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Abstract: With the advent of single-cell RNA-sequencing (scRNA-seq), it is possible to measure
the expression dynamics of genes at the single-cell level. Through scRNA-seq, a huge amount of
expression data for several thousand(s) of genes over million(s) of cells are generated in a single
experiment. Differential expression analysis is the primary downstream analysis of such data to
identify gene markers for cell type detection and also provide inputs to other secondary analyses.
Many statistical approaches for differential expression analysis have been reported in the literature.
Therefore, we critically discuss the underlying statistical principles of the approaches and distinctly
divide them into six major classes, i.e., generalized linear, generalized additive, Hurdle, mixture
models, two-class parametric, and non-parametric approaches. We also succinctly discuss the
limitations that are specific to each class of approaches, and how they are addressed by other
subsequent classes of approach. A number of challenges are identified in this study that must be
addressed to develop the next class of innovative approaches. Furthermore, we also emphasize
the methodological challenges involved in differential expression analysis of scRNA-seq data that
researchers must address to draw maximum benefit from this recent single-cell technology. This
study will serve as a guide to genome researchers and experimental biologists to objectively select
options for their analysis.

Keywords: scRNA-seq; differential expression analysis; classification; statistical approaches; challenges

1. Background

High-throughput single-cell RNA-sequencing (scRNA-seq) has emerged as a promis-
ing technology to explore the dynamics of gene expression at the single-cell level. It has
become extremely popular for answering the key questions of developmental biology,
including cellular heterogeneity study [1], the discovery of novel cell types [2], and cell
trajectory analysis [3], etc. To date, many single-cell sequencing protocols have been de-
veloped, of which two are very popular: (i) unique molecular identifier (UMI) tag-based
protocols such as Drop-seq [4] and 10x Genomics Chromium [5]; and, (ii) full length,
non-UMI-based protocols, e.g., Smart-seq2 and Fluidigm C1 [6,7]. UMI-based protocols
sequence only the 5-prime or 3-prime end of the mRNA molecule compared with non-UMI
protocols [8]. The former has lesser amplification bias (i.e., transcript isoforms within the
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same gene) compared with the latter [9]. Irrespective of the sequencing protocols, scRNA-
seq data have some peculiar features including high-level noises, excess overdispersion,
low library sizes, sparsity, and a higher proportion of zeros (i.e., due to the lower capture of
transcriptomic material and other sources of variation), etc., [10]. Through these single-cell
protocols, a huge amount of gene expression data (over thousand(s) to millions of cells) are
generated in each experiment and deposited in public domain databases. Such an unprece-
dented event requires novel and advanced statistical approaches and bioinformatics tools
to extract relevant biological knowledge.

Differential expression analysis (DEA) is the primary downstream analysis performed
on scRNA-seq data [11–13]. The DEA is useful for the detection of biomarkers for novel
cell types or gene signatures for cellular heterogeneity, and also provides inputs for other
secondary analyses including gene set or pathway, and network analysis. The initial prac-
tice of DEA in scRNA-seq involved borrowing methods from bulk RNA-seq, which usually
did not consider the special features of the scRNA-seq data [10,14]. Hence, specialized
approaches have been reported in the literature for DEA of scRNA-seq data. Software(s)/R
packages were developed based on these statistical approaches. Each approach has its
own benefits and drawbacks, i.e., DEA approaches have distinct features and disparate
performances. Several computational experiments have been conducted to establish the
same, as reported in the literature [10,11,14–18]. Excellent review(s) of the computational
comparative studies can be found in [10,16]. However, the major chunk of the assessed ap-
proaches was imported from the bulk RNA-seq. For instance, Soneson and Robinson (2019)
and Das et al. (2021) considered ~50% approaches from the bulk RNA-seq to assess the
DEA approaches’ performance on scRNA-seq datasets [10,16]. There are limited studies
available in the literature which mainly focuses on critically reviewing DEA approaches
exclusively designed for single-cell studies.

Therefore, in this review, we aim to present: (i) state-of-the-art methods and tools
available for DEA of scRNA-seq data along with their classification based on input data,
fitted statistical models, and test statistic(s); (ii) discuss the unique features and limitations
of each class of approaches; and (iii) describe the key challenges yet to be addressed in
the DEA of the scRNA-seq data. This study will serve as a catalog and provide guidelines
to genome researchers and experimental biologists for objectively choosing proper DEA
approaches, based on several factors.

2. Current Statistical Approaches

The term “Differential Expression” has been extensively used in gene expression
studies including microarrays [19], RNA-seq [20], and scRNA-seq [16]. The basic difference
of DEA for scRNA-seq, compared with other studies, is that it is used to detect bio-markers
across the cell types, while in other studies it is used to find differential genes across the
case vs. control conditions [21,22]. The operational framework of the DEA in scRNA-seq
study is shown in Figure 1. The operational procedure is mostly common to single-cell
studies (Figure 1). It is beyond the scope of this article to discuss the large number of
existing analytical approaches covered by the term ‘Differential Expression Analysis’ in
gene expression studies. Therefore, this review only focuses on statistical approaches that
were exclusively developed for single-cell expression studies, rather than on methods that
perform DEA on any sequencing data.
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Figure 1. Operational framework of differential expression analysis of scRNA-seq data. Various 
steps in single-cell studies are shown. Pre-processing and various steps of DE analysis are also 
shown. Potential use and interpretation of obtained results are presented. 

The existing approaches and tools for the DEA of scRNA-seq data and their availa-
bility are listed in Tables 1 and S3. Table 1 also presents a comparative overview of the 
approaches in terms of different factors including statistical models, input, test statistic(s), 
and runtime, etc. We also classified these existing approaches and tools based on several 
factors including data requirement and background models, etc., as shown in Figure 2. 
For instance, the available approaches can be grouped based on the input data require-
ment, i.e., (i) group of approaches, which requires expression data as well as external 
spike-in data; (ii) other group of approaches, which only requires expression data (Figure 
2). Further, the former category of tools is computationally expensive and more accurate 
compared with the latter [23], due to the implementation of efficient statistical models 
and spike-ins data requirement. The use of RNA spike-ins in the approaches tackles the 
issue of technical variability due to inefficient transcriptomes capture in single-cells [24–
28]. In other words, the RNA spike-ins are RNA transcripts (with known sequences and 
quantity) that are applied to calibrate the measurements of RNA hybridization assays, 
such that scRNA-Seq and UMIs can theoretically enable the estimation of absolute mo-
lecular counts [29]. It is worthy to note that, if RNA spike-ins data are available, it is 
profitable to use them in DEA, using a suitable approach. Moreover, the classification of 
the approaches and tools based on other factors can be found in Figure 2. 

Table 1. Comparative overview of the DEA approaches for scRNA-seq data analysis. 

SN. Methods Year Model Input DE Test Stat. Runtime Platform Ref. 
1 NBID 2018 NB (GLM) Counts LRT Medium R code [30] 

2 ZINB–WaVE 2018 ZINB (GLM) Counts LRT High 
Bioconductor, 

GitHub 
[31] 

3 zingeR 2018 ZINB (GLM)  Counts LRT High GitHub [32,33] 
4 DECENT 2019 ZINB (GLM) Counts LRT High GitHub [24] 
5 SwarnSeq 2021 ZINB (GLM) Counts LRT High GitHub [13] 
6 Tweedieverse 2021 ZITweedie (GLM) Counts Wald High GitHub [34] 
7 scMMST 2021 GLMM Counts Norm. score High NA [35] 
8 TPMM 2022 GLMM Norm. Wald/LRT High GitHub [36] 
9 Monocle2 2017 GAM Norm. LRT Medium Bioconductor [37,38] 

10 tradeSeq 2020 GAM Counts Wald Medium GitHub [39] 
11 MAST 2015 Hurdle Norm. LRT/Wald Medium Bioconductor [40] 
12 Random-Hurd 2019 Hurdle Counts Chi-square test High NA [41] 

Figure 1. Operational framework of differential expression analysis of scRNA-seq data. Various
steps in single-cell studies are shown. Pre-processing and various steps of DE analysis are also shown.
Potential use and interpretation of obtained results are presented.

The existing approaches and tools for the DEA of scRNA-seq data and their availability
are listed in Table 1 and Table S3. Table 1 also presents a comparative overview of the
approaches in terms of different factors including statistical models, input, test statistic(s),
and runtime, etc. We also classified these existing approaches and tools based on several
factors including data requirement and background models, etc., as shown in Figure 2. For
instance, the available approaches can be grouped based on the input data requirement, i.e.,
(i) group of approaches, which requires expression data as well as external spike-in data;
(ii) other group of approaches, which only requires expression data (Figure 2). Further, the
former category of tools is computationally expensive and more accurate compared with
the latter [23], due to the implementation of efficient statistical models and spike-ins data
requirement. The use of RNA spike-ins in the approaches tackles the issue of technical
variability due to inefficient transcriptomes capture in single-cells [24–28]. In other words,
the RNA spike-ins are RNA transcripts (with known sequences and quantity) that are
applied to calibrate the measurements of RNA hybridization assays, such that scRNA-Seq
and UMIs can theoretically enable the estimation of absolute molecular counts [29]. It is
worthy to note that, if RNA spike-ins data are available, it is profitable to use them in DEA,
using a suitable approach. Moreover, the classification of the approaches and tools based
on other factors can be found in Figure 2.

Instead of individually reviewing the large number of DEA approaches (Table 1), our
goal here is to classify the approaches based on the common statistical principles/models
and discuss their relative merits. However, for the researcher desiring specific information
about the individual tools, Supplementary Document S1 briefly presents reviews of the
individual approaches. We also present class-wise critical reviews of the existing DEA
approaches in the following section.
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Table 1. Comparative overview of the DEA approaches for scRNA-seq data analysis.

SN. Methods Year Model Input DE Test Stat. Runtime Platform Ref.

1 NBID 2018 NB (GLM) Counts LRT Medium R code [30]

2 ZINB–WaVE 2018 ZINB (GLM) Counts LRT High Bioconductor,
GitHub [31]

3 zingeR 2018 ZINB (GLM) Counts LRT High GitHub [32,33]
4 DECENT 2019 ZINB (GLM) Counts LRT High GitHub [24]
5 SwarnSeq 2021 ZINB (GLM) Counts LRT High GitHub [13]
6 Tweedieverse 2021 ZITweedie (GLM) Counts Wald High GitHub [34]
7 scMMST 2021 GLMM Counts Norm. score High NA [35]
8 TPMM 2022 GLMM Norm. Wald/LRT High GitHub [36]
9 Monocle2 2017 GAM Norm. LRT Medium Bioconductor [37,38]

10 tradeSeq 2020 GAM Counts Wald Medium GitHub [39]
11 MAST 2015 Hurdle Norm. LRT/Wald Medium Bioconductor [40]
12 Random-Hurdle 2019 Hurdle Counts Chi-square test statistic High NA [41]
13 SCDE 2014 Poisson-NB (MM) Counts Bayesian stat. High Bioconductor [42]
14 BASiCS 2015 Poisson-Gamma (MM) Norm. Posterior prob. High Bioconductor [25]
15 D3E 2016 Poisson-Beta (MM) Counts CM/KS test High GitHub [43]
16 BPSC 2016 Beta-Poisson (MM) Counts LRT Medium GitHub [12]
17 TASC 2017 Logistic, Poisson Models (MM) UMI LRT High GitHub [26]
18 DESCEND 2018 Poisson-Alpha (MM) Counts Normalized Gini Score High GitHub [28]
19 SC2P 2018 ZIP, Poisson-Lognormal (MM) Counts Posterior prob. High GitHub [44]

20 ZIAQ 2020 Logistic and quantile
Regression (MM) Norm. Fisher’s test Medium GitHub [45]

21 SimCD 2021 Gamma-NB (MM) Counts Bayesian High GitHub [46]

22 ZIQRank 2022 Zero-inflated model, quantile
regression (MM) Cont. Rank-score test High NA [47]

23 Seurat 2015 NB (TCP) Counts LRT Low CRAN [48,49]
24 scDD 2016 Multi-modal Bayesian (TCP) Norm. Bayesian stat. High Bioconductor [50]

25 DEsingle 2018 ZINB (TCP) Counts LRT High Bioconductor,
GitHub [51]

26 NYMP 2019 Logistic regression (TCP) Cont. Medium GitHub [52]
27 t-test logCPM (TCP) Norm. T stat Low CRAN [10]
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Table 1. Cont.

SN. Methods Year Model Input DE Test Stat. Runtime Platform Ref.

28 IDEAS 2022

NB/ZINB/Kernel Density
estimation/

Cumulative distribution
function (TCP)

Counts/Cont.
Jensen–Shannon

Divergence/
Wasserstein distance

High GitHub [53]

29 SAMstrt 2013 NP Counts Medium GitHub [54]
30 Wilcox NP Counts/Norm. Sum ranks Low CRAN [10]

31 SINCERA 2015 NP Norm. Welch (LS)/
Wilcox (SS) High GitHub [55]

32 NODES 2016 NP Norm. Wilcox Medium Dropbox [56]
33 EMDomics 2016 NP Norm. Euclidean distance High Bioconductor [57]
34 sigEMD 2018 NP Norm. Distance measure High GitHub [58]
35 DTWscore 2017 NP FPKM Distance Medium GitHub [59]

36 ROSeq 2021 NP Counts/Norm. Wald High Bioconductor,
GitHub [60]

37 scDEA 1 2021 12 Models (Hybrid) Counts Lancaster’s test (Chi) High GitHub [61]

CM: Cramér–von Mises test; Counts: read/UMI counts; Cont.: continuous values, e.g., FPKM, log(CPM), RPKM; NA: source codes are not freely available; Norm.: normalized;
GLM: generalized linear model; NB: negative binomial; GLMM: generalized linear mixed model; NP: non-parametric; GAM: generalized additive model; MM: mixture model;
TCP: two-class parametric. 1: Integrated approach.
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component of the model. In other words, every GLM has three components: (i) expres-
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Figure 2. Classification of available statistical approaches and tools used for DEA in single-cell
studies. Classification of the approaches is conducted based on the requirement of input data, data
distribution, and statistical models, etc. DE analytic tools belonging to each category are presented in
pink colored boxes.

3. Classes of Statistical Approaches for DEA

Notation: Yij: random variable (rv) represents the observed expression (i.e., read,
UMI) counts of ith (i = 1, 2, . . . , N) gene in jth (j = 1, 2, . . . , M) cell; N: total number of genes;
M: total number of cells; µi: mean of ith gene for NB distribution (count part of the model);
ϕi and θi (= ϕ−1

i ): dispersion and size parameters, respectively, for ith gene; πi(∈ [0, 1]):
mixture probability (zero inflation probability) of ith gene; sj: library size of jth cell; Zij: rv
represents the true (unknown) expression counts for ith gene in jth cell; X: design matrix
for cell group information, whose jth row: Xj =

[
Xj1, Xj2, . . . , XjN

]
; Wij: indicator rv

representing the rate of expression for ith gene in jth cell, i.e., Wij = 0 : Yij = 0; Wij = 1 :
Yij > 0. Ωi = {µi, θi, πi}: parametric space for ith gene.

3.1. Generalized Linear Model-Based Approaches

Generalized linear model (GLM)-based approaches assume that: (i) expression counts
follow certain exponential family distribution [62]; and, (ii) a non-linear function (known
as link function) relates the expected expression counts of genes to the linear component
of the model. In other words, every GLM has three components: (i) expression count
distribution of the gene (sometimes called the error structure); (ii) linear predictor that
involves the explanatory cell variables or covariates including cell group information; and,
(iii) a link function (g(.)) that connects the linear predictor to the natural mean of expression
counts of genes. The GLM class of DEA approaches includes NBID [30], DECENT [24],
ZINB–WaVE [31], ZingeR [32,33], Tweedieverse [34], and SwarnSeq [13], to name a few.
The operational layout of this class of approaches is shown in Figure 3.
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Figure 3. Operational outlines of DE analytic GLM and two-class comparison approaches in
scRNA-seq studies. (A) Workflow of steps for GLM-based DE approaches. (B) Workflow of steps
for two-class comparison approaches. In both classes, the framework can be divided into four major
parts, namely: (i) input (data provided as input to tools); (ii) pre-processing of data, this step involves
data cleaning, outlier removal, normalization, etc.; (iii) model fitting and computation of DE test
statistic, various distributional/model (e.g., GLM, simple statistical distribution or distribution-free)
assumptions are made about the expression data, parameters of the models are estimated, and DE
test statistic(s) for genes and their corresponding p-values are computed; and, (iv) assessment and
interpretation of DE results.

The GLM-based DEA approaches can be divided into two categories: first, expression
counts follow certain exponential family distributions, e.g., negative binomial (NB) and
Poisson, etc. Second, expression counts follow zero-inflated models, e.g., zero inflated
negative binomial (ZINB), and zero inflated Poisson (ZIP) (Supplementary Document S2).
For instance, NBID [30] and IDEAS [53] approaches use the NB model, and probability
mass function (PMF) in Equation (1), to fit the single-cell expression counts data. The
expected value and variance of the observed expression counts is given in Equation (2).

P
[
Yij = y

]
=

G(y + θij)

G(y + 1)G(θij)

(
θij

θij + µij

)θij
(

µij

θij + µij

)y

∀ y = 0, 1, 2, . . . (1)
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where, µij ≥ 0; θij > 0 are the mean and size parameters of NB distribution, G(.): Gamma
function. Then, the expected value and variance of Yij is shown as:

E(Yij) = µij and V(Yij) = µij +
µij

2

θij
= µij + ϕij (2)

The NBID uses a non-linear link function to model the expected value of expression counts
with the explanatory variables, such as cell group labels and other potential covariates,
given in Equation (3).

g
(
µij
)
= logµij = Xβ (3)

where, g(.): link function, and β: parameters of the model.
The NB–GLM approaches may not suitable to fit the scRNA-seq counts data due

to the presence of excess zeros (Supplementary Documents S3–S5) [10,13,32], thus may
compromise the statistical power to detect true differentially expressed genes [13,31].
Hence, ZIM was introduced in DEA bioinformatics tools to fit the observed scRNA-seq
count data [1–33]. The ZIM–GLM-based approaches include tools such as DECENT [24],
ZINB–WaVE [31], ZingeR [32,33], and SwarnSeq [13], which assume the UMI counts of
genes follow a ZINB distribution. PMF is given in Equation (4).

P
[
Yij = y

]
=


πij +

(
1− πij

)( θij
θij+µij

)θij
when y = 0(

1− πij
) G(y+θij)

G(y+1)G(θij)

(
θij

θij+µij

)θij
(

µij
θij+µij

)y
; y > 0

(4)

The expected value and variance of Yij is expressed in Equations (5) and (6).

E
(
Yij
)
=
(
1− πij

)
µij (5)

V
(
Yij
)
=
(
1− πij

)
µij

(
1 + πijµij +

µij

θij

)
(6)

If πij = 0 .⇒ ZINB
(
πij, µij, θij

)
→ NB

(
µij, θij

)
If ϕij → 0 .⇒ ZINB

(
πij, µij, θij

)
→ ZIP

(
πij, µij

)
The linear predictors including cellular group [24], cell type [13], and other cell-

level auxiliaries [31] are included in the GLM. Various link functions including log and
logit functions are used to model the gene specific mean and zero-inflation parameters,
respectively. For instance, DECENT, SwarnSeq, ZINB–Wave, and ZingeR consider log-link
function to connect the mean with cell group, cell-level auxiliary predictors and logit-link
function, to model the zero-inflation parameter, as given in Equations (7) and (8).

logµi = Xγi + Rwi + Csi + Oµ (7)

logitπi = Xβi + Rui + Cvi + Oπ (8)

where, logit(π) = log
(

π
1−π

)
; αi, τi and ϕi: M × 1 vector of parameters for ith gene;

X: M × G design matrix providing group information (first column consists of 1 s to include
intercept term); G: number of cellular groups (cell clusters are divided into G groups, if
group is unknown); R: M × N design matrix providing cell cluster information; C: M × C
design matrix providing cell level auxiliary information; γi and βi: G × 1 vectors of cellular
groups effects for ith gene; wi and ui: N × 1 vectors of cell cluster effects for ith gene; si and
vi: C × 1 vectors of effects for cell level co-variates, such as cell cycle, cell phase, etc., for the
ith gene; C: levels of cell level auxiliaries; and, Oµ, Oπ : offsets for µi and πk, respectively.

The DECENT approach only considers the cell group information as predictor in the
model (Equation (9)), while the SwarnSeq, ZingeR and ZINB–WaVE approaches consider
group as well as other cell level data as linear predictors in the model (Equations (7) and
(8)). All GLM-based approaches use the maximum likelihood estimation (MLE) method
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to estimate the model parameters through minimizing the goodness of fit criterion [63].
However, it is very difficult to obtain the exact solution (i.e., closed form) of the MLE’s
objective function [13,33]. Therefore, iterative expected maximization (EM) techniques
are implemented in these approaches to estimate the parameters [13,32]. For instance,
DECENT, ZingeR, ZINB–WaVE, and SwarnSeq use EM algorithms to estimate the gene
specific parameters including mean, dispersion, and zero-inflation parameters [13,24,32,33].
For DEA of genes (two cell groups’ simple comparison), the models in Equations (2) and
(7) can be written as:

logµij = βi0 + βi1xij + Oµ (9)

where, βi0: intercept term; βi1: regression co-efficient for cell group; and, Oµ: offset term.
The model in Equation (9) can also be expanded to accommodate other cell-level co-variates
including cell type, cell cycle, cell growth phase, etc., [13]. To test whether the ith gene
is differentially expressed or not across the cell groups, GLM-based approaches test the
following null hypothesis:

H0 : βi1 = 0 vs. H1 : βi1 6= 0

Importantly, all GLM-based approaches use the likelihood ratio test (LRT) statistic. Mathe-
matically, the LRT statistic (for ith gene) is −2logL (L: likelihood function) (i.e., deviance
divided by the scale parameter φ called scaled deviance) which can be expressed as:

−2logL
(
Ωi
∣∣yij
)
=

1
φ

D
(
yij
∣∣Ωi
)
= 2l

(
yij
∣∣yij
)
− 2l(Ωi|yij)∼ χ2

(M−p) (10)

where, l(Ωi
∣∣yij) : log-likelihood function; and l

(
yij
∣∣yij
)
: log-likelihood function for the sat-

urated model (i.e., maximum likelihood achievable when the fitted values are exactly equal
to the observed data for exponential family distribution). The test statistic in Equation (10)
follows a Chi-square distribution with certain degrees of freedom.

Additionally, modifications in the GLM have been performed by adding random
components for different cell-level factors to build generalized linear mixed models.
Recently, such models have been implemented in two-part mixed model (TPMM) and
scMMST approaches.

Limitations: There are three major limitations of this class of approaches. Firstly, strict
model assumptions: the GLM class of approaches requires several distributional assumptions
about the expression counts, which may not be satisfied by the real single-cell data. For
instance, GLM requires the counts to be generated by exponential family distributions; the
link function must be invertible, continuous, and differentiable; and it linearly depends on
cell co-variates. These strict assumptions restrict the utility of GLM-based DEA approaches
for real data analysis. In most cases, the users simply apply these techniques without
testing or violating these assumptions, which causes the results to be misleading.

For the second limitation, multi-modality, several previous studies [37,38,45,47,64–67]
report multi-modal distributions of scRNA-seq gene expressions, which may be due to
a gene’s expression deriving from multiple cell states or from a series of biological pro-
cesses [65]. For instance, a cancer-suppressor gene is over-expressed (i.e., higher counts)
in some cells and its expression is suppressed (by its regulator genes) causing low ex-
pression in other cells. This negative feedback causes oscillations in gene expression
across the cells [64], leading to multiple modes in scRNA-seq data [67]. The NB-GLM
approaches fail to handle the multi-modal distribution of scRNA-seq data, while the ZIM–
GLM-based approaches are able to tackle the bio-modality (i.e., modes due to biological
zeros and non-zero counts) of underlying data. In other words, GLM-based tools cannot
handle the multi-modality (>2) of expression counts distribution, which is inherent to
scRNA-seq studies.

For the third limitation, computational complexity, this class of tools is computationally
intensive due to implementation of iterative techniques for parameters estimation. For
instance, DECENT, SwarnSeq and ZingeR, etc., approaches usually take more than 10–12 h
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to analyze the scRNA-seq data (with a few thousand genes and hundreds of cells) [10].
In addition, the EM algorithm employed in these tools fails to converge in most of the
genes, causing the computational process to be slow and cumbersome. Furthermore,
complex statistical models are fitted for each gene individually in a large dataset, making
the implemented tools’ runtime inefficient. Further features and limitations of this class of
tools are listed in Table 2.

3.2. Generalized Additive Model-Based Approaches

Generalized additive models (GAM) are natural extensions of the GLM, where the
link function is additive but each term/predictor non-linearly depends on the mean and
zero-inflation parameters of the gene. GAMs are similar to GLMs but allow testing of
variables in response to a numerically estimated trend in the predictors, alleviating the
burden of specifying their distribution. While this necessitates some approximations in
downstream testing, it has proven to be highly effective in many settings, particularly when
one wishes to model the response variable as a function of both categorical (e.g., cellular
group) and continuous (e.g., cell growth phase, cycle, etc.) predictors. The operational
framework of this class of approaches is shown in Figure 4.

The GAM uses smooth (non-parametric (NP)) spline functions to capture the relation-
ships between individual cell co-variates and the expression of gene, which can be linear
or nonlinear. In other words, these smooth relationships can be simultaneously estimated,
and then, the expected expression values predicted, by simply adding them. The GAM
class of DEA approaches includes Monocle [37], Monocle2 [38], and tradeSeq [39], etc.

The impact of the predictive variables is captured through smooth functions, depend-
ing on the underlying patterns in the data, which can be nonlinear:

g
(
µij
)
= β0 + s1(x1) + s2(x2) + . . . + sp

(
xp
)

(11)

where, xl : cell level co-variates/predictors; and Sil(.): smooth function.
The GAM-based approaches use a log link function that depends on the pseudo-time

of the cell, as shown in Equation (12).

log
(
µij
)
= ∑L

l=1sil(tl j)Zlij + Oµij (12)

where, sil(): smooth function for ith gene at lth cell lineage, which are functions of pseudo-
time tl j, ∀lε{1, 2, . . . , L}; and, Zlij : binary variable for gene expression, i.e., Zlij = 1;
ylij > τ or 0 else (τ: hard threshold). The smoothing spline function in Equation (12) can be
represented as a linear combination of K cubic basis functions (bk(.)).

sil

(
tl j

)
= ∑K

k=1bk(t)βilk (13)

For testing ith gene at lth cell lineage, the null hypothesis, H0 : βilk = 0 is tested for
its possible rejection through the Wald test statistic (e.g., tradeSeq) or LRT (e.g., Monocle).
Further, Monocle (also Monocle 2, 3) only considers one cell lineage (i.e., L = 1) while
tradeSeq considers multiple cell lineages (i.e., L ≥ 2)). Additionally, the latter provides
provision for the DEA of genes within and across cell lineages. The special features of the
GAM-based approaches are listed in Table 2.
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Table 2. Classes of statistical approaches and tools extensively used in DEA of scRNA-seq data.

SN. Class Features Limitations Tools

1 GLM

• Gene expression can have any form of exponential
distribution type.

• Suitable for bi-modality of data.
• Able to deal with categorical predictors, e.g., cell type, cell

cycle, etc.
• Easy to interpret and allows a clear understanding of how

each of the predictors are influencing the gene parameters.
• Can be generalized to multi-cell group comparisons.
• Less susceptible to model over-fitting.

• Strict exponential family distributional
assumptions about the data.

• Needs relatively large datasets (with more
predictor and large number of cells).

• Sensitive to outliers.
• Sensitive to dropout events.
• Not suitable for low expressed genes.
• Cannot handle multi-modality of the data.
• ZIM–GLM approaches are not able to handle

zero-deflation at any level of a factor and will
result in parameter estimates of infinity for the
logistic component.

• Higher computational cost especially for
large datasets.

NBID, ZingeR
ZINB–WaVE,

DECENT, SwarnSeq,
scMMST, TPMM,

Tweedieverse

2 GAM

• Predictor functions are automatically derived during
model estimation.

• Marginal impact of a single variable does not depend on
the values of the other variables in the model.

• Flexibility in choosing the type of functions, which will
help in finding patterns missed in a parametric model.

• Allows controlling smoothness of the predictor functions
to prevent model over-fitting.

• By controlling the wiggliness of the predictor functions, we
can directly tackle the bias/variance tradeoff.

• Highly effective in many settings, particularly when one
wishes to model the response variable as a function of both
categorical (e.g., cell groups) and continuous predictors
(e.g., cell-level auxiliary variables).

• Considers both linear and non-linear functions of cell-level
predictors to model gene parameters.

• Each lineage is represented by a separate cubic smoothing
spline, and its flexibility allows adjustment for other
covariates or confounders as fixed effects in the model.

• Approaches such as Monocle can only handle a
single lineage of cells.

• Lack of interpretability, to infer differences in
expression between lineages of cells.

• Assumes the dropout events to be linear;
however, the effect of dropout events is likely to
be non-linear, especially for genes with low to
moderate expression.

• Computationally complex.

Monocle, Monocle2,
Monocle3, tradeSeq
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Table 2. Cont.

SN. Class Features Limitations Tools

3 Hurdle Model

• Considers the excess zeros while model building.
• Can handle zero-inflation as well as zero-deflation

present in data.
• Models the bimodality of gene expression distribution.

• Does not differentiate the generating process for
excessive zeros versus sampling zeros.

• Fails to consider the multi-modality of gene
expression distribution.

• Requires higher runtime.

MAST, Random Hurdle

4 Mixture-Model

• Considers bi-modal or multi-modal nature of
single-cell data.

• Can differentiate between major sources of variation in
single-cell data.

• Certain approaches including BPSC, SC2P cannot
consider the zero-inflation in single-cell data.

• Mostly uses linear models for DEA, which is
cumbersome.

• Higher runtime and computationally intensive.

SCDE, D3E, BPSC,
BASiCS, DESCEND,

SC2P, ZIAQ, ZIQRank,
SimCD

5 Non-parametric (two-class)

• Distribution-free approaches.
• Considers the multi-modality of the data.
• Computationally not cumbersome (less runtime).
• Estimates the parameters without fitting any distribution

for genes.
• Performs DEA with distance-like metrics across two

cell types.
• Performs well when there are lesser proportions of zeros

in the data.

• Mostly focuses on two cellular groups’
comparison.

• Computationally complex for multi-groups.
• Performance severely affected due to high

dropouts (some methods exclude dropouts).
• Cannot separate between true/biological and

false/dropout zeros.
• Sensitive to sparsity.
• Methods such as D3E, scDD fail to consider

UMI count nature of the data.
• Cannot separate confounding factors from

each other.

Wilcox, NODES, ROTS,
EMDomics, ROSeq,
SINCERA, sigEMD,
DTWscore, SAMstrt

6 Parametric (two-class)

• Easy to understand and execute.
• Lesser runtime.
• Particularly suitable for larger datasets.

• Makes strict distributional assumption about
the data.

• Cannot generalize to multi-group comparisons.
• Ignores the multi-modal distributions of the

scRNA-seq data.
• Sensitive to sparsity or dropout events.
• Cannot differentiate between the major sources of

variability in the data.

scDD, DEsingle, t-test,
NYMP, IDEAS
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Figure 4. Operational outlines of DE analytic GAM, Hurdle and mixed model class of approaches in
scRNA-seq studies. (A) Workflow of steps for GAM-based DEA approaches. (B) Workflow of steps
for Hurdle and mixed-model-based approaches. In both classes, the framework can be divided into
four major parts, namely: (i) input (data provided as input to tools); (ii) pre-processing of data, this
step involves data cleaning, outlier removal, normalization, etc.; (iii) model fitting and computation of
DEA test statistic, various distributional/model (e.g., GAM, Hurdle or mixture model) assumptions
are made about the expression data, parameters of the models are estimated, DEA test statistic(s)
for genes and their corresponding p-values are computed; and (iv) assessment and interpretation of
DEA results.

Limitations: (i) Pseudo-time dependent: Approaches including Monocle heavily depend
on the accuracy of the pseudo-time-ordering of cells. In other words, in single-cell studies,
expression of genes in each cell is a function of time, therefore, cells can be ordered by
the time. Single-cell analytical tools use existing algorithms including Wanderlust [68]
to order the single-cells along discrete paths. These paths do not represent real time but
rather a pseudo-time variable (due to short life cycles of cells), which usually represents
the intrinsic cellular process. Further, computational experiments indicate that differences
in the temporal ordering of the single-cells from different approaches affect the results,
and thus interpretations [69]. The use of pseudo-temporal ordering along with expression
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data has been useful in some studies, but it has also faced criticism. For instance, Moris
et al. 2016 [70] questioned the underlying assumptions of smooth and continuous cell state
transitions, which are required by pseudo-time-ordering algorithms. Moreover, such data
may not be readily available for the users, thus making it difficult to apply in general cases;
(ii) Similar to the GLM classes of approaches, this class is also unable to consider the multi-
modal nature of single-cell data; and, (iii) The GAM class of approaches is computationally
intensive, due to implementation of complex statistical models fitted individually for
each gene.

3.3. Mixture Model-Based Approaches

The observed gene expressions in a scRNA-seq experiment are the noisy reflections
of true expression levels due to various biological and technical sources. Hence, the
mixture model (MM) framework (shown in Figure 4) assumes that the distributions of the
observed expression counts are decomposed into multiple parts or a mixture of probability
distributions, as shown in Equation (14):

P
[
Yij = yij

]
= α1 f1

(
yij; Ωij

)
+ α2 f2

(
yij; Ωij

)
+ . . . + αn fn

(
yij; Ωij

)
(14)

where, f1(.), f2(.), . . . , fn(.) are the probability distributions associated with various com-
ponents of single-cell studies, e.g., dropout events, amplification, etc.; and α1, α2 . . . , αn are
the corresponding weights of the distribution functions such that αi > 0 and ∑n

i=1 αi = 1.
In other words, the PMF of the expression counts is expressed in terms of the linear
combination of the distribution functions of various components of single-cell studies (a
convex combination).

The MM class includes popular approaches and tools such as SCDE [42], D3E [43],
BPSC [12], BASiCS [25], DESCEND [28], and SC2P [44], etc. For instance, SCDE models the
expression (in terms of reads per million) of ith gene in jth cell using a mixture of Poisson
and NB distributions, and the PMF for the SCDE can be written as:

P
[
Yij = yij

]
= α fNB

(
yij; µij, θij

)
+ (1− α) fPD

(
yij; γij

)
(15)

where, fNB and fPD: PMF of NB and Poisson distributions, respectively; γij: parameter of
Poisson distribution; and α = log(e) (e: expected expression magnitude).

Further, approaches such as BPSC and D3E use the Beta-Poisson model to fit the expres-
sion counts of genes in scRNA-seq data to capture the cell burst size and burst frequency
of the gene level expression data. However, the BPSC uses a linear model framework (to
model µij through log-link function) to perform DEA, while D3E employs three statistical
tests, i.e., Cramer–von Mises test, KS test or the LRT for differential expression testing
of genes. It is interesting to note that BPSC can be generalized to multi-cellular group
comparison, while D3E is limited to only two group comparison. Moreover, the DESCEND,
BASiCS, SC2P tools use the Poisson-Alpha, Poisson-Gamma, and Poisson-Lognormal MMs,
respectively, to fit the observed scRNA-seq data.

Additionally, approaches including ZIAQ [45] and ZIQRank [47] use logistic regres-
sion and quantile regression to model the dropout events/zero-inflation and non-zero
expression counts (shifted quantiles), respectively [47]. It is worthy to note that this class
of approaches uses different setups to perform DEA of genes across the cell groups. For
instance, ZIQRank and ZIAQ use the Cauchy and Fisher test, respectively, to compute the
p-values for genes [45,47]. The major pros and cons of this class of approaches are listed in
Table 2.

3.4. Hurdle Model-Based Approaches

In Hurdle model-based approaches, the expression counts of genes are modeled in two
parts, namely, (i) zero counts ( [Wij = 0] ∼ f1(; θi)) and (ii) non-zero counts ( Yij

∣∣Wij = 1 ∼
f2(; θi)). In other words, the first part of the model fits the zero counts, while the second
part models the probability of the non-zero expression values (through a truncated (at zero)
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probability distribution function). Mathematically, the PMF of the Hurdle model is shown
in Equation (16):

P
[
Yij = yij

]
=


pij yij = 0(

1− pij
) P[yij ;µij]

1−P[yij=0;µij]
yij > 0

(16)

where, pij: probability of expression counts of ith gene in jth cell belongs to the
zero component.

Statistically, the ZIM and Hurdle models differ based on their conceptualization of the
zeros in scRNA-seq data and interpretation of model parameters. In other words, the ZIM
model always assumes that zero counts are derived from a mixture of two distributions:
(i) the first part produces zero counts which are often called “structural zeros” or “excessive
zeros” (e.g., absence of mRNA of a gene) (modeled using Dirac’s delta function); and,
(ii) the second part produces zero counts termed as “sampling zeros” (e.g., absence of
expression counts due to inefficient amplification/limited sequencing depth) (modeled
using the count data model).

The Hurdle model-based approaches model the gene parameters using linear models,
as shown in Equations (17) and (18).

log
(
µij
)
= βi0 + βi1xij (17)

logit
(

pij
)
= α0 + αi1xij (18)

For the DEA of ith gene, the null hypothesis is tested for its possible rejection using
the test statistic given in Equation (10). This class includes popular approaches such as
MAST [40] and Random Hurdle [41]. Further, the MAST approach uses a logistic regression
model to fit the indicator variable (for zeros), Wij and the Gaussian linear model for the
continuous variable (non-zero expression values)

(
Yij
∣∣Wij = 1

)
, independently. The unique

features of this class of approaches are listed in Table 2.
The major limitations of the Hurdle model-based approaches are: (i) The Hurdle

model considers the sources of zeros in single-cell studies without making any distinctions.
In other words, the Hurdle model can have restrictive assumptions that fail to distinguish
between structural zeros and sampling zeros [8], which can be quite detrimental when
the assumptions are violated. By design, the Hurdle model will always predict the same
number of zeros as observed in the scRNA-seq data without telling their sources; (ii) Several
of these approaches require a data transformation including the use of a pseudo-count
and log-transformation, but this has recently been shown to introduce false variation in
downstream analyses [71,72]; and, (iii) These approaches are computationally intensive
especially for large single-cell datasets, as they fit models individually for each gene, such
as GLM-based approaches. Further limitations are listed in Table 2.

3.5. Two-Class Comparison (Parametric) Approaches

The above four classes of approaches consider the inflated zero counts inherent to the
scRNA-seq data through various provisions in the underlying statistical models. However,
they use complex linear models to perform DEA of genes, which require more compu-
tational time to individually fit the models for each gene. Therefore, another class of
parametric approaches is reported in the literature, which is straight forward. In other
words, this class of approaches is quite simple to execute, as they compare the mean ex-
pressions/estimated parameters of genes across two cell groups/populations. Further,
their modes of execution require two simple steps: (i) estimation of gene-level parameters
including mean, dispersion, etc., using a parametric model; and, (ii) comparison of the
estimated mean parameters of genes between the two cell groups through a parametric
statistical test. The operational procedure for this class of approaches is shown in Figure 3.

This class of approaches includes, scDD [50], DEsingle [51], NYMP [52], IDEAS [53],
and, t-test [10], etc. For instance, DEsingle assumes the UMI counts must follow ZINB
distribution [51], as given in Equation (4), but does not use GLM framework to model the
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mean parameter. Further, DEsingle uses the EM algorithm to estimate the parameters of
the ZINB model across the two cell types, while scDD utilizes a conjugate Dirichlet normal
distribution to fit the expression data, thus handles the hidden cellular heterogeneity. The
underlying statistical models and unique features of the other approaches are listed in
Table 1.

The underlying null hypothesis for this class of approaches can be expressed as:

H0 : µi1 = µi2 vs. H1 : µi1 6= µi2 (19)

where, µil is the mean expression of ith (i = 1, 2, . . . , N) gene in lth (l = 1, 2) cell
populations/groups.

This class of approaches statistically tests the estimated value of the mean parameter of
genes across the two cell populations using various test statistic(s) [10,16,51]. For instance,
DEsingle uses the LRT (following a Chi-square distribution), while the scDD uses the
Bayesian posterior probability. The test statistic(s) for other approaches is given in Table 1.
Though this class of approaches is simple and quick in terms of execution, it suffers from
serious limitations.

Limitations: (i) Only two groups: This class of approaches cannot be generalized to
accommodate multiple cellular groups, though it is clear that scRNA-seq data are char-
acterized by the presence of multiple cell types/groups, which these methods are unable
to consider. This is due to the fact that other classes of methods including GLM, GAM,
Hurdle, and MM, consider the GLM to model the mean parameter of genes, which can
accommodate the multi-group comparison; (ii) Cell-level auxiliary data: The incorporation
of cell-level confounding covariates including cell type, cell cycle, cell growth phase, etc.,
in the DEA improves the statistical power to detect true differentially expressed genes in
single-cell studies. Therefore, this class of approaches cannot accommodate such auxil-
iary data in the analysis, and thus has poor performance compared with other class of
approaches [10,16]; and, (iii) Many aforementioned approaches consider the inflated zero
counts through parametric models (e.g., ZINB) which might not be sufficient to capture the
heterogeneity in the scRNA-seq data. Further limitations and unique features of this class
of approaches are listed in Table 2.

3.6. Non-Parametric Approaches

The approaches described in the previous five classes assume that the expression
counts follow a well-defined parametric distribution. These approaches are typically
slower due to the implementation of complex statistical models and iterative algorithms
of parameter estimation. Thus, parametric models may not be ideally suited to data from
many hundreds or thousands of single-cells [47,56,60]. Furthermore, parametric tests
including LRT, Wald test, etc., have been used to compute the statistical significance of
differentially expressed genes across the cell population. However, in statistics, NP methods
have statistical power at par or greater than parametric methods, if the data violate the
underlying assumptions of the parametric methods and a large number of samples/cells
exist [73]. Under these circumstances, NP approaches can be better alternatives to their
parametric counterparts, and are ideally suited to large single-cell datasets [74]. Further,
the NP class of approaches can capture the multi-modal nature of the single-cell data. The
major pros and cons of this class of approaches are described in Table 2.

The NP class of approaches includes NODES [56], Wilcoxon signed rank test
(Wilcox) [10,16], ROTS [75], EMDomics [57], ROSeq [60], and SINCERA [55], etc. This
class of approaches estimates the parameters that can quantify the distribution of expres-
sion profiles and makes comparisons between two cell groups. The null hypothesis of this
class of approaches can be expressed as:

H0 : Fi = Gi vs. H1 : Fi 6= Gi
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where, Fi and Gi are the distributions of ith gene in the first and second cell groups,
respectively. The above null hypothesis indicates that the two cell populations have the
same distributions or derive from a same cell population. For instance, NODES and
Wilcox usually test significant differences of genes’ mean expressions across the two cell
groups [10,16]. The former requires pseudo-counted quantile normalized gene expression
values for DEA, while the latter can be used for counts or normalized data. Further, these
approaches use test statistic(s) based on ranks (e.g., Wilcox, ROSeq), quantiles or percentiles
(e.g., NODES), or distance measures (e.g., EMDomics), etc., for DEA of genes. For instance,
Wilcox compares the ranks of the expression values that derive from the two cell groups.
This rank-based test mostly ignores the magnitude of the expression deviations of genes
between the two cell groups. Moreover, this class of approaches mostly uses permutation or
bootstrap procedure to compute the p-values for genes (e.g., NODES [56], ROTS [75]). These
approaches are relatively simple to understand and easy to execute for large scRNA-seq
datasets with relatively lesser runtime required, compared with the other five classes.

Limitations: (i) Lesser statistical power: If all of the assumptions of the parametric
approaches are apparently met by the single-cell data, and the DEA hypothesis can be
tested with a parametric approach, then NP approaches may not be suitable. The degree
of unsuitableness can be expressed in terms of lesser statistical power. Previous studies
indicate that ZIM (Supplementary Documents S3–S5) fits well to the single-cell data [13,34].
Subsequently, DEA approaches based on ZIM usually have better performance over NP
approaches [10,16]; (ii) NP approaches are not systematic, whereas parametric approaches
have been systematized, and different tests are simply variations on a central theme;
(iii) Another objection to NP approaches is related with convenience. Tables necessary to
implement NP tests are scattered widely and appear in different formats; and, (iv) The
results may or may not provide an accurate answer because they are distribution free.
Further limitations and special features of this class of approaches are listed in Table 2.

4. Outstanding Challenges

The challenges in DEA of scRNA-seq data can be divided into two broad categories:
(i) biological challenges, and (ii) methodological challenges.

4.1. Biological Challenges

We believe that development of the DEA approaches will require improvement of the
existing annotations of genes on real single-cell data applications. Therefore, it is necessary
to create accurate, high resolution knowledge bases with detailed annotations of genes.
These knowledge bases will help investigators assess their DEA approach’s performance
based on the biological ground truth, and will also help in understanding the biological
process from a systems biology point of view.

4.1.1. Proper Biological Benchmarking

Simulation techniques are usually used to validate the performance of the DEA ap-
proaches in scRNA-seq studies [11,14,16–18,24,51]. In simulation studies, the ground
truth (reference genes) is (artificial) known and biological data are mimicked through
statistical models. Then, these artificial single-cell data are used to assess the perfor-
mance of the statistical approaches, given the artificial reference genes. In other words,
DEA approach’s performance is assessed through comparing the obtained differentially
expressed genes with the given reference genes using sensitivity–specificity-based per-
formance metrics [10–18,24,33,34]. However, Glazko et al. (2009) showed that statistical
method’s performance on simulated and real biological data are significantly different [76],
which raises several questions about the performance assessment of methods using simula-
tion as a benchmark. The attributable reason may be that the biology is more complicated
than artificial scenarios and is influenced by factors such as the absence of an exclusive
division into classes, presence of outliers, biological or technical hidden factors, environ-
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mental influence(s), and random errors, etc. This aspect of performance evaluation is highly
questionable among stakeholders, and needs further exploration.

To tackle this issue, researchers started using reference genes from microarrays [13,17,42]
and bulk RNA-seq [10,13,24] (for the same bulk cell lines) to validate the performance
of the DEA approaches on real single-cell data. However, this technique of performance
validation has faced many criticisms from researchers, as scRNA-seq is the latest technology
and obtaining reference genes from the old techniques incurs a technical lag. Therefore, to
assess the performance of DEA approaches, proper biological benchmarking platform is
required in single-cell studies.

4.1.2. Annotation

Biology-based techniques have been utilized to assess the performance of DEA meth-
ods in microarrays data analysis [21,22]. In other words, the genes from microarrays are
validated using bio-knowledge bases (KEGG, STRING, GO terms, pathways, QTLs, etc.)
in order to find biological processes and pathways that are relevant to the underlying
condition [77]. For instance, the QTLs, GO, etc., tools were previously used to validate
the performance of DEA methods in microarrays under a biological framework [77,78].
Further, these bio-knowledge bases were well established for microarrays and RNA-seq
studies [77,78]. The scRNA-seq technique has shifted the paradigm of gene expression dy-
namics to the single-cell resolution-level. Therefore, the current annotation databases need
to be updated with respect to these high-resolution techniques. It is essential that they also
begin specifying gene and cell level annotation information. Such information will provide
a better platform for assessing scRNA-seq DEA approaches from biological perspectives.

In addition to annotation, other information including literature support and expert
interpretation can be considered while assessing DEA approaches. Further, statisticians
and bioinformaticians must work closely with experimental biologists to validate their
in-silico findings in wet-lab conditions.

4.2. Methodological Challenges

In addition to the above biological challenges, we also highlight the methodological
challenges involved in DEA of scRNA-seq data.

4.2.1. Gold Standard scRNA-seq Data

The huge availability of statistical approaches for DEA of scRNA-seq data has prompted
the search for methods which produce biologically accurate results. To address this, com-
putational biologists have turned to simulations to mimic the biological ground truth
through which DEA approaches could be benchmarked. Further, simulations require the
specification of a model through which scRNA-seq data are generated. Differences in
model parameters specifications have led researchers to generate irreproducible results [79].
These lacunae motivate for requirement a sound epistemological framework for DEA of
scRNA-seq data [79,80]. To address this, Squair et al. (2021) suggested the quantification
of performance of the DEA methods across multiple datasets in which the experimental
ground truth was known, and also identified the principles/factors responsible for their
performance differences [79]. This framework of gold standard data (i.e., data with known
biological ground-truth) may provide a suitable platform for assessing the performance of
the DEA approaches from a biological perspective.

4.2.2. Excess Heterogeneity

The scRNA-seq data tend to have abundance of zero counts, complicated underlying
distributions, and huge heterogeneity. Subsequently, the heterogeneity between and within
cell populations poses greater challenges to the DEA of scRNA-seq data [53]. Further, this
cellular heterogeneity in data will increase multifold if the single-cell data are collected
over individuals/patients. Previously, researchers have usually considered bulk RNA-seq
methods for DEA of scRNA-seq data, which may not be sufficient to handle the huge
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heterogeneity in the data. The implemented models in the existing single-cell DEA ap-
proaches (Supplementary Document S1) could best solve cellular heterogeneity. However,
this may not be sufficient to tackle the heterogeneity in the data for single-cell studies over
individuals/patients. Therefore, novel statistical approaches and tools are required for
DEA of highly heterogeneous scRNA-seq data.

4.2.3. Dropouts or Excess Zeros of Single-Cell Data

Existing approaches of bulk RNA-seq DEA have been optimized for bulk tissue sam-
ples, and either perform poorly on single-cell data or do not accommodate the special
features brought out by the revolutionary single-cell technology [81]. The zeros in scRNA-
seq data are mainly due to biological and non-biological sources, a well-known challenge
in scRNA-seq data analysis, and how to best tackle it remains a controversial topic. It is
very difficult to distinguish between biological and non-biological zeros in scRNA-seq
data without pre-defined knowledge or spike-in control [8]. Therefore, researchers started
using ZIM or Hurdle models to tackle the issue of zero-inflation or excess zeros [8,13]. For
instance, the Hurdle model failed to consider the sources of zeros, and assumed them to be
from a single source. A significant portion of these zeros is due to dropout events, which
need to be addressed in the modelling process for better DEA. Another strategy of han-
dling the dropout/false zeros (attributed to inefficient sample preparation and sequencing
protocol) is through suitable data imputation tools (e.g., scImpute and DrImpute, etc.) [82].
Furthermore, lower transcriptional captures in single-cells also contribute to dropout events
in the data. For instance, efficient protocols of single-cell sequencing can capture 1–10%
of the transcriptomes present in the cell [13,24,83]. Hence, different capture rate models
including Binomial and Hypergeometric, etc., [13,24] can be used to adjust the cellular
capture rate while modelling the observed UMI counts. These efforts will help mitigate the
issues associated with singe-cell data that limit the utilization of existing DEA approaches.

4.2.4. Pre-Processing of scRNA-seq Data

The DEA seems to be a single-step process, but actually, unavoidably, is a multi-step
process, and its success highly depends on the pre-processing of scRNA-seq data. For
instance, scRNA-seq data usually have poor quality or outlier cells, which may bias the
analytical findings if included in the analysis. Therefore, researchers remove the cells whose
library size lies below a certain threshold [24], which is an empirical approach and does
not consider the statistical distributions of the cell library sizes. Hence, bioinformatics tool
developers must consider the pre-processing steps applied to input data, and the DEA
may be performed on the processed data. For example, the popular Seurat package uses
many data pre-processing steps before DEA of genes [48]. These pre-processing steps
include filtering low-quality genes and cells, data normalization, pre-feature selection,
dimensionality reduction, and cell clustering [49]. Hence, if DEA tool developers are
not aware of these pre-processing steps, their bioinformatics tools may not identify true
differentially expressed genes. In other words, accuracy and reproducibility of the DEA
tool will depend on pre-processing of scRNA-seq data. Therefore, tool developers must
consider data pre-processing as an integral part of the DEA for real data applications.

4.2.5. Lack of Biological Relevant Criteria

The performances of the scRNA-seq DEA approaches are usually assessed on simu-
lated data through sensitivity–specificity-based criteria. Though these criteria are statisti-
cally strong, they fail to state the biological relevance of the stated approaches. To address
this, biologically relevant criteria (based on GO, QTL, and pathways, etc.) under a sound
statistical framework have been developed for microarrays studies [21,77,78]. However,
such comparative indices are missing in single-cell data analytics. In other words, such an
assessment will answer the question of whether the differences between DEA approaches
can impact the functional interpretation of transcriptomics experiments. Hence, Squair et al.
(2021) used the GO term enrichment analyses in bulk vs. scRNA-seq DEA to assess the
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biological relevance of approaches [79]. However, strong statistical criteria are required for
this purpose, based on biologically relevant information including GO, QTL or pathways
information for single-cell datasets.

4.2.6. Statistical Methods for DEA across Individuals

The standard practice in DEA of scRNA-seq studies is to collect many cells from one
or a few individuals, and finding differentially expressed genes through the comparison of
gene expression between two cell groups/clusters. Several methods have been developed
for this purpose [10,11,16,24,51]. Currently, the scRNA-seq technique is slowly becoming a
standard practice, and many investigators have started generating scRNA-seq data from
multiple individuals. Thus, the DEA of genes across groups of individuals (i.e., comparison
between case and controls) has opened new avenues, which requires novel and innovative
statistical approaches and tools. The existing DEA approaches are inappropriate for individ-
ual level differential expression testing, as the sampling units for these approaches are cells,
not individuals. For this purpose, IDEAS [53] is the only recently developed technique
which performs DEA of genes across individuals, by capturing their cell type-specific
gene expressions. However, computational biologists and bioinformaticians may focus on
developing novel approaches and tools using multi-level hierarchical linear models.

4.2.7. False Discoveries in DEA

If a method fails to account for cell–cell variations in DEA, then it could produce false
discoveries in the presence of a real biological perturbation. The false discoveries may
also arise in the absence of any biological difference. For instance, recent computational
studies confirmed that single-cell methods produced a systematic excess of false positives
compared with the bulk of RNA-seq DEA methods [79]. In addition, they found that
the genes falsely identified as differentially expressed corresponded to those with the
highest variability between replicates [79]. This exposes a fundamental pitfall for DEA in
single-cell transcriptomics. In other words, the single-cell studies, especially in human,
would exhibit greater variability between biological replicates, and consequently would
be more vulnerable to false discoveries in DEA. These false discoveries are poised to
mislead investigators. Therefore, novel and innovative statistical approaches and tools are
of paramount importance to address this issue in DEA of scRNA-seq data.

4.2.8. Improved Methods for Dispersion Estimation

In most of the DEA tools including DECENT, DEsingle, and SwarnSeq, etc., the MLE
method has mostly been used to estimate the dispersion parameter through iterative algo-
rithms (e.g., EM and ECM) [13,24,34,51]. The dispersion parameter represents the cellular
variability, thus obtaining its good estimate is crucial to finding the true differentially ex-
pressed genes. For this purpose, Empirical Bayes (EB) shrinkage estimation using weighted
conditional log-likelihood method was used in bulk RNA-seq DEA methods [84]. This type
of estimate shrinks the dispersion estimates toward a common prior, instead of shrinking
them completely to the common dispersion. Therefore, any forms of the EB method in the
estimation of dispersion parameter may be incorporated in approaches including DECENT,
SwarnSeq, ZINB–WaVE, and ZingeR, to have better performance. Given that scRNA-seq
data are very sparse, it may be expected that there is potential benefit in using the EB to
improve the existing approaches performance. Such an attempt will stabilize estimates
of the gene-specific dispersion parameter. For instance, MAST [40] used the EB to shrink
the gene-specific variance parameter. Therefore, it is imperative to implement the EB or
equivalent methods within scRNA-seq DEA approaches to stabilize the dispersion, for
better analysis.

4.2.9. Random/Mixed Effect Models

The statistical models implemented in scRNA-seq DEA tools assume various factors
(e.g., cell group and cell-level auxiliary variables) affecting the gene parameters, including
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that mean and zero-inflation have fixed effects [13,24]. For instance, DECENT and SwarnSeq
assume the cellular groups, cell types and cell-level auxiliaries, etc., have fixed effects on
gene mean and zero-inflation. The trend is the same for all of the developed approaches.
Sometimes, these assumptions are necessary for methodological derivations, but are highly
unrealistic in biology, as some factors may have random effects. This is due to the fact
that cell biology is a highly dynamic system, and factors affecting genes’ expression have
random/mixed effects. Therefore, researchers may think of implementing random or
mixed effect models in DEA approaches, for better results.

4.2.10. Optimal Combination of Algorithms

Previous studies have shown that no statistical approach performed better for all the
single-cell datasets [10,11,14–18]. It has even been found that some bulk RNA-seq DEA
methods performed at par, or even better, compared with their single-cell counterparts [10,16].
In other words, statistical tools have their limitations and distributional assumptions about
the data, which make them sensitive to real data applications. Thus, the differentially
expressed genes identified by them are quite different from each other [10], making them
data dependent, which leads to unstable and sometimes inaccurate results [61]. To tackle
this issue, a more reliable strategy is to apply all methods at hand, and form a community
prediction for better analytical findings. Alternatively, combining an assortment of different
DEA approaches can be a better choice for finding true genes from single-cell data. For
instance, Li et al. (2022) developed an ensemble learning-based computational framework
to produce more stable and accurate results through combining results from 12 individual
approaches [61]. This finding has opened the quest to obtain the optimal combination of
state-of-the-art individual approaches, for better results. This aspect of obtaining better
results through combining algorithm(s) is at infant stage, and more computational studies
are needed in single-cell studies. We have listed the strengths and weaknesses of each
class of methods in Table 2. A natural extension may be that a suitable combination of
approaches can be a good strategy for the finding of true differentially expressed genes, as
the methods may mask each other’s weaknesses.

4.2.11. Integration of Multi-Omics Data

Single-cell multi-omics profiling technologies are rapidly evolving, bringing newer
techniques to improve our understanding of the unique function of the basic atom of
life. Recently, progress has been made in single-cell analytics to more accurately detect
cell types, performing downstream analyses, correcting technical sources of error, and
delineating cell lineages and cell-state transitions, etc., [17,18,69,85–91]. For instance, other
high-throughput genomic studies, including genome-wide association study, have emerged
as a powerful approach to identify risk variants; hence, such data can be integrated with
scRNA-seq data for better identification of true marker genes.

In this direction, a computational framework has been developed to integrate asso-
ciation data with scRNA-seq data for the identification of novel cell types and marker
genes in COVID-19 infected patients [92]. Such integrated data require advanced tools
for DEA. Additionally, other single-cell cross platform datasets are available due to the
advancement of genomic technologies, which can be integrated with scRNA-seq data for
identifying true biological differentially expressed genes. For instance, fluorescence in situ
hybridization (FISH) methods [93] provide data on the spatial distribution of single-cells,
which can be used as priors in the modelling of gene expressions, preferably through a
Bayesian approach.

Another advantage of integrating FISH data with sequencing data is that the former
is extremely accurate and free from dropout events [93], which will compensate the high
dropout events in the scRNA-seq. Further, in the absence of, or minimal, dropout events,
it will be possible to accurately model the observed expression counts of genes. It is
also possible to integrate phenotypic data of cellular activation with scRNA-seq data for
effective modelling of gene expression. Broadly, integration of single-cell sequencing (e.g.,
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scRNA-seq) approaches with high throughput single-molecule imaging (e.g., FISH) or
GWAS has a better chance to identify true DE genes at single-cell level, which requires
innovative statistical approaches.

4.2.12. Slow Computational Processing

For DEA, one must consider the computational processing speed for large-scale scRNA-
seq datasets, as one may not wait for several hours to obtain the results [10,13,24,51].
For instance, the Drop-seq-based system generates expression data of thousand(s) of
genes over a large number of cells (e.g., from 10,000 to million cells), and the existing
approaches fit complex statistical models individually to each gene, which costs a lot
of computational time. Further, these approaches and tools employ complex iterative
algorithms (e.g., EM, ECM) to estimate the gene specific parameters (most cases do not
converge). Through computational experiments, it was found that methods including
ZingeR, DECENT, DEsingle, and SwarnSeq, etc., require several hours for even a small
dataset [10]. This situation will be more worrisome for real large experimental single-cell
datasets. Additionally, researchers use the artificial setup with a small number of genes
over hundreds of cells to assess the performance of their methods, which is far from the
experimental reality. Thus, computationally efficient tools are required for the DEA of
scRNA-seq data. Sometimes, to speed up the analysis, researchers consider pre-selected
genes or dimensionality reduction technique, which restricts the analytical inference to
prior knowledge or ignoring other important genes. Hence, future DEA approaches and
tools must consider the scalability issue in single-cell studies.

5. Conclusions

DEA has become the primary downstream analysis of scRNA-seq data for extracting
valuable biological insights into high-throughput gene expression measurements. This
analysis also provides input to other secondary bioinformatics analyses including gene
set analysis, gene network analysis, and pathways analysis, etc. To date, several statistical
approaches and tools have been developed in the literature based on various statistical
principles. This paper discusses the critical reviews of state-of-the-art methods available for
DEA of scRNA-seq data, and distinctly classifies them into six major classes based on the
underlying statistical models. Although the first three classes of methods, namely, GLM,
GAM, MM, and Hurdle model approaches are extremely popular due to their ability to ac-
commodate cell-level auxiliaries, they are computationally complex and runtime intensive.

Despite these developments, certain challenges exist in the DEA of scRNA-seq data,
which need to be addressed in the future to develop improved classes of methods. We
grouped the existing challenges of DEA into biological and methodological challenges.
Under the biological challenges, a lack of proper biological benchmarking and incomplete
annotations of genes in single-cell studies restrict the ability to assess the performance
of DEA approaches for speaking the biological ground truth. We also reported several
methodological challenges in DEA. The bioinformatics community must address these
challenges to develop novel and innovative classes of DEA approaches and tools. These
new approaches will utilize the features of the relatively new high-throughput single-cell
technologies in order to better understand large biological systems.
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