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Abstract: Activation of G-protein-coupled receptors (GPCRs) is mediated by molecular switches
throughout the transmembrane region of the receptor. In this work, we continued along the path of a
previous computational study wherein energy transport in the β2 Adrenergic Receptor (β2-AR) was
examined and allosteric switches were identified in the molecular structure through the reorganization
of energy transport networks during activation. In this work, we further investigated the allosteric
properties of β2-AR, using Protein Contact Networks (PCNs). In this paper, we report an extensive
statistical analysis of the topological and structural properties of β2-AR along its molecular dynamics
trajectory to identify the activation pattern of this molecular system. The results show a distinct
character to the activation that both helps to understand the allosteric switching previously identified
and confirms the relevance of the network formalism to uncover relevant functional features of
protein molecules.

Keywords: GPCRs; β2 adrenergic receptor; allosteric switch; Protein Contact Networks; dynamical
cross-correlation matrix; Multivariate Statistical Analysis

1. Introduction

The allosteric character of membrane proteins has been an important topic for some
time [1–3]. Molecular dynamics (MD) simulations of protein–lipid layer systems provide
useful information for understanding the constrained dynamics of membrane proteins
and how they communicate with the environment inside and outside the cell [1,4,5]; this
knowledge is an essential starting point for the discovery of drugs targeting membrane
protein receptors [6].

G-protein-coupled receptors (GPCRs) are the membrane proteins that transmit re-
sponses from the exterior of the cell to the interior [7–10]. The structural and conformational
details of proteins are important not only to provide the insights that are vital for signaling,
but also to target the drugs in the specific regions where the allosteric communication
is facile. The signal transduction in proteins is mediated via the intra-protein networks.
For GPCRs, several network analyses of intra-protein networks, such as buried ionizable
networks, energy transport networks, and conserved non-covalent networks, have been
examined [1–3]. Recently, Tan et al. explored the druggability of target proteins in terms of
allosteric site identification for allosteric drugs, adopting rhodopsin, a G-protein-coupled
receptor present in the rod cells of the retina as a model [11]: they applied a network
approach to identify allosteric spots in the GPCR.

The present study extended the analysis of intra-protein networks in terms of Protein
Contact Networks (PCNs) in GPCRs and compared the results with the recent results of
energy transport networks for the same protein system [1–3].
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Each GPCR shares a similar architecture composed of seven transmembrane helices,
in which each helix is connected to another either by extracellular or intracellular loops.
The extracellular side consists of a ligand-binding pocket, where the agonist or antagonist
ligands bind, and the cytoplasmic region consists of the G-protein binding site. The GPCRs
activate when an agonist binds to the orthosteric site.

The β2 adrenergic receptor (β2-AR) is a rhodopsin-like class A GPCR, an important
drug target for its central role in bronchodilation. Moreover, β2-AR is a neurotransmitter
receptor and is a potential drug target for asthma and cardiac disease. It is also a potential
target for the obesity treatment [7]. There are several intersections of residue segments,
known as motifs, that are found to be conserved in all class A GPCRs.

The structural comparison of the active and inactive structures of β2-AR is shown in
Figure 1. Figure 1a shows the active state structure (marine) overlayed with the inactive
state (gray). Figure 1b depicts the same overlayed comparison of the inactive and active
states from the cytoplasmic point of view. The transmembrane helix 6, TM6, of the active
state is shifted outward compared to the position in the inactive state. Similarly, a minor
outward shift of TM5 and an inward shift of TM7 are also observed in the active state
compared to the inactive state.
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Figure 1. (a) The side view of the β2-AR. The active state (marine) is overlayed on the inactive state
(gray). (b) The cytoplasmic view of the β2-AR depicts the opening of TM helix 5 and 6 outward in
the active state compared to the inactive state. The conserved residues (motif regions) and molecular
switches are shown for both active (c) and inactive (d) states. A distinct color, which is the same
for both inactive and active states, is used to indicate each motif region. The stick representation
is used to show the ligands, Tyr266 in NPXXY, Phe222 in PIF, Trp226 in CWXP, and the ionic lock
(Arg103-Glu208) between TM3 and TM6. All structures are taken from the last frame of the 100 ns
simulations for both states, in which the inactive state was simulated from PDB:2RH1, and the active
state was simulated from the PDB:3P0G. The numbers in the figure label the 8 helices of the protein.

Figure 1c,d depicts the comparison of the molecular switches of β2-AR. A distinct color,
which is the same for both inactive and active states, is used to indicate each motif. The
stick representation highlights the ligands. The antagonist ligand (Carazolol C18H22N2O2)
is attached to the inactive state in Figure 1c, and the agonist ligand BI-167107 (C21H26N2O4)
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is attached to the active state in Figure 1d. The switch residues Tyr266 in NPXXY, Phe222 in
PIF, Trp226 in CWXP, and the ionic lock (Arg103-Glu208) between TM3-TM6 are also shown.
The DRY (Asp-Arg-Tyr) motif is involved in the binding of the G-protein in the active state
in the cytoplasmic region of TM3, where Arg acts as a switch forming an ionic lock with
Glu208 of TM6. This lock is disrupted in the activation to promote the G-protein binding.

The CWXP (Cys-Trp-X-Pro, where x indicates a generic residue) motif is located at
the bottom of the ligand-binding pocket in TM6, where Trp acts as a molecular switch.
The Trp toggles in the active state, closing the ligand-binding pocket. The Tyr266 is, in
turn, a molecular switch in the NPXXY (Asn-Pro-X-X-Tyr) motif in TM7, which rotates
between different conformations. The PIF (Pro-Ile-Phe) motif expands in TM4, TM5, and
TM6, where Phe reorients its side chain between conformations upon activation.

In a previous work [12], we studied energy transport networks and their reorganization
with activation by an agonist, characterizing allosteric switches in charge of the allosteric
signal transmission; the identification of the organizing centers of allosteric modulation
of the β2-AR adrenergic receptors plays a relevant role in the drug discovery for these
molecular systems.

This work presents a novel perspective on the β2-AR molecular system and its dynam-
ics through the application of the Protein Contact Networks (PCNs [13,14]) methodology
and the identification of network descriptors that aptly describe the allosteric transmission
mechanism and identify the corresponding switches [15,16]. Additionally, the Multivariate
Statistical Analysis (MVA [17,18]) of the molecular dynamics simulations of both active
and inactive forms allow us to shed light on the different dynamical behavior of the β2-AR
active and inactive forms, defining a sort of “activation fingerprint” based on concerted
motions of residues.

Eventually, the MVA of the structural and network properties is a further proof-of-
concept of the relationship between the protein structure, network topology, and protein
function, being the PCN’s the necessary gap to explain in a detailed way the structure–function
relationship in the β2-AR system and for protein molecular systems, more generally.

2. Materials and Methods
2.1. Molecular Dynamics Simulations

We simulated the β2 adrenergic receptor (β2-AR) in both inactive and active states. The
simulations were set up by taking the coordinates from the protein data bank ID 3P0G [19]
for the active state and 2RH1 [20] for the inactive state. This paper aims to compare the
results of Protein Contact Networks (PCNs) to the results of Energy Transport Networks
(EENs) of Reference [12]. To compare the analysis within the same systems and for consis-
tency in comparison, the same crystal structures used in Reference [12] were chosen in this
study. The missing residues of the intracellular loop of the active state were modeled by
using Modeller version 9.23 [21]. Similarly, the missing residues of the inactive state were
modeled by using the same program after omitting the T4-lysozyme chimera.

The initial simulation boxes were set up in the CHARM-GUI [22] online interface,
which consists of 150 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphocholine (POPC) lipid
molecules and about 6000 water molecules. The neutralization was performed by adding
Na+ and Cl− ions with a final concentration of 0.15M NaCl. All simulations were carried
out in the AMBER16 MD software package under periodic boundary conditions, using
AMBER ff14SB [23] forcefield for proteins, Lipid17 [24] forcefield for lipids, and TIP3P [25]
forcefield for water molecules.

The systems were energy minimized for a total of 20,000 steps, using the steepest
descent method for the first 10,000 steps and conjugant gradient for the remaining. After
minimization, the systems were heated to 300 K from 0.1 K for 1 ns and held at 300 K
for an additional ns. The heating was performed in an NVT ensemble with a Berendsen
thermostat [26]. All hydrogen-containing bonds were constrained by using the SHAKE
algorithm. Followed by heating, the systems were equilibrated for 10 ns with positional
restraints in protein backbone atoms with a force constant of 1 kcal/(mol Å2). Finally, both
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systems were simulated for 100 ns, with an integration time of 2 fs, in an NPT ensemble, to
analyze the dynamics.

2.2. Protein Contact Networks

The Protein Contact Networks (PCNs) are built up starting from the structural infor-
mation contained in the PDB files [27]. The Contact Network nodes are the single residues
and an edge between two nodes (residues) if the distance between their alpha-carbons
falls between 4 and 8 Å. The mathematical counterpart of the PCN is the adjacency matrix,
whose generic element (referring to node pair i-j) is defined as follows:

Aij =

{
1 i f a link exists

0 otherwise
(1)

The node degree, ki, corresponds to the number of links a single node participates in and is
computed as the sum of elements of the i-th row (or column) of the adjacency matrix:

ki = ∑
j

Aij (2)

Connected to the definition of node degree, the clustering coefficient is defined for
each node as the fraction of connected nodes that are also connected.

The shortest path matrix represents the connection map for the network; its generic
element, spij, is the shortest path (i.e., the minimum number of links in the PCN) connecting
a pair of residues.

The betweenness centrality is defined as the shortest path’s matrix for a node and
communicates to the other nodes in the network with their specific role in transmitting
signals throughout the protein molecular structure; the generic value for the i-th residue
btwi is the number of shortest paths passing by this node in the network. We computed
the betweenness centrality by using the Kintali algorithm [28]. The betweenness centrality
computed in structural network modeling has been largely demonstrated to address single
nodes and their role in the signal transmission throughout biomacromolecules [27].

The closeness centrality is another centrality descriptor which relies on the shortest
path. It is defined for each node as the inverse of the fairness of the node, which is the sum
of all its shortest paths.

Finally, we computed the Jaccard similarity coefficient to assess the network similarities
for the two forms PCNs and verify the extent of the rewiring upon activation; the coefficient
is defined upon the two PCNs adjacency matrix as follows:

Jacc =
M11

M10 + M01 + M11
(3)

where M11 is the number of contacts shared by the two matrices (networks); M10 the
number of contacts present in the first form, but not in the first; and M01 the number of
contacts present in the second form, but not in the first.

We computed the PCNs and relative descriptors through a purposed software [29].

2.3. Statistical Analysis of Molecular Dynamics Simulations

We applied a Multivariate Statistical Analysis approach to the molecular dynamics
simulations to have a general perspective on protein dynamics. All the analyses follow a
data-driven paradigm with no a priori assumption. We performed two different approaches,
which are thoroughly described below.

Canonical Analysis of Motion
We analyzed data obtained from the molecular dynamics simulations in terms of

a Canonical Analysis of Motion, which was applied to the whole set of frames of MD
simulations for both conformations (active and inactive).
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The Canonical Analysis of Motion is based on the displacement matrix, D, a m× p
matrix, where m is the number of observations (single frames), and p is the number of
variables (displacement of single residues). The displacement at a given time (frame), j,
is computed as the Euclidean distance of the i-th residues at that time concerning their
position at the time (j − 1); the first components of the displacement vectors are computed
by using the position of the residue in the input PDB file as a reference. In other words,
the displacement matrix columns are the time-ordered displacement vectors of the single
residues along MD simulations.

Once computed, the displacement matrix, D, the generic element of the Dynamic
Cross-Correlation (DCC) matrix, DCCij, reports the Pearson correlation coefficient between
the displacement vectors of the i-th and j-th residues, and it is computed as follows:

DCC(i, j) =
< ∆ri(t) · ∆rj(t) >√

< ‖∆ri(t)‖2 > ·
√
< ‖∆rj(t)‖2 >

(4)

where ri(t) represents the i-th residue coordinates (alpha-carbon) as a function of time, and
∆ri(t) represents the residue displacement in the frame at t. Therefore, the generic element
of DDC is the Pearson correlation coefficient between the displacement vector ∆ri(t) of the
i-th residue and ∆rj(t) of the j-th residue.

High positive values in DCC correspond to residue pairs showing concerted motions,
while values close to zero describe independent motions of residue pairs. In a recent
work, we demonstrated that this method provides a faithful pictorial description of protein
dynamics in a membrane protein in the light of concerted motions of protein regions [30].

Multivariate Statistical Analysis of Global Molecular Properties in the Molecular Dynamics
The Multivariate Statistical Analysis is a powerful tool for tracing the correlation

patterns between the multivariate description of complex systems [31].
As aptly envisaged by Gorban et al. [32], the character of complex systems resides in

the emergence of peculiar correlation structures among different features of the system
at hand. In dynamics terms, the eigenvectors of the correlation matrix of the different
features (corresponding to principal components) characterize a system trajectory in its
phase space, generating an unbiased picture of the attractor states of the dynamics by the
action of Takens’s theorem [33] This implies that any choice of n relevant features (with
n > p being p the actual attractor dimension) computed along the trajectory can faithfully
reproduce the attractor dynamics of the system at hand. This allows us to generate a faithful
characterization of the system at hand, both in terms of concerted motions stemming from
the presence of structurally relevant domains (Canonical Analysis of Motion) and in terms
of correlated variance of global molecular properties.

Along this line of thought, we performed the correlation analysis of the whole set of
variables computed for each MD frame, as listed in Table 1 (for a more detailed description
of variables, see Supplementary Materials File S1 and Reference [34]).

It is worth noting that all of the abovementioned methodologies refer to second-order
statistics (Pearson correlation), i.e., to methods relying on the particular disposition of
statistical units. On the contrary, first-order statistics, such as mean and standard deviation
of two X and Y variables, remain invariant by the independent shuffling of values across
statistical units. Here, the arrangement of the statistical units (frames of the MD simulation)
follows the time dimension; this implies that the emerging correlation structures are the
image in light of the relationships holding among different features of the system at hand
that make them covary in time. This correlation structure has nothing to do with the
peculiar starting point of the simulation (that is largely arbitrary) but descends from the
‘mutual constraints’ among the considered variables.
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Table 1. Multivariate Statistical Analysis variables.

Symbol Short Description

Network Topology

DBA Degree-based assortativity
Dy Diadicity
H Heterophilicity

HBAKD Hydrophobicity-based assortativity
abtw Average node betweenness centrality
acc Average node clustering coefficient

adeg Average node degree
asp Average shortest path

aclose Average node closeness centrality
E Graph energy

Molecular Structure

RG Radius of gyration
RGh The radius of gyration of hydrophobic residues
RGp The radius of gyration of polar residues

corrHBKD Hydrophobic core probability
ρ Mass density

MFD Mass fractal dimension
ε Porosity (void fraction)

AS Asymmetry index

This approach is, in other words, a classical ‘perturbation/relaxation’ experiment
adopting the response of the system relaxing to its equilibrium state after a perturbation
as a probe of its internal structure [35] and grounds on the analysis of transients. It is
worth noting how order-independent statistics are unable to give a consistent picture of
these out-of-equilibrium trajectories, while order-dependent (correlation-like) statistics
can correctly identify the system dynamics [36]. In our case, this approach translates into
the (apparently heretical) use of the initial and transient part of the dynamics when the
system is out of equilibrium. While the arbitrary character of the starting point makes
this transient/relaxation phase of no practical use for refined structural characterization,
it is the most useful part of the dynamics for looking at the correlation structure. The
increased range of variation (concerning the quasi-equilibrium phase) offered to the system
during the transient phase allows us to highlight, thanks to the so-called ‘range restriction
effect’ [37], relevant conditions that are otherwise impossible to discriminate by pure noise.
Moreover, the virtual absence of any ‘real equilibrium’ condition in the living system makes
this kind of analysis mandatory when dealing with biological problems [38].

3. Results
3.1. Analysis of Equilibrated Forms (Active and Inactive) of β2-AR

Here, we examine the results of Protein Contact Networks (PCNs) to identify the
changes in the network upon activation of the β2-AR, and we compare the results of PCN
with the results of Energy Exchange Networks (EENs) [39–42] computed for the same
GPCR in a recently published computational paper [12].

First, starting with the PCN node degree, ki (as defined in Equation (2)), we examine
the similarities and differences in the inactive and active states of the β2-AR. The node
degree, ki, corresponds to the number of edges (connections) an amino acid residue, i,
shares with other residues in the network. In Figure 2, the nodes that have high values of
degree (ki > 10) are shown for the inactive state (Figure 2a) and active state (Figure 2b).
Figure 2a,b depicts the regions hosting the largest degree nodes in inactive and active states,
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respectively. These regions correspond to those below the ligand-binding pocket; CWXP
motifs; and TM6, TM7, TM1, and TM4. The differences between inactive and active states
are more evident on the lower side of TM5 and TM6. The opening of the TM helices, with
TM5 and TM6 going outward, causes the loss of some interactions going from inactive
to active state. The yellow color indicates the motif residues. The inactive state has more
yellow residues, as is consistent with its ‘close’ structure. This is particularly relevant for
the Ile93 of the PIF motif, which reorients upon activation (see Figure 1 for clarity).
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As mentioned above, this work focuses on comparing the results of PCN to the results
of EENs of Reference [12]; however, we further applied protein contact network analysis
to the other crystal structures of β2-AR to validate how the method provides a similar
result in other crystal structures of the same protein. Moreover, we applied the PCN to the
fully activated GPCR attached with G-protein (PDB: 3SN6) and antagonist-bound inactive
state (PDB 3NYA) (see Supplementary Materials). The results of PCN analysis in these
two crystal structures are shown in Supplementary Figures S1 and S2 for the larger node
degree and the larger betweenness centrality. Both Supplementary Figures S1 and S2 are
very similar to Figures 1 and 2 (which were computed from the last frame of the MD
simulations of inactive, PDB:2RH1, and active PDB:3P0G, states). The regions observed in
Supplementary Figures S1 and S2 are very similar to Figures 1 and 2, respectively, for both
active and inactive states.

A detailed comparison of the node degree and the centrality measures are presented
in the difference map of Figure 4.

For the difference map, we computed the difference in degree: ∆ki = kactive
i − kinactive

i .
Figure 4a reports the map on the inactive state β2-AR ribbon structure of the largest ∆ki (in
absolute value larger than 1). The largest differences are in the cytoplasmic region where
the opening of the structures occurs at the activation of the GPCR. Similarly, other changes
are seen in the TM7, where the Tyr266 of the NPXXY motif reorients in the activation; other
changes are also observed in the TM7.

Finally, we turn to the difference in the betweenness centrality for the residues of the
β2-AR. We defined the difference in betweenness centrality as ∆btwi = btwactive

i − btwinactive
i .

Figure 4b reports the largest values of ∆btwi (in absolute value larger than 500) on the β2-AR
inactive state ribbon structure. Figure 4b highlights two major differences between the two
states: (i) motif residues show the highest values of |∆ki| and (ii) prevalence of changes in
the part of the structure going from the ligand-binding pocket to the cytoplasmic region of
the β2-AR. Comparing the results of PCN to the results of the Energy Exchange Network
computed in Reference [12], we note many similarities between Figure 4b, with the r∆EEN
results stemming from energy flow simulations in the prior study [12]. The location of the
residues in Figure 4b is similar to the results of r∆EEN following from the ligand-binding
pocket to the cytoplasmic regions through TM helices 5, 6 and 7 and for Phe222 (the residue
of the PIF motif), acting as a switch. The main purpose of the r∆EEN was to capture the
interactions between the van der Waals interactions because they depicted significantly smaller
rates of energy transfer between them compared to the polar and charged contacts [39,43].
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Table 2 reports the overview of the global properties of the equilibrated forms of β2-AR.

Table 2. Comparison of global properties of the equilibrated forms (inactive and active) of β2-AR.

Inactive Active

Structural properties

MFD 2.70 2.52
RG, Å 10.07 10.20

ε 0.31 0.38
AS 0.53 0.46

corrHb −0.12 −0.09

Topological properties

adeg 7.27 7.50
abtw 842 816
asp 5.28 5.24
E 587.2 591.9

Jacc 0.703

The MFD is lower in the active form, pointing to a slightly looser structure, which is
also characterized by a shift to a more spherical shape (slightly lower As). However, values
in the range 2.5–2.7 are typical of proteins of this size [44]. The value of D affects energy
transport dynamics in the protein [45,46], and the differences found here are consistent with
the more robust energy transport observed for the active state compared to the inactive
state of β2-AR [12].

The rewiring is quite high (30% as indicated by the Jaccard index), but this rewiring
does not imply any relevant change in the average values of topological descriptors (adeg,
abtw, asp, and E). This result highlights the high resilience of Protein Contact Networks in
network dynamics [47].

3.2. Statistical Analysis of Molecular Dynamics Simulations of β2-AR Forms (Active/Inactive)

Canonical Analysis of Motion
Figure 5 is the heat map of the DCC matrix (see Section 2); Figure 1a shows a compari-

son of the DCC for active (upper triangular matrix) and inactive (lower triangular). The
heat map visually guides to identify correlated motions, shown by hot colors, while cold
colors point to a poor correlation of motions between residues.
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Figure 5. DCC heat maps for β2-AR: (A) inactive state is in the lower triangular matrix, active in the
higher. (B) Magnification of a trait between residues 150–270; in the rectangle, the sequence trait in
the residue range 167–213 is highlighted, showing high correlated motions in the active state (upper
part, hotter colors, and visible patterns) against the inactive state, where the same trait shows poorly
correlated motions (colder colors and no patterns). (C) As a visual reference, the trait 167–213 is
shown in red in the ribbon representation of the active state.
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As an example, Figure 5B shows a magnification of the trait 167–213 (in the dotted
square), clearly showing the great difference in terms of the correlation of residue motions
between the two forms: the upper part (active) is characterized by hot colors and visible
patterns of correlations (red bands), while the lower, referring to the inactive form, is
characterized by much colder colors and no visible patterns. Figure 1c shows the trait in
red on the ribbon structure of the active form to serve as a visual reference.

The squared texture of the active state correlation matrix is the image in light of
the emergence of dynamical ‘domains’ spanning the entire structure, interspersed by
‘independent motion’ (blue lines) residues.

It is evident that the active state is characterized by a higher correlation level than the
inactive state, which means that the residues in the active state move in concerted motions
with each other more than in the inactive state; the average correlation coefficient in DCC
in the inactive state is 0.31, and in the active state, it is 0.71.

Multivariate Statistical Analysis of the Molecular Dynamics
Figure 6 reports the heat map of Pearson correlation between the variables in Table 1

for the inactive form of the β2-AR; some variables significantly linearly correlate with time,
corr(t, RG) = 0.54, corr(t, adeg) = −0.56, corr(t, Mfd) = −0.52; that means that they show a
trend to linear variation along the relaxation trajectory.

The variables describing the network topology can be divided into two categories:

1. Degree-based: adeg and E (considering that corr(E, adeg) = 0.95, meaning that E is
practically overlapping with adeg);

2. Shortest-path-based: abtw, aclose and asp.
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As expected according to the network theory, there is a strong correlation between adeg
and asp: corr(asp, adeg) = −0.83, reporting the known fact that, at increasing degrees, the
shortest path decreases (more efficient signal transmission at a distance due to the largest
number of possible ‘shortcuts’ generated by the increasing number of edges).

As for purely structural variables, RG, as expected, strongly correlates with both RGh
and RGp (0.94 and 0.96, respectively).

Figure 7 shows the heat map of the Pearson correlation between variables in Table 2
for the active form. As for the inactive form, some variables significantly linearly correlate
with time: corr(t, RG) = 0.54, corr(E, adeg) = −0.56, corr(t, MFD) −0.52.
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We consider, as for the inactive form, the topological variables divided into two categories:

1. Degree-based: adeg and E (corr(E, adeg) = 0.95);
2. Shortest-path-based: abtw, aclose, and asp.

It is worth noting the decrease in the entity of the ‘obliged’ correlation between adeg
and asp: corr(asp, adeg) = −0.69 for the correlation observed in the inactive state (−0.82); this
implies that, in the active state, asp is modified by the concurring of other wiring structure
modifications in addition to the simple connectivity changes.

As for purely structural variables, even in this case, RG, as expected, strongly correlates
with both RGh and RGp (0.97 and 0.98, respectively); the two partial radiuses of gyration
show a direct correlation of 0.82 consistently with the inactive case. RG correlates with both
AS (0.72) and porosity (0.80).

Table 3 reports, for the inactive form, the best score for correlation
coefficients in the canonical analysis of variables, as parted in the following: time X1 = t;
topological variables X2 = {adeg, asp, abtw, aclose, acc, E} and structural variables
X3 =

{
RG, RGh, RGp, ρ, ε, AS, MFD

}
.

Table 3. Best scores of correlation coefficients as for canonical correlation for the inactive form.

X1 X2 X3

X1 1 0.72 0.70
X2 0.72 1 0.74
X3 0.70 0.74 1

In the inactive form, collective topological (X2) and structural (X3) variables both
have a good correlation with time (X1), given that the structural changes along dynamics
are evident at any level (shape, size, and intramolecular contacts network). Eventually,
it is interesting to highlight a good general correlation (canonical) between topology and
structure collective variables, X2 and X3.

Table 4 shows the best scores of correlation coefficients in the CCA for the active form.
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Table 4. Best scores of correlation coefficients as for canonical correlation for the active form.

X1 X2 X3

X1 1 0.54 0.91
X2 0.54 1 0.55
X3 0.91 0.55 1

In this case, the linear correlation between time (X1) and structural descriptors (X3) is
stronger in the inactive state, 0.91, than the inactive state, 0.70, and weaker for topological
(X2, 0.54 vs. 0.72), and the cross-correlation between structural and topological variables
(0.55 vs. 0.74) is weaker.

Finally, the application of the PCA allowed us to further clarify the role of variables in
protein relaxation dynamics toward the attractor equilibrium state.

We limited ourselves to the first two PCs, reporting only the relevant (>|0.5|) loadings
(Pearson correlation between variables and components) distribution.

In the case of the inactive state, we observed the following for the first two:

(a) PC1 (accounting for 37.2% of total variance): t = −0.67; abtw = −0.83, RG = −0.78,
RGh = −0.80, RGp = −0.7; acc = −0.68, adeg = −0.88; aclose = 0.78; ρ = 0.5; E = 0.86; this
component accounts for the relaxation dynamics (negative correlation with t), driving
all listed topological and structural variables.

(b) PC2 (accounting for 14.4% of total variance): aclose = 0.59, ρ = −0.66; this component
variance is not addressed by the linear trend toward the equilibrium state and points
to time-invariant features of the structure.

In the case of the active state, the PCA loadings profile (for the first two components)
is as follows:

(a) PC1 (accounting for 34.8% of total variance): t = −0.80; abtw = 0.56, RG = −0.89,
RGh = 0.89, RGp = 0.85 adeg = −0.51; asp = 0.56, aclose = −0.54; ρ = −0.87; ε = 0.87,
AS = 0.71; this component accounts mainly for the linear trend, driving all listed
topological and structural variables;

(b) PC2 (scoring 11% of total variance): abtw = −0.74; adeg = 0.72, aclose = 0.76, E = 0.81;
again, this variance is not addressed by relaxation dynamics.

The PCA results show a strong resemblance between the relaxation dynamics of
inactive and active states, thus confirming, albeit indirectly, the robustness of the transient
dynamics correlation analysis. It is worth noting the stricter correlation of PC1 with time in
the case of the active state, which is consistent with the results of the Canonical Analysis
of Motion.

4. Discussion

The results of the Protein Contact Networks analysis demonstrate the good compliance
of the PCNs with the EENs method; namely we were able to find a good matching with the
allosteric switches found with EENs in Reference [43] with residues endowed with high
values of betweenness centrality. This finding is consistent with earlier work on the A2A
adenosine receptor, another rhodopsin-like GPCR, carried out by Hyeon and coworkers,
who found that the betweenness centrality of a PCN was a good identifier of allosteric
switches [3]. The betweenness centrality has been already addressed in other works as
a crucial topological descriptor of PCNs linked to the allosteric signal transmission [48].
Future work will need to consider more directly the role of water molecules in the trans-
membrane region that are known to contribute to allosteric regulation in GPCRs and play a
central role in GPCR dynamics and activation [49].

According to the results of the correlation of motions, along with the MD simulations
(see Figure 5), the two forms show distinct patterns, even though they show a very similar
topology (see Topological Descriptors in Table 2): the active form, characterized by a lower
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average degree than for the inactive one, shows, in turn, a more extensive attitude to
concerted motions of residues along the MD simulations than the inactive form.

Finally, the canonical correlation analysis of the MD simulations for both forms (see
Tables 2 and 3) showed that the collective variables describing PCNs topology and protein
structure are in good correlation to each other (better in the inactive than in the active state)
and distinctly to time (the best is structural in the active, and the worst is topological in the
active state).

Recently, the structures of β2-AR small molecule allosteric ligands [50,51], positive
allosteric modulators (PAMs), and negative allosteric modulators (NAMs) have been
made available, providing new insights for allosteric signaling and the opportunities and
advancement for allosteric drug design [52].

In the future, it is worthwhile to extend the PCN analysis for structures bound with
the allosteric modulators to better understand the signaling through GPCRs. In addition,
the Protein Contact Networks can be employed directly in the crystal structures, as applied
here for the inactive state, PDB: 3NYA, and active state, PDB:3SN6; this method has the
potential to analyze many structures of the whole GPCR family to identify the common
signaling pathways, which would help to advance our understanding of cell signaling.

5. Conclusions

The good matching of the allosteric switches in the β2-AR system identified by protein
contact networks with those previously found by energy transport networks is strong
proof that the Protein Contact Networks provide a lean yet general framework to describe
the structure–function relationship in protein molecular structures. Furthermore, similar
observations in the networks from the MD simulations and crystal structures provide the
broader application and efficiency of the method for analyzing the large range of crystal
structures within the same receptors and the same class of GPCRs.

The coherence between the static (PCN) and dynamical (MD) approach provides valu-
able insight for membrane proteins (TRAF2 [17,18]) and opens the door to pharmacological
applications [1–3].

Still more relevant, in our opinion, is the emergence of a self-consistent picture ‘keep-
ing together’ the structure (with graph formalization acting as a sort of protein structural
formula) description, the molecular dynamics, and the analysis of the relaxation transient
toward equilibrium. These different views give support to each other, suggesting the exis-
tence of shared organizational principles allowing us to envisage the rise of an integrative
biological complex system science.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/e24070998/s1. Supplementary File S1: Full list of variables in
Table 1; Figure S1: The residues that have a degree value larger than 10 (ki > 10) in the protein contact
network are shown as spheres. Left: The inactive state PDB: 3NYA and right: active state PDB:
3SN6 are shown. In yellow the residues that belong the motifs of β2-AR are highlighted. Figure S2:
The residues that have the betweenness centrality measure value larger than 1200 in the Protein
Contact Networks analysis are shown as spheres. Left: The inactive state PDB: 3NYA and right: active
state PDB: 3SN6 are shown. In yellow the residues that fall in the motifs of β2-AR are highlighted.
References [53–57] are cited in the supplementary materials.
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