images and the embedded vs.
the reconstructed messages. Furthermore, according to our experiments, the RD-Stego
model can resist chosen cover attacks, even if an attacker simultaneously possesses both
the stego and the cover images. The superior performances of the proposed work come
from newly proposed MI-based cost functions and the rate-distortion theory. Discussions
about the mathematical derivation and the physical meaning explanation are also provided
for enunciating our design insights. Moreover, our claimed system advantages have been
justified by experiments with publicly available datasets.

The proposed RD-Stego is designed and implemented based on rate-distortion the-
ory, which is the leading scientific contribution of this write-up. As a result, RD-Stego
dramatically improves the payload capacity in steganography and avoids doubts about the
chosen cover attack based on network architecture. Thus, the proposed stego system has
guaranteed security. In addition, our current design focuses on stably enlarging the payload
capacity with the aid of rate-distortion-based loss functions. Nevertheless, for an ideal se-
cure steganographic system to exist, a certain amount of new information theory-based loss
functions should be derived for RD-Stego to face the challenges of various attacks besides
the chosen cover one. For example, we should expand the system’s robustness to resist
cut-and-paste, compression, noise-adding, and occlusion attacks on the stego-images in the
future. In response to this valuable suggestion, we present some preliminary experiments
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about the performances of RD-Stego against some typical attacks in Appendix B. Finally,
increasing RD-Stego’s ability to withstand more complicated steganalysis than the LSB
attack is of high interest.
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and J.-L.W.; Methodology, Y.-L.P.; Project administration, J.-L.W.; Resources, J.-L.W.; Software, Y.-L.P.;
Supervision, J.-L.W.; Writing—original draft, Y.-L.P.; Writing—review & editing, J.-L.W. All authors
have read and agreed to the published version of the manuscript.
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Appendix A. The Computing Power Limitation of the Proposed RD-Stego

The proposed RD-Stego benefits from rate-distortion theory, allowing us to hide eight
color-secret images. In this appendix, we explore the computing (training) time and the
GPU memory consumption required by RD-Stego for embedding five, six, seven, and
eight secret images. The GPU model used in this experiment is Tesla V100 with 12 GB
GPU memory. Figure A1 shows that the GPU memory usage increases by nearly 2000 MiB
(2 GiB) from the hiding of five to six secret images. The same situation follows, where
we have to consume almost 2000 MiB (2 GiB) extra GPU memory if the number of secret
images increases from six to seven. When the number of hidden images reaches eight, the
GPU Memory-usage measured by the Nvidia-smi tool is as high as 12,039 MiB (12 GiB),
which is almost the physical limitation of the Tesla V100 accelerator. Intuitively, we can
deduce that the proposed RD-Stego is capable of hiding more than nine secret images if we
run the system on a GPU accelerator with a larger memory capacity. However, as noted
earlier, when the number of hidden payloads increases, the compression rate increases,
and more high-frequency information will be lost and the color cast problem worsens.
Thus, considering the trade-off mentioned earlier, we choose eight as our best number for
embedding secret images. Moreover, as shown in Figure A1, if the number of embedded
images is increased by 1, the computation time will increase by about 280 min. Thus, the
total computation time is as high as 1837 min (approximately 30.6 h) when we embed eight
secret images.
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Appendix B. The Performances of RD-Stego under Some Preliminary Attacks

a. Gaussian Noise Attack

When the stego-image is under Gaussian noise attack (assume mean is zero and
variance σ is 0.01), as shown in Figure A2, RD-Stego will reconstruct the embedded facial
image and the readable QR-code image successfully. Intuitively, we deduce that the higher
the number of hidden secret images, the harder the RD-Stego is to resist the Gaussian attack.
Of course, it is necessary to design new loss functions for RD-Stego to defend against more
complicated and destructive attacks.
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b. JPEG Compression Attack

In this experiment, we take the compression attack as an example to examine the
responses of RD-Stego. Figures A3 and A4 illustrate the experimental results. We assume
the stego-image is under JPEG-compression attack. We use the quality factors 100 and 95 to
test the proposed RD-Stego system.

Figures A3 and A4 show that when the stego-image is JPEG compressed, the RD-Stego
system can handle only limited payload embedding. This fact justifies again that new
information theory-based loss functions are necessary and worthy of development if our
design target is to enhance the RD-Stego’s robustness against compression attacks.
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